1 Online Supplemental Material

Proof of Proposition 1 From equation (2) we can write the process for the vector z; as:
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which implies that conditional on f, z; is the sum of independent normals. Hence, z; \T is also a normal,
with mean 0 and variance-covariance 921)6},5[”, where I,, is the identity matrix and v.; is the scalar
defined in Proposition 1. This implies that k; = z, 2 conditional on TisaG (n/2,20%v..), and therefore
(ke Jved)|T is a G(n/2,20%) (i.e. independent of T'). Note that (£}e,) is also distributed as a G(n/2, 262),
and therefore we can write E((ki/v.+)®) = E((¢}e)®). By the law of iterated expectations we can
calculate the moments of k, as E(kf) = E(E(k$|T)) = E(vg,tE((kt/vc,t)s\T)) = E(v:,)E((gjer)”).
Because (g}e;) is distributed as a G(n/2,26?), its moments are given by (e.g. Johnson et al. (1994 p.
339)):

s—1

E((ge0)") = (6°)" [ (n + 20)

i=0
To calculate E(v;) note that we can write ve; as ve = T, + pQTtUC)(t_l). so that E(vy;) =

E((Ty + p*Tyve(1-1))*)- Using the binomial theorem we can write:
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Because E(v:,) = E(v] (t_l)), (O.1) implies property (9) and the other unconditional moments stated
in Proposition 1. To obtain the conditional moments, note that equation (3) can be written as:
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Because &; is independent of z;_; and E(g;) = 0 we obtain that F(g,z;_1) = 0. Taking into account
that E(8)&,) = nf? we can take conditional expectations on both sides of (0.2) to get equations (4)
and (6).

Let us calculate cov(ky, ki—p) as cov(ky, ki—p) = E(kiki—p) — [E(kt)]2 To derive E(kiki—p) let us

use iterative expectations to rewrite equation (4) as:
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Multiplying both sides of (0.3) by k;_j, and then taking expectations with respect to k;_j, we obtain:
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where we have used the formula for the sum of a geometric series. Thus cov(ky, ki—p) = E(kiki—p) —
[B(k)]? = p*M(E(K2_,) — [E(k)])?) = p*hvar(k;). Thus, the correlation between k; and k,_j, is p2".
Because the stationary distribution of 02 = 1/k; is that of the product of (v.;)~" and (g}e;)”", with
(ver) ™" being independent of (¢}e;) ", the expectation E(c2%) is finite if and only if both E((ve,)”*) and
E((ghey)™®) are finite. Because (je;) " is an inverted gamma with n degrees of freedom, E((e}e;) ™)

is finite only if 2s < n. In addition, from v.; = ﬁ(l + pQUcy(t,l)) it follows that:
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Because (14 p*v,,;—1))~* < 1, it follows that E((1+ p®v,,;—1))~*) is finite because the density function
of v, (;—1) integrates up to 1. Because T, follows a B(a, B), E(Tt_s) is finite if and only if @ > s. Putting
both conditions together, F(o?*) is finite when o > s and n > 2s.

For the ARG model (i.e. ﬁ =1 for all t), the expressions for the expected value and variance of o7
are derived from the properties of the inverted gamma distribution (e.g. Bauwens et al. (1999. p.292)).

To calculate the correlations between o7 and o7 in the ARG model, let us first proof the following

property:
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where u; ~ B((n—2)/2,1), p(uy) is the density function of u; and us = 1/(14+p?*(1—us_1)) for s > 2.
To proof this note that the Poisson representation in (10) implies that k¢|(ki—1, ht) is a Gamma which in
turn implies that oZ|(02 1, hy) is an IG2(072, n+ 2h,), such that E(o?|(0?_1,hy)) = 072/(n+ 2h;, — 2).

We can therefore integrate out h; to obtain E(a?|o?_;).as:
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Note that 1/(n+2i—2) = (n—2)"t[n/2—1];/[n/2]; = (n—2)"*E((u1)?), where [n/2]; is the rising



factorial. Therefore (O.5) can be written as:
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which is the same as (0.4) for the case s = 1. To proof (O.4) for s = 2 we need to integrate E(c?|0? ;)

with respect to p(c? ;|07 5) using expression (O.6). This can be done by first integrating with respect
to p(o?_1|hi—1,0% 5) (which is a IG2(072,n+ 2h;_1)) and then integrating out h;_q (using a P(\;_1))

as follows:
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Using the properties of the inverse Gamma distribution, we can obtain that:
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Therefore, (0.7) can be written as:
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Using the properties of the Poisson distribution, we can obtain that:
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The proof for s > 2 can be obtained by repeating the same process, that is, integrate out with
respect to p(07_41|hi—st1,07_,) and then integrate out hy—s41 (using a P(A—s41)).
E(020?_,) can be obtained by using expression (0.4) to calculate E(c20?_ |07 ,) and then integrate

out o2, using the stationary distribution IGo((1 — p?)/62,n). This gives:

E(ofo}_,) = B(of_E(o{|o}_,)) = of_E(of|o}_)p(o_,)doi_,



Using the properties of the gamma function we have that I'(n/2—1)/T'(n/2) = (n/2—1)"! and therefore

E(0?0?_,) can be written as:
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By using the definition of us it is possible to verify that:
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where p? = Z;;} p?9. Hence, the integral in expression (O.8) can be written as:
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where the expectation is calculated with respect to u; and p? = p?/(1 + p?). By expanding (1/(1 —

p?u1))"/?71 as a hypergeometric series (e.g. Muirhead (1985, p. 259)) and using basic properties of the

beta distribution, it is possible to show that:
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and therefore the expectation in (0.9) can be written as:
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where Fi[.] is an Appell series of the first type (e.g. Slater (1966, p. 210)), which in our case can be

reduced to a o F} (.) series (Slater (1966, p. 219)):
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Using the Euler relationships (e.g. Muirhead (1982, p. 265) ), the o F(.) series can be written as:
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Putting all this together the expectation in (0.9) can be written as:
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where we have used that a geometric series can be written as 1 + p? = (1 — p?%)/(1 — p?). This proves
that (0.8) is equal to:

E(ojo}_,) = (202()2 (_7152)_ g {2F1 (1, 1; gm%)}

The correlation corr(o?,07_,) can then be calculated as (E(of07_,) — E(0})) /var(o?), where E(0?)
and var(o?) are obtained from the properties of the inverted gamma distribution (e.g. Bauwens et al.
(1999. p.292)).



