SUPPLEMENTARY MATERIAL

Two new xanthone glycosides from *Swertia punicea* Hemsl. and their anti-inflammatory activity

Lin-Yun Mou^{a,b}, Hai-Yan Wu^b, En-Guang Ma^b, Ming-Feng Wang^a, Yan-Qing Duan^a, Sheng Lei^{a*}, Gan-Peng Li^{b*}

^aTechnology Center, China Tobacco Yunnan Industrial Co., Ltd, Kunming, P.R.China ^bKey Laboratory of Chemistry in Ethnic Medicinal Resouces, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, P.R.China

Correspondence

Prof. Gan-Peng Li, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan, 650500, P.R.China. E-mail addresses: ganpeng_li@sina.com, Tel.: +86 871 65936602

Sheng Lei, Technology Center, China Tobacco Yunnan Industrial Co., Ltd, Kunming, Yunnan,

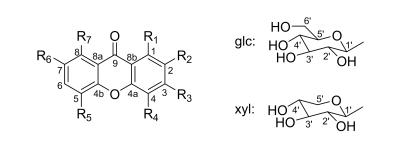
650231, P.R.China. E-mail addresses: leo179@126.com, Tel.: +86 871 65812399

Acknowledgement

This work was financially supported by Technology Center, China Tobacco Yunnan Industrial Co., Ltd [grant number JSZX20151008-52].

ABSTRACT

Two new xanthone glycosides (1–2), together with seven known analogues (3–9), were isolated from whole herb of *Swertia punicea*. The structures of these metabolites were established on the basis of detailed spectroscopic analysis and comparison with data reported in the literature. In an *in vitro* test, All isolates were evaluated for their anti-inflammatory activity. The results revealed that all of them showed significant anti-inflammatory activity with IC₅₀ values ranging from 1.237 to 3.319 mM. Compounds **3**, **4**, and **5** (IC₅₀ values in the range 1.237 to 1.987 mM) displayed more potent anti-inflammatory activity than the positive control, indomethacin (IC₅₀ value of 2.004 mM).


Keywords: Swertia punicea, xanthone glycosides, anti-inflammatory activity

Position		1	2		
No.	$\delta_{ m C}$	$\delta_{\rm H}$ (mult, J , Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (mult, J, Hz)	
1	149.9 (s)		149.9 (s)		
2	97.8 (d)	6.95 s	97.4 (d)	6.51 s	
3	160.1 (s)		160.0 (s)		
4	140.6 (s)		140.5 (s)		
4a	154.7 (s)		154.8 (s)		
4b	145.8 (s)		145.6 (s)		
5	148.7 (s)		147.6 (s)		
6	115.6 (d)	7.25 overlap	120.6 (d)	7.52 d (7.3)	
7	123.8 (d)	7.24 overlap	124.3 (d)	7.26 overlap	
8	117.5 (d)	7.99 m	116.2 (d)	7.95 d (7.7)	
8a	123.4 (s)		123.3 (s)		
8b	109.9 (s)		109.8 (s)		
9	176.6 (s)		177.2 (s)		
Glc-1'	106.4 (d)	5.68 d (7.8)	106.5 (d)	5.68 d (7.7)	
2'	75.8 (d)	4.51 m	75.8 (d)	4.50 m	
3'	78.4 (d)	4.12 overlap	78.4 (d)	4.30 overlap	
4'	71.5 (d)	4.14 overlap	71.3 (d)	4.27 overlap	
5'	78.3 (d)	3.86 overlap	78.2 (d)	4.18 overlap	
		4.86 d (11.0)		4.29 m	
6'	69.8 (t)	4.29 overlap	69.5 (t)	4.13 m	
6-1)-Glc			(6-1)-Xyl		
1"	105.0 (d)	4.94 d (7.7)	105.5 (d)	4.83 d (7.8)	
2"	75.1 (d)	3.96 m	74.9 (d)	3.91 m	
3"	78.3 (d)	4.31 m	78.0 (d)	4.06 m	
4"	71.3 (d)	4.18 overlap	71.2 (d)	4.16 overlap	
5"	78.1 (d)	4.16 overlap	67.1 (t)	4.26 overlap	
6"	62.6 (t)	4.46 overlap			
	02.0 (0)	4.33 overlap			
3-OMe	56.3 (q)	3.84 s	56.5 (q)	3.73 s	
4-OMe	61.8 (q)	4.22 s	61.8 (q)	4.22 s	
5-OMe	56.5 (q)	3.92 s			

Table S1. ¹H and ¹³C NMR data for compounds 1 and 2 (Data obtained in C_5D_5N)

Sample	IC ₅₀ (mM)	Sample	IC ₅₀ (mM)
Indomethacin	2.004	5	1.987
1	2.158	6	2.251
2	3.319	7	2.607
3	1.732	8	2.523
4	1.237	9	2.049
	Indomethacin was u	sed as positive control.	

Table S2 The anti-inflammatory activity of compounds 1–9 (IC₅₀)

	\mathbf{R}_1	R_2	R ₃	R ₄	R ₅	R ₆	R ₇
1	O-glc(6-1)-glc	Н	OMe	OMe	OMe	Н	Н
2	O-glc(6-1)-xyl	Н	OMe	OMe	OH	Н	Н
3	O-glc(6-1)-xyl	Н	OMe	OMe	Н	Н	OMe
4	O-glc(6-1)-xyl	Н	OMe	OMe	OMe	Н	Н
5	O-glc(6-1)-glc	OMe	OMe	OMe	Н	OMe	Н
6	O-glc(6-1)-xyl	OMe	OMe	OMe	OMe	Н	Н
7	O-glc(6-1)-xyl	OMe	OMe	OMe	Н	OMe	Н
8	O-glc(6-1)-xyl	OMe	OMe	Н	OMe	Н	Н
9	O-glc(6-1)-glc	OMe	OMe	OMe	OMe	Н	Н

Figure 1. The structures of compounds 1–9.

Supplemental file (Figure) Legend

Figure S1. Lift: UV spectrum of 3,4,5-trimethoxy-1-*O*-gentiobiosyloxyxanthone (1) recorded in MeOH

Right: UV spectrum of 5-hydroxy-3,4-dimethoxy-1-*O*-primeverosyloxyxanthone (2) recorded in MeOH

- Figure S2. Up: IR spectrum of 3,4,5-trimethoxy-1-*O*-gentiobiosyloxyxanthone (1) Down: IR spectrum of 5-hydroxy-3,4-dimethoxy-1-*O*-primeverosyloxyxanthone (2)
- Figure S3. ¹H NMR spectrum of 3,4,5-trimethoxy-1-O-gentiobiosyloxyxanthone (1) recorded in C_5D_5N at 500 MHz
- Figure S4. ¹³C NMR spectrum of 3,4,5-trimethoxy-1-*O*-gentiobiosyloxyxanthone (1) recorded in C₅D₅N at 125 MHz
- Figure S5. ¹³C NMR spectrum of 3,4,5-trimethoxy-1-*O*-gentiobiosyloxyxanthone (1) recorded in DMSO at 125 MHz
- Figure S6. HSQC spectrum of 3,4,5-trimethoxy-1-*O*-gentiobiosyloxyxanthone (1) recorded in C₅D₅N at 500 MHz
- Figure S7. HMBC spectrum of 3,4,5-trimethoxy-1-*O*-gentiobiosyloxyxanthone (1) recorded in C₅D₅N at 500 MHz
- Figure S8. COSY spectrum of 3,4,5-trimethoxy-1-*O*-gentiobiosyloxyxanthone (1) recorded in C₅D₅N at 500 MHz
- Figure S9. Key HMBC and COSY correlations of compound 1.
- Figure S10. ¹H NMR spectrum of 5-hydroxy-3,4-dimethoxy-1-*O*-primeverosyloxyxanthone (2) recorded in C₅D₅N at 500 MHz
- Figure S11. ¹³C NMR spectrum of 5-hydroxy-3,4-dimethoxy-1-*O*-primeverosyloxyxanthone (2) recorded in C₅D₅N at 125 MHz
- Figure S12. HSQC spectrum of 5-hydroxy-3,4-dimethoxy-1-*O*-primeverosyloxyxanthone (2) recorded in C₅D₅N at 500 MHz
- Figure S13. HMBC spectrum of 5-hydroxy-3,4-dimethoxy-1-*O*-primeverosyloxyxanthone (2) recorded in C₅D₅N at 500 MHz
- Figure S14. COSY spectrum of 5-hydroxy-3,4-dimethoxy-1-*O*-primeverosyloxyxanthone (2) recorded in C₅D₅N at 500 MHz

Figure S15. Key HMBC and COSY correlations of compound 2.

Figure S16. ¹H NMR spectrum of compound 3 recorded in C₅D₅N at 500 MHz Figure S17. ¹³C NMR spectrum of compound 4 recorded in C₅D₅N at 125 MHz Figure S18. ¹H NMR spectrum of compound 4 recorded in C₅D₅N at 125 MHz Figure S19. ¹³C NMR spectrum of compound 4 recorded in C₅D₅N at 125 MHz Figure S20. ¹H NMR spectrum of compound 5 recorded in C₅D₅N at 500 MHz Figure S21. ¹³C NMR spectrum of compound 5 recorded in C₅D₅N at 125 MHz Figure S22. ¹H NMR spectrum of compound 6 recorded in C₅D₅N at 500 MHz Figure S23. ¹³C NMR spectrum of compound 6 recorded in C₅D₅N at 125 MHz Figure S23. ¹³C NMR spectrum of compound 7 recorded in C₅D₅N at 125 MHz Figure S25. ¹³C NMR spectrum of compound 7 recorded in C₅D₅N at 125 MHz Figure S26. ¹H NMR spectrum of compound 7 recorded in C₅D₅N at 125 MHz Figure S26. ¹³C NMR spectrum of compound 8 recorded in C₅D₅N at 125 MHz Figure S26. ¹³C NMR spectrum of compound 8 recorded in C₅D₅N at 125 MHz Figure S26. ¹³C NMR spectrum of compound 9 recorded in DMSO and C₅D₅N at 125 MHz Figure S28. ¹³C NMR spectrum of compound 9 recorded in DMSO and C₅D₅N at 125 MHz

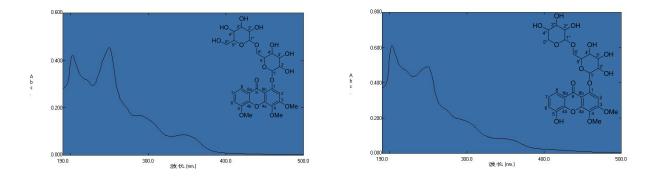
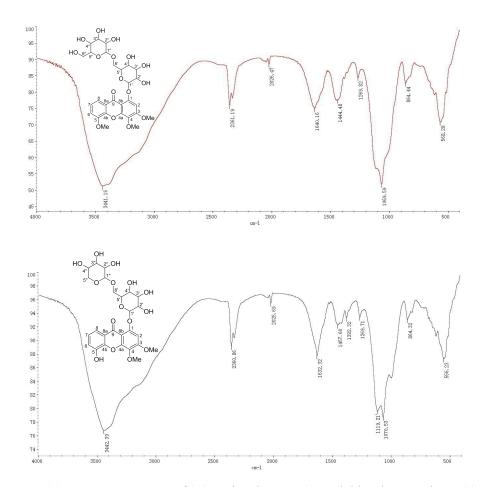
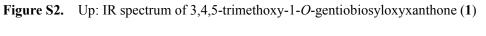




Figure S1. LIFT: UV spectrum of 3,4,5-trimethoxy-1-*O*-gentiobiosyloxyxanthone (1) recorded in MeOH

Right: UV spectrum of 5-hydroxy-3,4-dimethoxy-1-O-primeverosyloxyxanthone (2) recorded in

MeOH

Down: IR spectrum of 5-hydroxy-3,4-dimethoxy-1-O-primeverosyloxyxanthone (2)

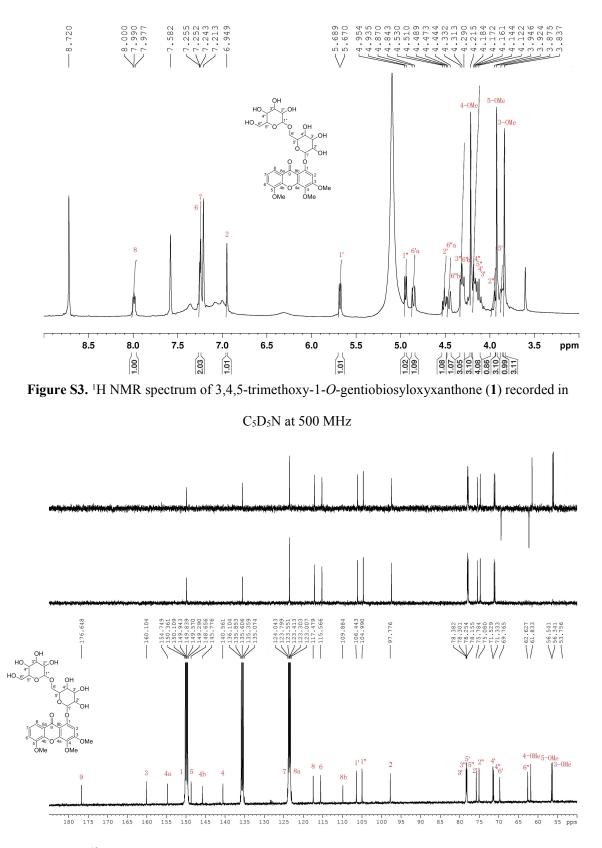


Figure S4. ¹³C NMR spectrum of 3,4,5-trimethoxy-1-O-gentiobiosyloxyxanthone (1) recorded in

C₅D₅N at 125 MHz

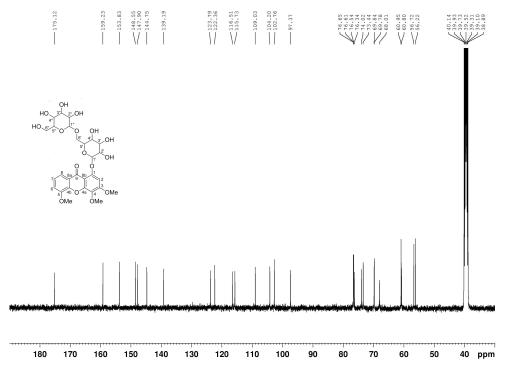


Figure S5. ¹³C NMR spectrum of 3,4,5-trimethoxy-1-O-gentiobiosyloxyxanthone (1) recorded in

DMSO at 125 MHz

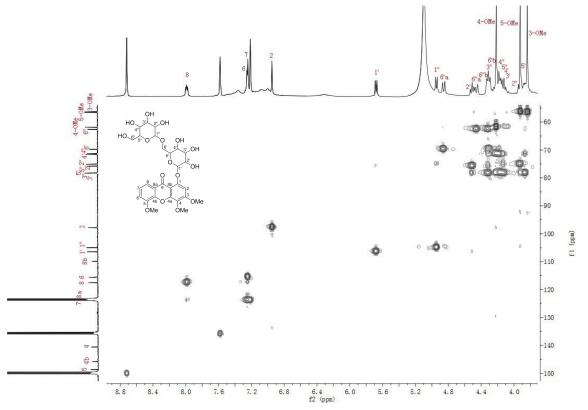


Figure S6. HSQC spectrum of 3,4,5-trimethoxy-1-O-gentiobiosyloxyxanthone (1) recorded in

C5D5N at 500 MHz

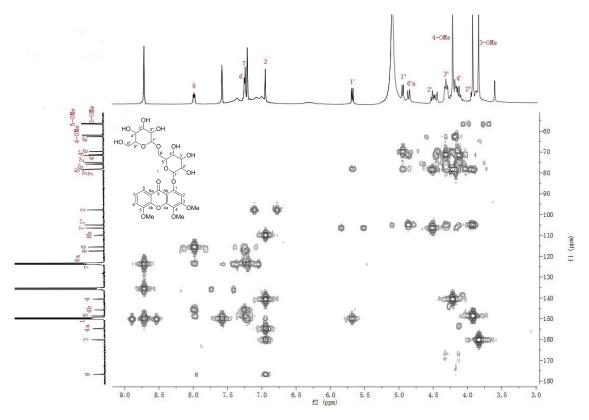


Figure S7. HMBC spectrum of 3,4,5-trimethoxy-1-O-gentiobiosyloxyxanthone (1) recorded in

C₅D₅N at 500 MHz

Figure S8. COSY spectrum of 3,4,5-trimethoxy-1-O-gentiobiosyloxyxanthone (1) recorded in

 C_5D_5N at 500 MHz

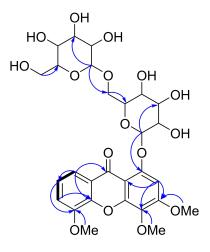


Figure S9. Key HMBC () and COSY () correlations of compound 1.

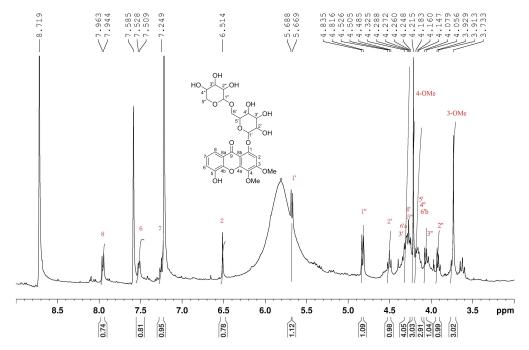


Figure S10. ¹H NMR spectrum of 5-hydroxy-3,4-dimethoxy-1-O-primeverosyloxyxanthone (2)

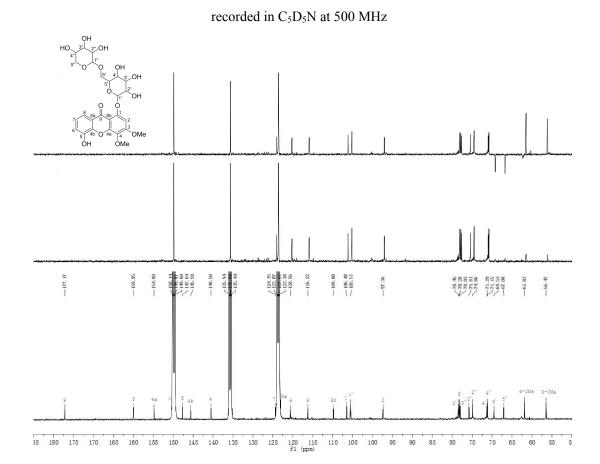


Figure S11. ¹³C NMR spectrum of 5-hydroxy-3,4-dimethoxy-1-*O*-primeverosyloxyxanthone (2) recorded in C₅D₅N at 125 MHz

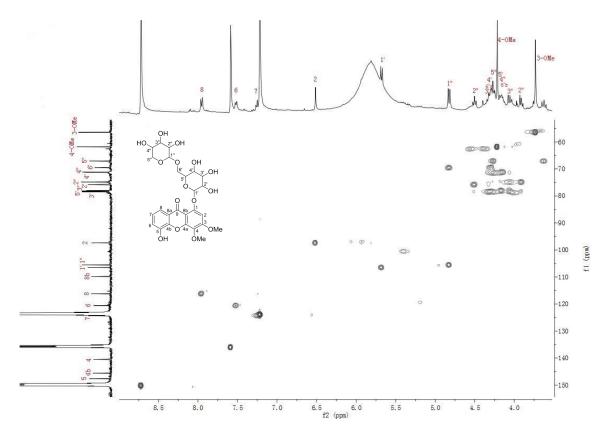


Figure S12. HSQC spectrum of 5-hydroxy-3,4-dimethoxy-1-O-primeverosyloxyxanthone

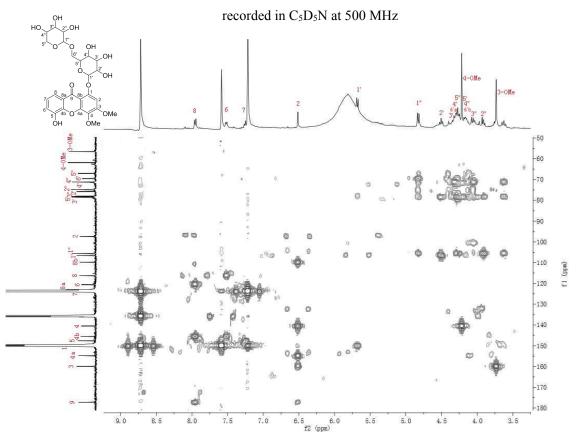


Figure S13. HMBC spectrum of 5-hydroxy-3,4-dimethoxy-1-*O*-primeverosyloxyxanthone recorded in C₅D₅N at 500 MHz

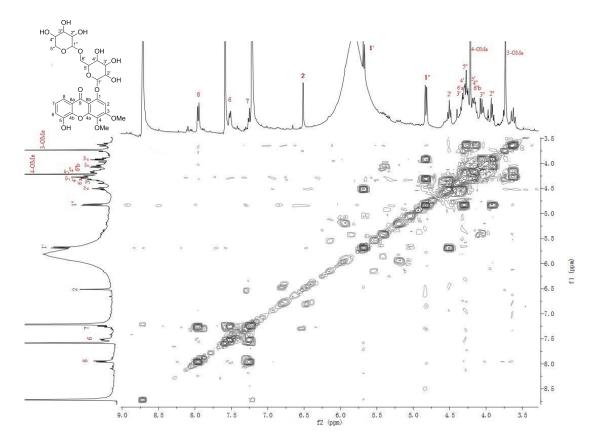


Figure S14. COSY spectrum of 5-hydroxy-3,4-dimethoxy-1-O-primeverosyloxyxanthone

recorded in C_5D_5N at 500 MHz

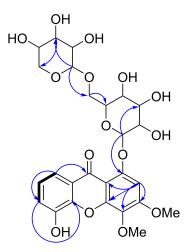


Figure S15. Key HMBC () and COSY () correlations of compound 2.

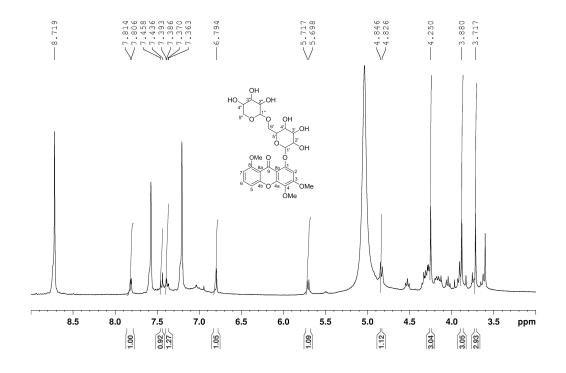


Figure S16. ¹H NMR spectrum of compound 3 recorded in C_5D_5N at 500 MHz

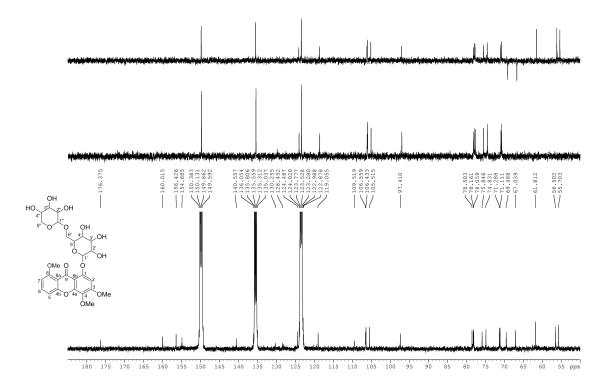


Figure S17. ¹³C NMR spectrum of compound 3 recorded in C₅D₅N at 125 MHz

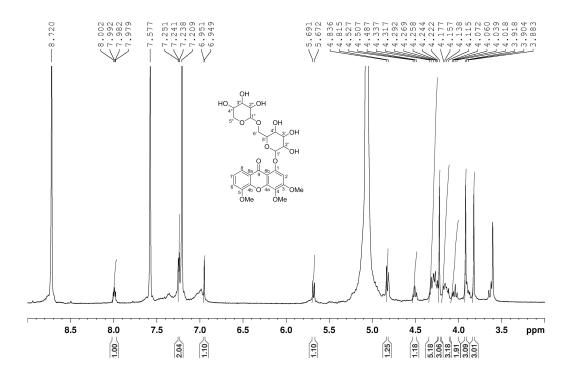


Figure S18. ¹H NMR spectrum of compound 4 recorded in C₅D₅N at 500 MHz

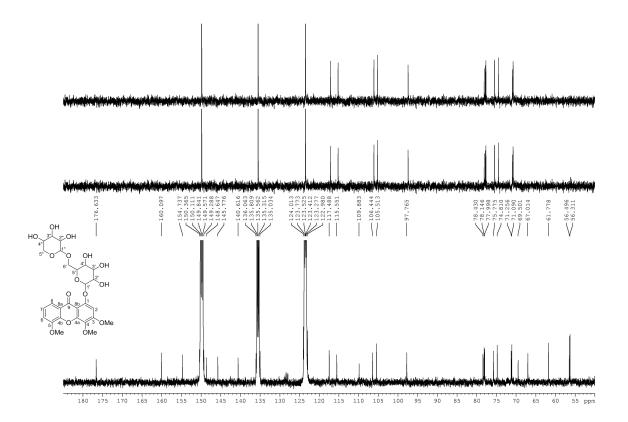


Figure S19. ¹³C NMR spectrum of compound 4 recorded in C₅D₅N at 125 MHz

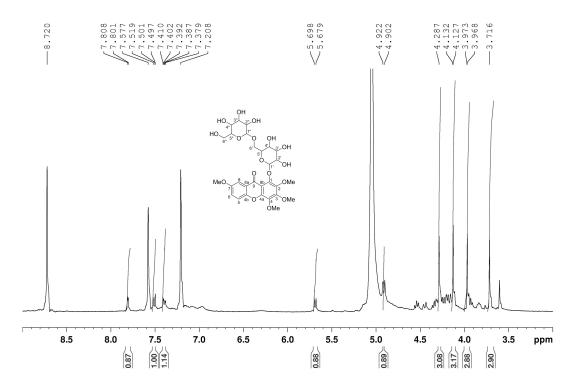


Figure S20. ¹H NMR spectrum of compound 5 recorded in C₅D₅N at 500 MHz

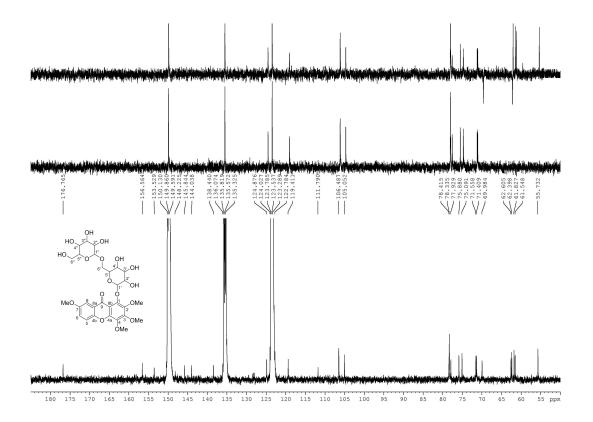


Figure S21. ¹³C NMR spectrum of compound 5 recorded in C₅D₅N at 125 MHz

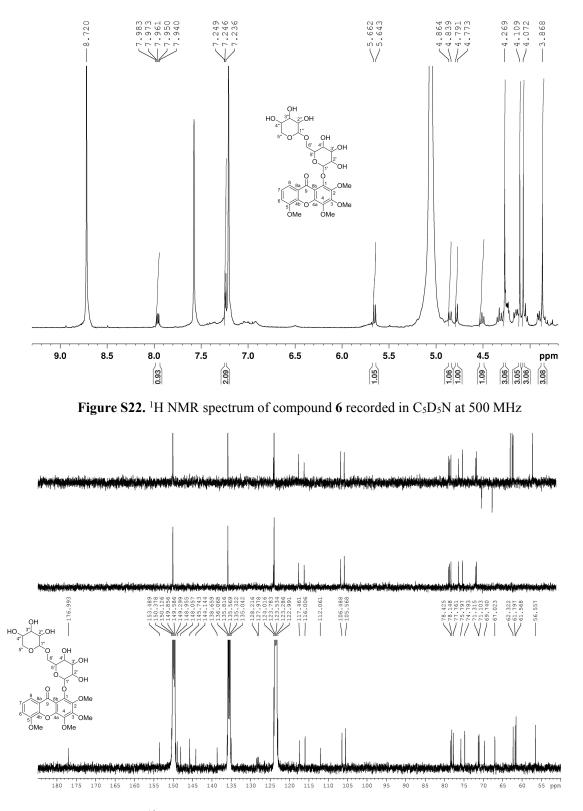


Figure S23. ¹³C NMR spectrum of compound 6 recorded in C₅D₅N at 125 MHz

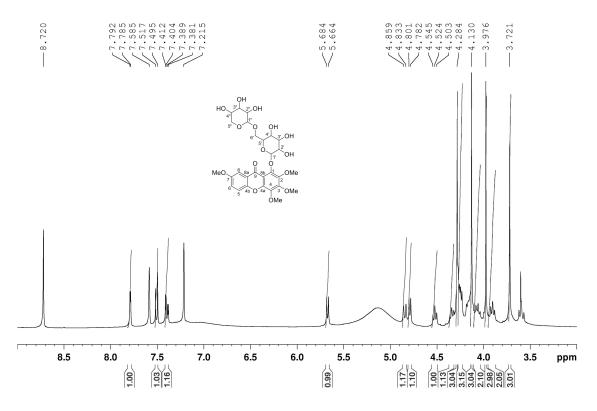


Figure S24. ¹H NMR spectrum of compound 7 recorded in C₅D₅N at 500 MHz

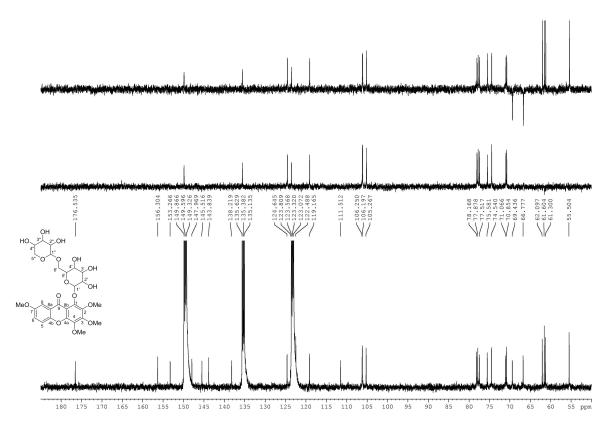


Figure S25. $^{13}\!C$ NMR spectrum of compound 7 recorded in C_5D_5N at 125 MHz

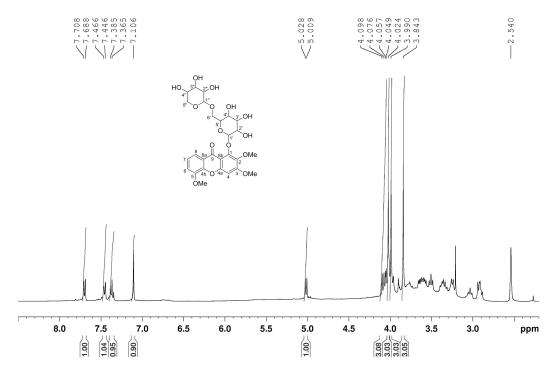


Figure S26. ¹H NMR spectrum of compound 8 recorded in DMSO and C₅D₅N at 500 MHz

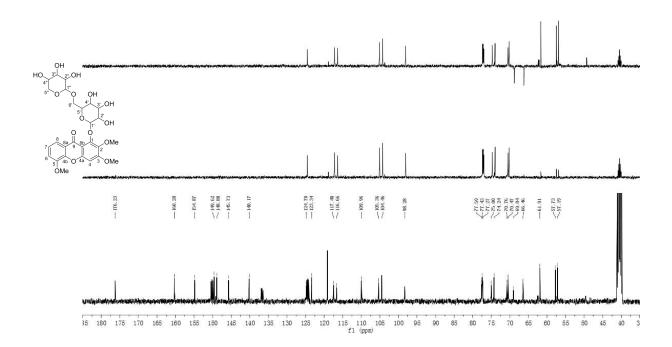


Figure S27. ¹³C NMR spectrum of compound 8 recorded in DMSO and C₅D₅N at 125 MHz

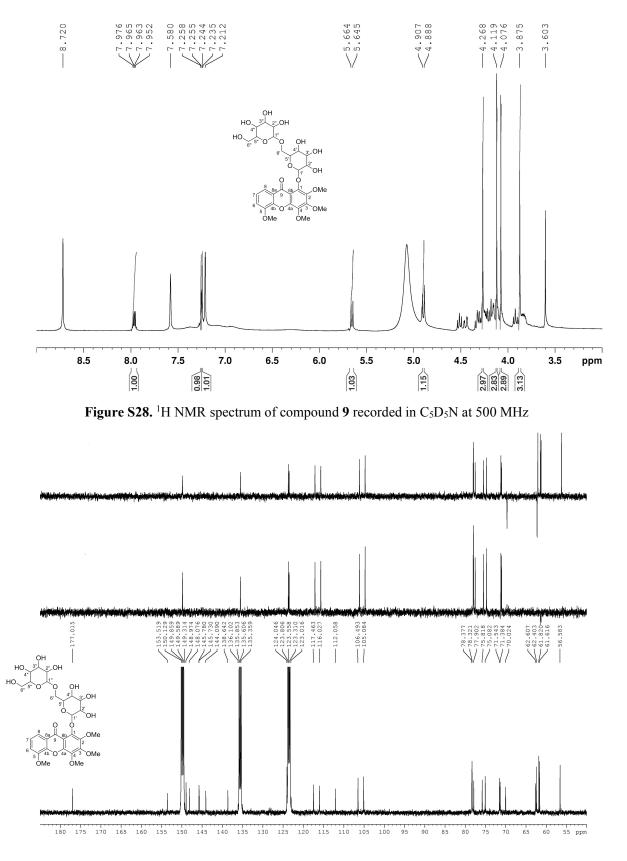


Figure S29. 13 C NMR spectrum of compound 9 recorded in C₅D₅N at 125 MHz