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I. KCP on the running statistics 10 

Step 1. Searching for change points. 11 

The similarity measure 12 

After obtaining the running statistic of interest (e.g., running mean, running variance, running 13 

autocorrelation or running correlation) by sliding a time window across the time series and 14 

computing the statistic in each window, KCP looks for change points in this running statistic, by 15 

examining the similarities between windows. The key idea is straightforward: When there is no 16 

change point, there will only be small fluctuations in the similarities. However, when statistics in 17 

subsequent windows are very similar, while those that are distant in time are dissimilar, there is 18 

more evidence for (a) possible change point(s). KCP employs a kernel function to quantify these 19 

similarities. Specifically, we use the Gaussian kernel, such that  if ��� and ��� denote the running 20 

statistic computed in windows i and j, respectively, we compute the following similarity,  21 

������, ���  
 = exp �−∥ ��� − ��� ∥�
2ℎ��� �,                                                   (1)  22 

where ℎ�� is the median Euclidean distance between all the ���values. The similarity value ranges 23 

from 0 to 1, with 0 implying extreme dissimilarity and 1 indicating complete similarity.  24 

Since the goal is to analyze all variables in the time series simultaneously (cfr. comprehensive 25 

analysis), our approach is multivariate such that ��� is a vector of the running statistic for all the V 26 

variables in the system. Specifically, for univariate statistics such as the mean, variance and 27 
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autocorrelation, the corresponding ��� will consist of V elements as each variable yields one running 28 

statistic. For correlations however, the corresponding ��� will have more elements since there will 29 

be 
�(���)

�  pairwise correlations to monitor. Regarding the window size in extracting the running 30 

statistic, ���, we recommend to use w=25 as our previous studies [1-2] showed that in comparison 31 

to larger window sizes, this leads to more power in detecting a change, as well as less biased change 32 

point estimates. We emphasize, though, that prior information can help in making this choice. For 33 

instance, one can set the window size equal to the length of the shortest expected event. If no prior 34 

information is available as is often the case, employing different window sizes to check the stability 35 

of the obtained change points can be helpful.  36 

The variance criterion to optimize change point locations 37 

To locate the change points, KCP optimizes a variance criterion based on the intra-phase scatter, 38 

� !",!#,!$...,!&,' =   ((' − ('��) − 1
(' − ('�� ) ) ������, ���
,         (2)
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where the indices, (�, (�, . . . , (/, are the phase boundaries, m is the current phase number, and ('�� 40 

and (' are the first and last time points of this phase. The more similar the values of the running 41 

statistic are inside a phase, the lower is the intra-phase scatter, as � '‘s rightmost term will become 42 

more negative due to the high similarities. If the user requests to locate K change points, the variance 43 

criterion,  44 

0 ((�, (�, . . . , (/) =  1
1 ) � !",!#,!$...,!&,' .                                                (3)  

/.�

',�
 45 

which is simply the sum of all K+1 intra-phase scatters divided by the total number of windows, is 46 

minimized to ensure optimal homogeneity (i.e., high similarity) of the running statistic within a 47 

phase.  48 

Let’s consider the simplest case where only one change point (K=1) has to be estimated. Two intra-49 

phase scatters will be optimized: � !",� and  � !",� . The phase containing the first observations until (� 50 

will determine � !",� , and the phase comprising all remaining observations will determine � !",� . The 51 

goal therefore is to search among all (� ∈  {2, 3, . . . , 1 − 1} the location (̀� that yields the lowest 52 

value of the variance criterion, 0 ((�) = 
�
7 �� !",� +  � !",� 
, and to optimally segment the time series 53 

into phases within which the values of the running statistic are very similar. The change point is then 54 
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set at (̀� + 1. Generalizing the procedure, the optimal K change points, (̀� + 1, (̀� + 1, …(̀/ + 1, are 55 

obtained by finding 56 

(̀�, (̀�, … , (̀/ =  arg min 0 ((�, (�, . . . , (/).                                                (4)  57 

For ease of notation, in the following steps, we will denote the optimized variance criterion for a 58 

given K as 0 '�A,/.  59 

Step 2. Selecting the number of change points.  60 

In practice, users often do not know the expected number of change points and should infer this 61 

from the data itself. We therefore employ a two-step procedure to choose the optimal number of 62 

change points. 63 

Step 2.1 Testing if there is at least one significant change point. 64 

First, a significance test is performed to decide on the presence of at least one change point in the 65 

running statistic. The test compares the variance criterion 0 '�A,/ of the running statistic computed 66 

from the original data to that of the running statistic from the permuted data (in which time points 67 

are reshuffled). Two subtests are implemented: the variance and the variance drop test. 68 

Variance test. The idea of the variance test is that when the running statistic contains at least one 69 

change point, their overall variance will be large. This is not expected if the running statistic is 70 

obtained from permuted data, as possible changes across time are effectively removed via 71 

reshuffling. The variance test therefore compares the overall variance (i.e., 0 '�A,/,B, the variance 72 

criterion value when no change point is extracted from the running statistic) to the distribution of 73 

0 '�A,/,B,CDE', which is obtained by computing the same overall variance from a large number of 74 

permuted versions of the data. The p-value of the variance test is therefore given by, 75 

FGHE�HAID JDKJ = #(0 '�A,/,B,CDE'  >  0 '�A,/,B)
N                                           (5) 76 

where B denotes the number of permutations carried out. In this paper, B was always set to 1000.   77 

We note that this test is not applied to the running autocorrelation as it leads to an inflated Type 1 78 

error rate.  79 

Variance drop test. The variance drop test looks at the extent to which the variance criterion 80 

improves due to extracting change points. Recall that the variance criterion, 0 '�A,,/, improves (i.e., 81 
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decreases) when more change points are allowed for. However, if there are no true change points 82 

present in the data, this improvement will not be substantial and will be comparable to that of 83 

permuted data. Thus, in the variance drop test, we compare the drop in the variance criterion, 84 

0 '�A,/ −  0 '�A,/�� to a distribution of variance drops obtained after reshuffling the data. We only 85 

use the strongest evidence for change, by retaining the maximum  0 '�A,/ − 0 '�A,/�� among all 86 

considered K’s. The variance drop test therefore yields a p-value equal to  87 

FGHE�HAID PEQC JDKJ = #(max RSTUSVWX YTZFCDE' > max RSTUSVWX YTZF)
N                  (6) 88 

where, B, again indicates the number of reshuffled data sets on which the permuted distribution is 89 

based.  90 

Combining the sub-tests. Since two sub-tests are carried out, we correct for multiple testing by 91 

adopting a corrected significance level of 
\
� for each test. If at least one of the sub-tests yield a 92 

significant result, we declare that there is at least one change point in the running statistics. For the 93 

running autocorrelation, we only employ the variance drop test, and thus, in this case, its significance 94 

level is set to ].  95 

Step 2.2 If there is at least one change point (K>0), choose the optimal number of K via 96 

penalization. 97 

If the permutation test above yields a significant result, we employ the penalty term FXV/ =98 

^ �+_` (/.�)
a b1 + log e a

/.�fg proposed by Arlot et al. [3], to aid in choosing a K that balances fit, as 99 

evidenced by a reduction in the variance criterion, 0 '�A,/, and complexity, by penalizing too large K-100 

values that would lead to unnecessary change points. The idea is to pick the number of change points 101 

that minimizes the sum of the variance criterion and the penalty term: 102 

hi = arg min 0 '�A,/ + FXV/ .                                                              (7)  103 

The penalty coefficient C can be tuned by the user to adjust the impact of the penalty term. Small C-104 

values imply a weak penalty for extra change points in the solution and will therefore tend to favor 105 

higher K-values (many change points). Large C-values, on the other hand, more strongly penalize 106 

adding more change points and therefore would favor small K-values (less change points). The 107 

remaining term, �'Hk , is obtained by computing the trace of the empirical covariance matrix of the 108 

first and last 5% elements of the running statistic, retaining whichever is larger among the two.  109 
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Since the choice of the penalty coefficient, C, highly influences the result of the penalization scheme, 110 

Cabrieto et al.[4] proposed to tune this coefficient through a grid search so that the choice will not 111 

solely depend on a single choice for C. The procedure starts by first setting C equal to 1, which will 112 

always yield Kmax (the largest K) as a solution because the penalty is not strong. Moving on, we 113 

increase C by incrementing it linearly. This step increases the influence of the penalty term, and thus 114 

lower K-values are eventually favored. The grid search terminates once C becomes too large such 115 

that the K-value returned is zero. The whole procedure, at the end, outputs the most stable K, that is, 116 

the most frequently returned K-value across all considered C-values. 117 

The final KCP change point solution then consists of the change point locations that correspond to 118 

the most stable K. 119 

 120 

II. Multiple testing correction for monitoring several statistics 121 

When multiple statistics are tracked, as is done in this paper, a multiple testing correction can be 122 

used in Step 2.1. Since we monitored three running statistics (i.e., running variance, running 123 

correlation, and running autocorrelation) in three separate KCP-analyses, we maintained the overall 124 

type 1 error rate of .05 by allotting a corrected ]-level of .017 (i.e., .05 divided by 3) to each analysis 125 

and thus each running statistic. This implies that for the running autocorrelation, where only the 126 

variance drop test is employed, the corrected ]-level is .017. For the running variance and running 127 

correlation where two sub-tests are employed, the ]-level for each sub-test is corrected such that 128 

the per statistic ]-level (.017) is maintained. This means that each subtest will have an alpha level of 129 

.008 (i.e., per statistic ]-level divided by 2). In Table 1, we present this multiple testing plan and the 130 

corresponding KCP permutation test results for the depression data.  131 

We remark that using such a Bonferroni correction is a conservative way of controlling for multiple 132 

testing. Less conservative methods have been proposed, for instance a non-parametric combination 133 

of dependent permutation tests [5]. However, to the best of our knowledge, this combined test is an 134 

Omnibus test, postulating the global null hypothesis that none of the running statistics contains a 135 

change point and the corresponding alternative hypothesis that at least one running statistic shows 136 

at least one change point. In contrast, we are interested in local effects, in that we aim to test for 137 

each running statistic separately whether it contains at least one change point. Nevertheless, 138 

exploring the potential of a non-parametric combined test for increasing the power of KCP-analyses, 139 

might be a useful direction for future research.  140 
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Table 1. Corrected ]-levels and observed p-values for the KCP permutation tests employed to 141 

determine whether the 3 running statistics (i.e., running autocorrelation, running variance and 142 

running correlation) contain at least one change point. 143 

Data Running Statistic Tests Corrected ]-level p-value  

Full Running 

autocorrelation* 

Variance  .017 .01 

Running variance* Variance  .008 .016 

 Variance drop  .008 0 

Running correlation* Variance  .008 0 

 Variance drop  .008 0 

Before Relapse Running 

autocorrelation 

Variance  .017 .221 

Running variance* Variance  .008 0 

 Variance drop  .008 0 

Running correlation* Variance  .008 0 

 Variance drop  .008 .148 

* Contains at least one significant change point 144 

 145 
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