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Agency

* The Office of Research and Development (ORD) is the scientific research
arm of EPA
* 626 peer-reviewed journal articles in 2017 and 456 so far in 2018

* Research is conducted by ORD’s three national laboratories, four
national centers, and two offices organized to address:
* Hazard, exposure, risk assessment, and risk management

e 13 facilities across the United States

» Six research programs
* Air, Climate, and Energy; Chemical Safety for Sustainability; Human
Health Risk Assessment; Homeland Security; Safe and Sustainable
Water Resources; Sustainable and Healthy Communities

* Research conducted by a combination of Federal scientists; contract ; S il Rescarch Trandle F oLty
researchers; and postdoctoral, graduate student, and post- ' '
baccalaureate trainees ORD Facility in

Research Triangle Park, NC
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<EPA Chemical Regulation in the United States

Environmental Protection
Agency

* Park etal (2012): At least 3221 chemicals present in pooled human
blood samples, many appear to be exogenous albeit at low levels

* A tapestry of laws covers the chemicals people are exposed to
in the United States (Breyer, 2009)

* Different testing requirements exist for food additives,
pharmaceuticals, and pesticide active ingredients (NRC, 2007)

m Office of Research and Development
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<EPA Chemical Regulation in the United States

United States
Environmental Protection
Agency

* Different testing requirements exist for food additives, Sectaiay for G Ty THinds

pharmaceuticals, and pesticide active ingredients (NRC, 2007) NEWSCientiSt

 Most industrial chemicals, ranging from industrial waste to dyes |~
to packing materials, are covered by the Toxic Substances
Control Act (TSCA) and regulated by EPA

* TSCA was amended by the U.S. Congress in June, 2016 and new i
approach methodologies (NAMs) are being considered to
inform prioritization of chemicals for testing and evaluation* We touch them,

we wear them, we eat them

But which ones should
we worry about?

SPECIAL REMORT, page 34

We've made
150,000 new chemicals

3Gt

THE GOOD FIGHT CHAMBER OF SECRETS 15 IT ALNVE? ]
Most viclence The greatest ever find ificial worm could
is adso virtuous of earty human bones bel"lrstﬁgla.l anirmal

EESEN Oftice of Research and Development *“Alternative Test Methods and Strategies to Reduce
Vertebrate Animal Testing,” US EPA, June 2016 November 29, 2014



<EPA

Chemical Risk = Hazard x Exposure

Environmental Protection
Agency

« The U.S. National Research Council (1983) identified chemical mg/kg BW/day
risk as a function of both inherent hazard and exposure

- To address thousands of chemicals, we need new approach Potential Hazard
methodologies (NAMs) that can inform prioritization of from in vitro with
chemicals most worthy of additional study Reverse

Toxicokinetics

 High throughput risk prioritization needs:

1. High throughput hazard characterization (Dix et al., 2007,
Collins et al., 2008) Potential

2. High throughput exposure forecasts (Wambaugh et al., Exposure Rate
2013, 2014)

3. High throughput toxicokinetics (i.e., dose-response
relationship) linking hazard and exposure (Wetmore et
al., 2012, 2015)

Lower Medium Risk Higher
m Office of Research and Development Risk Risk



SEPA Three Components for Chemical Risk

United States
Environmental Protection
Agency

Risk
Assessment

in the Federal
Government:

Managing
the Progress

INNAS
N AT
«OM

Chemical Risk

Dose-
NRC (1983) Response Exposure

(Toxicokinetics

/Toxicodynamics)
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SEPA High-Throughput Risk Prioritization

United States
Environmental Protection
Agency

High throughput
screening (HTS) for in
vitro bioactivity
potentially allows
characterization of
thousands of
chemicals for which
no other testing has

National Institute of
S e O

- High-Throughput occurred
Risk
TOXICITY TESTING IN THE 21ST CENTURY - oy ® .
A VISION AND A STRATEGY Prlorltlzatlon

Dose-

Response
(Toxicokinetics
/Toxicodynamics)

Exposure

NRC (2007)

7 of 59 Office of Research and Development



v EPA : :
Mimt High-throughput Screening

Agency

Hertzberg and Pope (2000):

 “New technologies in high-throughput screening have significantly increased throughput and reduced

assay volumes”
Kaewkhaw et al. (2016)

 “Key advances
over the past
few years
include new
fluorescence
methods,
detection
platforms and
liguid-handling
technologies.”

Positive control

Titration of —
potential hits

8 of 59 Office of Research and Development



SEPA High-Throughput Bioactivity

United States
Environmental Protection
Agency

Screening

We might estimate points of departure in vitro using high
throughput screening (HTS)

= Tox21: Examining >8,000 chemicals using ~50 assays
intended to identify interactions with biological pathways
(Schmidt, 2009)

= ToxCast: For a subset (>2000) of Tox21 chemicals ran
>1100 additional assays (Kavlock et al., 2012)

= Most assays conducted in dose-response format (identify
50% activity concentration — AC., — and efficacy if data
described by a Hill function, Filer et al., 2016)

= All data are public: http://comptox.epa.gov/dashboard/
m Office of Research and Development
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<EPA Risk Assessment in the 215t Century

Environmental Protection
Agency

The National Academies of
SCIENCES * ENGINEERING + MEDICINE

REPORT

USING

21ST CENTURY
SCIENCE

TO IMPROVE
RISK-RELATED
EVALUATIONS

THE NATIONAL ACADEMIES PRESS
Washington, DC

Office of Research and De\ WWW-I'IEP-EEIU
January 5, 2017

“Translation of high-throughput data into risk-based
rankings is an important application of exposure data for
chemical priority-setting. Recent advances in high-
throughput toxicity assessment, notably the ToxCast and
Tox21 programs... and in high-throughput computational
exposure assessment... have enabled first-tier risk-based
rankings of chemicals on the basis of margins of
exposure...”

“...The committee sees the potential for the application
of computational exposure science to be highly valuable
and credible for comparison and priority-setting among
chemicals in a risk-based context.”
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o — In Vitro - In Vivo Extrapolation

- (IVIVE)

Utilization of in vitro experimental data to predict phenomena in vivo

* |VIVE-PK/TK (Pharmacokinetics/Toxicokinetics):
* Fate of molecules/chemicals in body
* Considers absorption, distribution, metabolism, excretion (ADME)
» Uses empirical PK and physiologically-based (PBPK) modeling

* |IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics):
» Effect of molecules/chemicals at biological target in vivo
» Assay design/selection important
* Perturbation as adverse/therapeutic effect, reversible/ irreversible

* Both contribute to predict in vivo effects

NN E-EM Office of Research and Development

Slide from Barbara Wetmore



SEPA New Exposure Data and Models

United States
Environmental Protection
Agency

High throughput
screening + in vitro-
in vivo extrapolation
(IVIVE) can predict a
dose (mg/kg bw/day)
that might be
adverse

High-Throughput
Risk
Prioritization

Dose-

Response Exposure
(Toxicokinetics

/Toxicodynamics

PRI Office of Research and Development



SEPA New Exposure Data and Models

United States
Environmental Protection
Agency

High throughput
screening + in vitro-
in vivo extrapolation
(IVIVE) can predict a
dose (mg/kg bw/day)
that might be
adverse

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure

Wetmore et al. (2012, 2015)

XM Office of Research and Development



SEPA New Exposure Data and Models

United States
Environmental Protection

Agency

High throughput
models exist to make
predictions of
exposure via specific,
important pathways
such as residential
product use and diet

High throughput
screening + in vitro-
in vivo extrapolation
(IVIVE) can predict a
dose (mg/kg bw/day)
that might be
adverse

High-Throughput
Risk
Prioritization

BOSURESCENCE

Toxicokinetics Exposure

Office of Research and Development N RC (201 2)



Ring et al., submitted

SEPA ExpoCast (Exposure Forecasting)

hanoq et Protectir Collaboration on High Throughput Exposure Predictions

Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-Moo Shin,
Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Arnot Research & Consulting _

EPA Inventory Update Reporting and Chemical Data US EPA (2018) 7856 All
M Reporting (CDR) (2015)
Stockholm Convention of Banned Persistent Organic Lallas (2001) 248 Far-Field Industrial and Pesticide
UNIVERSITY OF Pollutants (2017)
ik EPA Pesticide Reregistration Eligibility Documents Wetmore et al. (2012, 2015) 239 Far-Field Pesticide
UC DAV'S (REPs) Expgsure As§essments (Through 2015). | |
United Nations Environment Program and Society for ~ Rosenbaum etal. (2008) 8167 Far-Field Industrial

UNIVERSITY OF CALIFORNIA . . . .
Environmental Toxicology and Chemistry toxicity model

A UNIVERSITY OF
B TEXAS (USEtox) Industrial Scenario (2.0)
‘A‘ ARLINGTON USEtox Pesticide Scenario (2_0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide
DTU Dann.marks Risk Assessment IDentification And Ranking (RAIDAR) ~ Armotetal. (2008) 8167 Far-Field Pesticide
oo ckuiske Far-Field (2.02)
<9 Universitet EPA Stochastic Human Exposure Dose Simulator High Isaacs (2017) 7511 Far-Field Industrial and Pesticide
0‘\\1@ sm% Throughput (SHEDS-HT) Near-Field Direct (2017)
2 o % SHEDS-HT Near-field Indirect (2017) saacs (2017) 1119 Residential
< i . ——
) M ¢ Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
%“4, &\Oe RAIDAR-ICE Near-FieId (0803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
74!. pno“("o USEtox Residential Scenario (20) Jolliet et al. (2015), Huang et al. (2016,2017) 615 Residential
Office of Research and USEtox Dieta ry Scenario (20) Jolliet et al. (2015), Huang et al. (2016), 8167 Dietary

Ernstoff et al. (2017)




SEPA Application:

United States

Environmentel Protection Effects of Environmental Chemicals on Hormones

The Endocrine Disruptor Screening Program (EDSP) uses a two tiered approach to screen pesticides, chemicals, and
environmental contaminants for their potential effect on estrogen, androgen and thyroid hormone systems. The EDSP is
outlined in two Federal Register Notices published in 1998. (Browne, et al. 2016)

Need to evaluate all pesticide active ingredients and any chemicals in drinking water

N

HUMAN ECOLOGICAL

HAZARD

Human Hazard Eco Hazard

EXPOSURE | Crirce ool e

Eco Exposure

July and December 2014 FIFRA Scientific Advisory

Office of Research and Development mg/kg BW/day Panels reviewed research as it applies to the Endocrine
Disruptor Screening Program



SEPA Application:
emesrecien Effects of Environmental Chemicals on Hormones

Agency

The Endocrine Disruptor Screening Program (EDSP) uses a two tiered approach to screen pesticides, chemicals, and
environmental contaminants for their potential effect on estrogen, androgen and thyroid hormone systems. The EDSP is

outlined in two Federal Register Notices published in 1998. (Browne, et al. 2016)

SeqAPASS (Lalone et al., 2016)

7\
HUMAN f\ ECOLOGICAL

HAZARD Human In Vitro Assays Predicted Ecological
» Species Effects

(HTT/ToxCast)

High Throughput
Toxicokinetics
(Pearce et al., 2017a)

Exposure Predictions
» « Calibrated to USGS
Water Monitoring

July and December 2014 FIFRA Scientific Advisory
Panels reviewed research as it applies to the Endocrine
Disruptor Screening Program

Exposure Predictions
EXPOSURE Calibrated to NHANES

(Including SHEDS-HT)

VST Office of Research and Development mg / kg BW/ day



SEPA High Throughput Toxicokinetics (HTTK)

United States
Environmental Protection
Agency

Toxicokinetics (TK)
describes the Absorption,
Distribution, Metabolism,
and Excretion (ADME) of
a chemical by the body

TK relates external
exposures to internal
tissue concentrations of
chemical High-Throughput
Risk
Prioritization

Toxicokinetics Exposure

XM Office of Research and Development



SEPR High Throughput Toxicokinetics (HTTK)

Environmental Protection
Agency

= Most chemicals do not have TK data mg/kg BW/day

= In order to address greater numbers of chemicals we collect in
vitro, high throughput toxicokinetic (HTTK) data (Rotroff et al.,
2010, Wetmore et al., 2012, 2015) Potential Hazard

from in vitro with

. . R
= HTTK methods have been used by the pharmaceutical industry Toxicok?r:I:trisc(Z

to determine range of efficacious doses and to prospectively
evaluate success of planned clinical trials (Jamei, et al., 2009;
Wang, 2010)

= The primary goal of HTTK is to provide a human dose context for Potential
bioactive in vitro concentrations from HTS (i.e., in vitro-in vivo Exposure Rate
extrapolation, or IVIVE) (e.g., Wetmore et al., 2015)

= Secondary goal is to provide open source data and models for

evaluation and use by the broader scientific community (Pearce

Lower Medium Risk  Higher
et al, 2017a) i oy

CNIELEM Office of Research and Development



<EPA

United States
Environmental Protection

In Vitro Data for HTTK

Agency
> > > =
Cryopreserved ‘ > o - v ® - > o ‘ _ ==
yop . > o= D -
hepatocyte - = .
suspension d Add Chemical R Ali Analytical
. Cryopreserve emica emove Aliquots nalytica
hi l. (2002
Shibata et al. (2002) Hepatocytes (1 and 10 pM) at 15, 30, 60, 120 Chemistry
(10 donor pool for min
K human) )

The rate of disappearance of % 10 M We perform the assay at 1
parent compound (slope of Q and 10 uM to check for
line) is the hepatic clearance S . saturation of metabolizing
(uL/min/108 hepatocytes) 3 1uMm . enzymes.

0 50 100 150

(XMl Office of Research and Development

Most chemicals do
not have TK data —
we use in vitro HTTK
methods adapted
from pharma to fill

gaps

In drug development,
HTTK methods allow
IVIVE to estimate
therapeutic doses for
clinical studies —
predicted
concentrations are
typically on the order
of values measured in
clinical trials (Wang,
2010)



wEPA In Vitro Data for HTTK

United States
* Most chemicals do

Environmental Protection
&= &= &= ==
Cryopreserved ‘ L - L # L # = 8= —
yop W - - - sap=t not have TK data

Agency

Sff;’:ﬁ;fﬁ - = we use in vitro HTTK
Shibata et al. (2002) Cryopreserved Add Chemical Remove Aliquots Analytical methods adapted
' Hepatocytes (1 and 10 pMV) at 15, 30, 60, 120 Chemistry f h to fill
(10 donor pool for min rom pnarma to Ti
human) ! gaps

l3

* |In drug development,
HTTK methods allow

l l l IVIVE to estimate

i . o S Sz, therapeutic doses for
Rapid Equilibrium - ) O - SRS - - ‘ &= clinical studies —
Dialysis (RED) - /) —= - oredicted
Waters et al. (2008) Double-wells Add plasma (6 Add chemical Incubate ; .
, plates to Determine concentrations are
connected by semi- donor pool for allow wells with concentration in .
permeable human) to one and without both wells typically on the order
me.r:brarjﬁbo? a well protein to come (analytical of values measured in
R.apl .Equ" rum to equilibrium chemistry) o .
Dialysis (RED) Plate C clinical trials (Wang,
F — __welll 2010)

ub,p
AN IN Office of Research and Development C
well 2



<EPA

United States
Environmental Protection
Agency

Cryopreserved
hepatocyte
suspension

Shibata et al. (2002)

Rapid Equilibrium
Dialysis (RED)
Waters et al. (2008)

r¥X Ml Office of Research and Development

?‘ - =) "%’" m g ‘2 g

In Vitro Data for HTTK

:H

& &
&F oax oF oaF

||le f

3

Cryopreserved Add Chemical Remove Aliquots Analytical
Hepatocytes (1 and 10 pM) at 15, 30, 60, 120 Chemistry
(10 donor pool for min
human)

G

Iz

R Gn
1 2 m ) m .
'3 33 ", . =t
- . ==Ll
Double-wells ] Add plasma (6 Add chemical Incubate plates to Determine
connected by semi- donor pool for allow wells with concentration in
permeable human) to one and without both wells
me.mbrarrc? or.m a well protein to come (analytical
Rapid Equilibrium to equilibrium chemistry)

Dialysis (RED) Plate

Cwell 1

Cwell 2

F

ub,p

Most chemicals do
not have TK data —
we use in vitro HTTK
methods adapted
from pharma to fill

gaps

Environmental

chemicals:
Rotroff et al. (2010)
35 chemicals
Wetmore et al. (2012)
+204 chemicals
Wetmore et al. (2015)
+163 chemicals
Wambaugh et al. (in
prep.) +389
chemicals



<EPA

Steady-State is Linear with Dose

Environmental Protection
Agency

Prediction

oral dose rate

C, = Slope = C for 1 mg/kg/day
(GFR*Fub)-'_(Ql *Fub *C’lmtJ
Ql + Fub * C'lint

Steady-state Concentration (uM)

v

Daily Dose (mg/kg/day)

= Can calculate predicted steady-state concentration (C,)
for a 1 mg/kg/day dose and multiply to get

Office of Research and Development .
concentrations for other doses Wetmore et al. (2012)



<EPA

Steady-State is Linear with Dose

Environmental Protection
Agency

Prediction

oral dose rate

CSS =

Slope = C for 1 mg/kg/day

(GFR*Fub)+ Ql *Fub *L
Q,+F, *Cl,

Steady-state Concentration (uM)

v

Daily Dose (mg/kg/day)

= Can calculate predicted steady-state concentration (C,)
for a 1 mg/kg/day dose and multiply to get

Office of Research and Development .
concentrations for other doses Wetmore et al. (2012)



SEPA HTTK Allows Steady-State
In Vitro-In Vivo Extrapolation (IVIVE)

Agency

Prediction

oral dose rate
CSS =

Slope = mg/kg/day per CSS1 mg/kg/day

CL,

GFR*F, )+| Q, *F, *——m
( ub) (Ql ub Q1+Fub*ClimJ

Oral Equivalent Daily Dose

.
>

0 Steady-state Concentration (uM) = in vitro AC50

= Can calculate predicted steady-state concentration (C,)
for a 1 mg/kg/day dose and multiply to get

Office of Research and Development .
concentrations for other doses Wetmore et al. (2012)



‘V’EPA High Throughput Risk Prioritization in

Practice

Age cy

mg/kg bw/day
+ 7 ToxCast-derived
Receptor

” ,MTTTITTT-TTT’TT”IT'” o
1 1[

le+02 - '
Converted to
mg/kg/day with

T
- 1” M‘ I ‘T'h i
| \“ ] lll“l | \“ i \HIH\HWHIIHHHH o

ER Oral Equivalent Dose /
Predicted Exposure

Predictions
Near Field
Far Field
rrrrrrrrrrrrrrrrrrirrrrrrrrrrrrrrrrrrrrirrrrrrrrrrririrrrrrrrrrrrnrrtrial
ToxCast Chemicals December, 2014 Panel:
Office of Research and Development “Scientific Issues Associated with Integrated Endocrine

Bioactivity and Exposure-Based Prioritization and Screening”



SEPA High Throughput Risk Prioritization in

Practice

Agency

mg/kg bw/day

s 1 ToxCast-derived
Receptor

” ,MTTTITTT-TTT’TT”IT'” o
1 1[

t

le+02 -
Converted to
mg/kg/day with

. f
< R
| I \“ il lllllI b Illllllllllll|l||llm\HH o

ER Oral Equivalent Dose /
Predicted Exposure

Predictions
le-10- Near Field
I | Far Field
i
Higher priority chemicals

| T T T T T S TR TR T SR T T SO T S T SO S T B rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrirnrirnrinirnd

ToxCast Chemicals December, 2014 Panel:

Office of Research and Development “Scientific Issues Associated with Integrated Endocrine

Bioactivity and Exposure-Based Prioritization and Screening”



SEPA Open Source Tools and Data for HTTK

United States

M https://CRAN.R-project.org/package=httk

=) - o x

;-; RTP Home Page X '\ 2 ScholarCne Manuscripts X R CRAN - Package httk X '\ G plos comp bio journal ¢ X ' [ (2) Linkedin x [ OP-TOXS180022 19.21- X R R:High-Throughput Toxi X

&« Cc Q @ Secure | httpsy/cran.r-project.org/web/packages/httk/indexhtm @ Y| D n I

2 Apps :-;- DSStox (&) Confluence I: JESEE -4 EHP a Battelle Box € ORD Travel Request V An Intuitive Approac. [ Article Request
httk: High-Throughput Toxicokinetics

Functions and data tables for simulation and statistical analysis of chemical toxicokineties ("TK") using data obtained from relatively high throughput, in vitro studies. Both physiologically-based ("PBTK") and empirical
(c.g.. one compartment) "TK" models can be parameterized for several hundred chemicals and multiple species. These models are solved efficiently, often using compiled (C-based) code. A Monte Carlo sampler is
included for simulating biological variability and measurement limitations. Functions are also provided for exporting "PBTK" models to "SBML" and "JARNAC" for use with other simulation software. These functions
and data provide a set of tools for in vitro-in vivo extrapolation ("IVIVE") of high throughput screening data (e.g.. ToxCast) to real-world exposures via reverse dosimetry (also known as "RTK").

Version: 1.8

Depends: R(=2.10)

Imports: deSolve, msm, data.table, survey. mvinorm, trunenorm, stats, utils

Suggests: ggplot2, knitr, rmarkdown, Rrsp. GGally, gplots, scales, EnvStats, MASS. RColorBrewer, TeachingDemos, classInt, ks, reshape2. gdata, viridis, CensRegMod. gmodels, colorspace
Published: 2018-01-23

Author: John Wambaugh. Robert Pearce, Caroline Ring, Jimena Davis, Nisha Sipes. and R. Woodrow Setzer

Maintainer: John Wambaugh <wambaugh john at epa.gov=> a1 n
License: GPL-3 p a ‘ a g e

NeedsCompilation: yes
Citation: httk citation info

CRAN checks: httk results

reviewed tools and data for high
Refercnce manal: bt pdf throughput toxicokinetics (httk)

Vignettes: Creating Partition Coefficient Evaluation Plots

Age disribmions * Available publicly for free statistical

Global sensitivity analysis

Global sensitivity analysis plotting

Height and weight spline fits and residuals SOftwa re R

Hematoerit spline fits and residuals

Plotting Css05 ° . . _; . .
Serum creatmine spline fits and residuals AI I OWS In vi tr o n vi VO eXt ra p O I at I O n
Generating subpopulations

Evaluating HTTK models for subpopulations ( I V I V E ) a n d p hys i O I Og i Ca I Iy_ b a S e d

Generating Figure 2

crm toxicokinetics (PBTK)

Mueidss  NEWS « Open source, transparent, and peer-

YOIl Office of Research and Development


https://cran.r-project.org/package=httk

<EPA

United States
Environmental Protection
Adgency

Maker

Reference
Availability

Open Source

Default PBPK Structure
Expandable PBPK Structure
Population Variability
Batch Mode

Graphical User Interface
Physiological Data

Chemical-Specific Data
Library

lonizable Compounds
Export Function

R Integration

Easy Reverse Dosimetry

Future Proof XML

Why Build Another Generic PBTK Tool?
_______ [simCyp | soveTPeco/omtors | MEGen |IndusChemfate  lhttk

SimCYP Consortium /
Certara

Jamei et al. (2009)

License, but inexpensive for research

No
Yes
No
Yes
Yes
Yes
Yes

Many Clinical Drugs

Yes
No
No
Yes
No

LNl Otfice of Kesearch and Development

Simulations Plus

Lukacova et al., (2009)

License, but inexpensive for research

No
Yes
No
No
Yes
Yes
Yes
No

Yes
No
No
Yes
No

UK Health and Safety
Laboratory

Loizou et al. (2011)

Free:
http://xnet.hsl.gov.uk/megen

Yes
No
Yes
No
No
Yes
Yes
No

Potentially
Matlab and AcsIX
No

No

Yes

Cefic LRI

Jongeneelen et al., (2013)

Free:
http://cefic-Iri.org/Iri_toolbox/induschemfate/

No
Yes
No
No
No
Excel

Yes

15 Environmental Compounds

No
No
No
No
No

US EPA

Pearce et al. (2017a)

Free:
https://CRAN.R-project.org/package=httk

Yes
Yes
No
Yes
Yes
No

Yes

543 Pharmaceutical and
ToxCast Compounds

Yes
SBML and Jarnac
Yes
Yes
No

We want to do a statistical analysis (using R) for as many chemicals as possible



<EPA

United States

SoeronmentalPrtecton Doing Statistical Analysis
with HTTK

= If we are to use HTTK, we need confidence in predictive ability

= In drug development, HTTK methods estimate therapeutic doses for clinical studies — predicted concentrations
are typically on the order of values measured in clinical trials (Wang, 2010)

— For most compounds in the environment there will be no clinical trials

= Uncertainty must be well characterized
— We compare to in vivo data to get empirical estimates of HTTK uncertainty

— ORD has both compiled existing (literature) TK data (Wambaugh et al., 2015) and conducted new experiments
in rats on chemicals with HTTK in vitro data (Wambaugh et al., 2018)

— Any approximations, omissions, or mistakes should work to increase the estimated uncertainty when
evaluated systematically across chemicals

ENJIIP Il Office of Research and Development



Environmental Protection
Agency

SEPA Building Confidence in TK Models

* In order to evaluate a chemical-specific TK model for “chemical x”
you can compare the predictions to in vivo measured data
e Can estimate bias
* Can estimate uncertainty
* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

Chemical
Specific
- X Model

Observed Concentrations
X

»
>

* However, we do not typically have TK data Predicted Concentrations

LNV I Office of Research and Development

Cohen Hubal et al., 2018



Environmental Protection
Agency

SEPA Building Confidence in TK Models

(%)
c
@)
* In order to evaluate a chemical-specific TK model for “chemical x” ® X
you can compare the predictions to in vivo measured data ‘a:'; %
* Can estimate bias § X -
<X
: : 3 .
* Can estlmate un‘certamty | | S X, Chemical
e Can consider using model to extrapolate to other situations 2 Specific
(dose, route, physiology) where you don’t have data g X Model
o .
* However, we do not typically have TK data Predicted Concentrations
A X
* We can parameterize a generic TK model, and evaluate that model ©
for as many chemicals as we do have data 2 X
: . : ©
* We do expect larger uncertainty, but also greater confidence in =
. . X
model implementation § .y
* Estimate bias and uncertainty S « X
©
w .
g « Generic
2 Model
o)

»
>

Predicted Concentrations

EYX Ml Office of Research and Development

Cohen Hubal et al., 2018



Environmental Protection
Agency

SEPA Building Confidence in TK Models

* In order to evaluate a chemical-specific TK model for “chemical x”
you can compare the predictions to in vivo measured data
e Can estimate bias
* Can estimate uncertainty
* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

Chemical
Specific
Model

Observed Concentrations
X

»
>

* However, we do not typically have TK data Predicted Concentrations

* We can parameterize a generic TK model, and evaluate that model
for as many chemicals as we do have data

* We do expect larger uncertainty, but also greater confidence in
model implementation

* Estimate bias and uncertainty, and try to correlate with chemical-
specific properties

* Can again consider using model to extrapolate to other situations
(chemicals without in vivo data)

Generic
Ly Model

Observed Concentrations
<<
x

»
>

Predicted Concentrations

EXXJ M Office of Research and Development

Cohen Hubal et al., 2018



Environmental Protection
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SEPA Building Confidence in TK Models

* In order to evaluate a chemical-specific TK model for “chemical x”
you can compare the predictions to in vivo measured data
e Can estimate bias
* Can estimate uncertainty
* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

Chemical
Specific
Model

Observed Concentrations
X

»
>

* However, we do not typically have TK data Predicted Concentrations

* We can parameterize a generic TK model, and evaluate that model
for as many chemicals as we do have data

* We do expect larger uncertainty, but also greater confidence in
model implementation

* Estimate bias and uncertainty, and try to correlate with chemical-
specific properties

* Can again consider using model to extrapolate to other situations
(chemicals without in vivo data)

Z Generic
y Model

Observed Concentrations
<<
x

»
>

Predicted Concentrations

7Y Ml Office of Research and Development

Cohen Hubal et al., 2018



SEPA Comparison Between HT-PBTK and

Chemical Specific PBTK

Agency

We compared a chemical-specific human PBTK model for bisphenol A (Yang et al., 2015) to the HTTK
generic PBTK model

= The fitted PBTK model from Yang et al. (2015) and the httk models yielded similar time-plasma
concentration curves in the prediction of human in vivo data from Thayer et al. (2015)

= We assessed average-fold error (AFE) (the average quotient of the measured and predicted
concentrations when the dividend is larger than the divisor)

* The fitted model (Yang et al., 2015) performed the best, with AFE 1.4
* However, the generic PBTK model had an AFE of 3.3

Generally, HTTK has lower AFE than a literature model when the literature model is evaluated with
an external data set

ELYJIIP I Office of Research and Development

Work by Risa Sayre and Robert Pearce



SEPA Using in vivo Data to Evaluate RTK

Environmental Protection

Agency
* When we compare the C f_up ‘
|'ore(.1||cted from in vitro H-TTK with Predicted. Css .
. in vivo C values determined
from the literature we find lonization (pKa_Donor) |
- limited correlation (R2 ~034) Elimination Rate *
(@)}
E F 4
Bnior R BSEP Substrate | ®
© * The dashed line indicates the
e " A o . . . [ ]
2 , identity (perfect predictor) line: BCRPIC_30
m d,” .
5 |8 “ * Over-predict for 65 log K ow | ®
16-01- $e 4 Bk * Under-predict for 22 PFC | o
L ' o OCT1_pIC50 | #
*  The white lines indicate the
1 100 .
Predicted Cq, (mg/L) discrepancy between measured MCT1 Substrate | @
Class * Pharmaceutical (74) 4 Other (11) ® PFC (2) and predicted values (the T
residual) 020 50
Office of Research and Development |mp0rtance Of

Wambaugh et al. (2015) Descriotors
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Unled Stacs o In Vivo TK Database

blood
plasma
urine
exhaled

B

2000

Agency
o 1800
= EPAis developing a public database of 1600
concentration vs. time data for building, 10°
calibrating, and evaluating TK models ] 1400
10
| . 7, eIt i ST L 1209
= Curation and development ongoing, but % 10 1‘:*.% --------------------- 2
to date includes: c T GRS T 1000
2 10° ., | 0o
« 198 analytes (EPA, National % L 500
Toxicology Program, literature) £ 107
Q
* Routes: Intravenous, dermal, oral, o 600
sub-cutaneous, and inhalation
400
exposure 10°
= Database will be made available through 200
. 10+
web interface and through the “httk” R 0 10 20 30 40 50
package Time (hr)

= Standardized, open source curve fitting software invivoPKfit used to calibrate models to all data:
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Office of Research and Development Sayre et al. (In preparation)
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https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

\"‘,EPA New Data for HTTK Evaluation

Environmental Protection

Agency . . . . S :
Available literature in vivo TK evaluation data was heavily biased toward pharmaceuticals

New in vivo
toxicokinetics on 26
non-pharmaceutical

chemicals

Standardized
Statistical Analysis
45 chemicals

In Silico F,, Absorption
From GastroPlus

Lucakova et al. (2009)

Distribution _ _
*Determine 1- vs. *Standardized design

2-compartment « *Oral and iv dosing (N=3-4)
*Conc. vs. time

HTTK Volume of

Distribution
Pearce et al. (2017b) e Clearance BN

\
Metabolism

*20 chemicals at EPA
*8 chemicals at RTI
2 overlap chemicals

*Estimate V, K i,
*|f oral data then

also estimate F,,,
k

Pearce et al. (2017a)

HTTK Total Clearance

gutabs

————— — — — — — — — — —

Literature TK Data on 19

Chemicals
Wambaugh et al., (2015)

Toxicokinetic Triage
Wambaugh et al. (2015)

-

Uncertainty

XXM Office of Research and Development

Wambaugh et al. (2018)
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i
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logP

WaterSol

Neutral.pH74

Positve pH74

Negative.pH74

New Data for Evaluating IVIVE

Estimated from In Vivo Data

Clint

Fup

WVdist

kelim

kgutabs

Fbio

Bansulide.Joint
Bensulide NHEERL

miinig
Basentan
Dimethanamid
Alachlor
Flufenacst
Milvadipine
Boscalid
Etomazole
Diazinon—o-anal

ide. NHHEERL
F'rcpjlzm'rl_d&_m_l
Fenarimol
Chlorpyrifos
Midazolam
Simazine
i .
ér;l'hpbmﬂ
ne

Mmﬂimlﬂwl A
Hexobarbitone
Tolbutamide
Dickofenac

150
I

Ciount

a0

s —

-4 -2 0 2 4

Number of Standard Deviations
Above/Below Mean

Physico-chemical properties, in vitro TK
parameters (Wetmore et al., 2013), and
TK parameters estimated from in vivo
plasma concentration.

Wambaugh et al. (2018)
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New Data for Evaluation

Environmental Protection
Agency

1 {]E -
e
T it

Nilv

* “httk” R package predicts tissue
partitioning using a hybrid of Schmitt
(2008) and Peyret and Poulin (2010)
algorithms

. Fena
Imid

Bens ifHa ik

Pyri
1 £-E A

* In Pearce et al. (2017b) we calibrated
these algorithms using experimentally
measured partition coefficient data

BPA

In vivo estimated Vg (L'kg)

* However, that data was largely for
pharmaceuticals

1 10°
Original In witro predicted V4 (L'kg)

Office of Research and Development
Wambaugh et al. (2018)
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New Data for Evaluation
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Calibrated In vitro predicted V4 (L/kg)
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In vivo estimated V4 (L/kg)
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10°

Original In witro predicted V4 (L'kg)

Wambaugh et al. (2018)



<EPA

'Ejr?\ifti?gnsntwaetﬁt%l Protection Observed TOtaI Clearance
= 3
= 10
* We estimate clearance from two D %ﬁ’;'
. . = c
processes — hepatic metabolism = Pr Fluf
(liver) and passive glomerular © 10 - @ =
filtration (kidney) —J BP. c@r y
O eNa oo -
= PO e
* This appears to work better for @ 4 Nova _
pharmaceuticals than other E 10 L
chemicals o Other Chemicals
o© PFOA 5
* Non-pharmaceuticals may be Q 10° Pharm:MSE = 2.44, R*=0.19
subject to extrahepatic = Other: MSE = 2.93, R°=05
metabolism and/or active £ r

transport ‘IG_S 107" 10 103
In vitro predicted CL;y: (Mmg/L/h)

Office of Research and Development
Wambaugh et al. (2018)



EPA Observed Absorption Rate

Environmental Protection
Agency

* We had previously assumed that
a rate of 1/h was “Fast — most 0 .

. — Ph I
chemicals were actually E 10~ Otr?ngﬁzlr::z:Iz
absorbed somewhat faster =

b=
* We have revised the default to O
the median from this data set °
© 51
O
-
3
=
D-

: 10 102
Absorption Rate from Gut (1/h)

Office of Research and Development
Wambaugh et al. (2018)



EPA Observed Bioavailability

Environmental Protection
Agency

Pharmaceuticals

Other Chemicals
* Most chemicals were well absorbed
 We observe a greater range of
bioavailabilities (fraction of oral dose o 10+
that is available systemically) for non- 3
pharmaceuticals GE;.,
&}
» Efforts to predict bioavailability were "f
unsuccessful 8 51
=
=
Z
0-

1072 1
In vivo estimated Fraction Bioavailable

Office of Research and Development
Wambaugh et al. (2018)



EPA Observed Bioavailability

Environmental Protection
Agency

Pharmaceuticals
Other Chemicals

@ 1+
e :
© C
= N
% -
Q i o 10-
s g
) - ﬂE}
S n c
£ F &)
L

R :
2 D 5a
S 107 £
= - Prop £
o C =
2 i Imaz
=
£

1 | | IIIII! 1 L1 IIIIII 1 ] IlIIII! U-

1072 1 1072 1

In silico predicted Fpio In vivo estimated Fraction Bioavailable

Office of Research and Development
Wambaugh et al. (2018)
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United States
Environmental Protection

Impact of Oral Bioavailability

Agency
m*J;; 100% Bioavailability Assumed
// We evaluate HTTK by comparing predictions
3 s with observations for as many chemicals as
[ . J possible
3 Vel
& * » A
S 10 * o
it
a L FY
'_3?.;*
g /
107 // ::?:
'y A&
% A
4 MSE = 5, R”=0.48
Cobd bl ] \ \

10™

In vitro predicted Ca,

Route Chemical

LI Il Office of Research and Development

& Other

# Pharmaceutical

Wambaugh et al. (2018)
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United States
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Impact of Oral Bioavailability

Agency
m*J;; 100% Bioavailability Assumed //
v
.
L .
- . - s/
& * » A
& o *
e
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2 > # AL
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107 4 oy :
// Y A A
4 MSE = 5, R”=0.48
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10™ 10 10t
In vitro predicted Ca,
* iy _ & Other
Route 4 po Chemical # Pharmaceutical

Ly NIl Office of Research and Development

in vivo estimated Cpo.

m*J;; In Vivo Measured Bioavailability Use/g/

i v
s
: .- ‘t‘/
- . Y

10 {{/

107

,'MSE= 269, R°=0.73

Cobd il ] Ll

10° 10 10t
Predicted C 3, Using Measured Fy,
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<EPA

United States
Environmental Protection
Agency

* Examining in vitro membrane
permeability data (Caco2) for >300
ToxCast Chemcials

* C,, Ppredicted usingal

compartment model (Wambaugh

et al. 2018)

* Minimal difference when using
estimated F,,, in prediction of
toxicokinetics observed for this
limited set of chemicals

LEN T Office of Research and Development

Predicting F,;, for Toxicokinetics

I0910 Cmax, predicted (mg”—)

Io910 Cmax, predicted (mg”-)

o

1
N

Fpio=1
Y @
°
O o
o
-2 0 2
I0910 Cmax, measured (mg“—)
Fbio, Darwich
-2 0 2

I091 0 Cmax, measured (mg"—)

Io910 Cmax, predicted (mg”—)

Io910 Cmax, predicted (mg"—)

o

1
N

F bio, GastroPlus

2 0 2
Io910 Cmax, measured (mg“—)

Fbio, Usansky

2 0 2
Io910 Cmax, measured (mg/L)

Honda et al. (in preparation)
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A General Physiologically-based Toxicokinetic (PBTK) Model

Inhaled Gas
Lung Tissue  |Q, qiac
> Lung Blood >
Kidney Tissue
QGFR Qkidney
«——— KidneyBlood *——
- Gut Lumen >
3 Qe | g
=] Gut Blood < =
“ o
3 @
c 9]
o o
> o
Liver Tissue
Qmetab ng
. <4+— Liver Blood ¢
QIiver
Rest of Body
Q
< Body Blood | et

LEN T I Office of Research and Development

“httk” includes a generic PBTK model

Some tissues (e.g. arterial blood) are simple compartments,
while others (e.g. kidney) are compound compartments
consisting of separate blood and tissue sections with constant
partitioning (i.e., tissue specific partition coefficients)

Exposures are absorbed from reservoirs (gut lumen)

Some specific tissues (lung, kidney, gut, and liver) are modeled
explicitly, others (e.g. fat, brain, bones) are lumped into the
“Rest of Body” compartment.

The only ways chemicals “leave” the body are through
metabolism (change into a metabolite) in the liver or excretion
by glomerular filtration into the proximal tubules of the kidney
(which filter into the lumen of the kidney).
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—
—

High-Throughput Toxicokinetics (HTTK) for
In Vitro-In Vivo Extrapolation (IVIVE)

in vitro

(nominal testing concentration)

l Media/Air

Chemical [Coominal

—_—
g0 =
Plastic [Cfree,invitro]:fup[cnominaI]

Binding Cell Binding

A

[Cauia =K [C )

cellular. nominal]

Media
$ Lipid
and
? Protein
Binding

»

[Conc.] In Vivo

in vivo
(mg/kg bodyweight/day)
Red Blood Plasma Tissue
Cells
[Cbl 1
:t [Cplasma]
[Cblood]/Rb:p
[Cfree,plasma] [Ctissue:I
_ fup[cplasma] Kp[Cfree,pIasma]
[Conc.] In Vitro
Renal Clearance Restrictive Metabolic Clearance
fUD*QGFR*[Ckidnev,plasma] Qriver * fup * [Cliver,plasma]

Qliver + fup * [Cliver,plasma]
OR Non-Restrictive Metabolic Clearance

Qliver * [Cliver,plasma]

Qliver + [Cliver,plasma]

Selecting the appropriate in vitro and in vivo concentrations for extrapolation

LI Il Office of Research and Development

Honda et al, in prep.



HTTK-based IVIVE

imizing

Opt

SEPA

Environmental Protection

Agency

- XEBW-UlaA-a23l)-"Salu

- UERWI-UIBA-23l)-"Salu

- XBWl-"S1}-"10}-"Salu

- UBSW-"SI}-"10}-"SaIU

- XBLW-UI9A-"]0)-'Salu

- UeaWw-UlaA-"]0)}-"sSalu

- XBW-UlaA-29l}-"Sal

- UE3SLU-UIBA-93.}-"S3al

B PBTK® Random Dose

bbb LLELELL

- Xelw-"sl}-"}0)-'sal
- UBaW-"s1}-"}0}-"sal
- XBW-UISA-"]0}-"S8l

(3neyep g LAYHY)
- UBaW-UIaA-]0)-"sal

0

] 2 °
sjutodpu?a oain uir 3udipaud

10} 159 Se pa}d3|as [apow sawii]

3

Various Combinations of IVIVE Assumptions

Honda et al, in prep.
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wEPA Selecting Candidates for Prioritization

United States
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Agency

High Throughput Screening + HTTK can estimate doses
needed to cause bioactivity (Wetmore, et al., 2012, 2015)

] . N
10.. i 7, I%I%ﬁfﬁ;éé" i

.jﬁjﬁaﬁ ] %%ﬁﬁ M

1077 Exposure intake rates
can be Inferred from

biomarkers

(Wambaugh et al., 2014)

Estimated Equivalent Dose or
Predicted Exposure (mg/kg BW/day)

Chemicals Monitored by CDC NHANES
National Health and Nutrition Examination Survey (NHANES) is an ongoing
survey that covers ~10,000 people every two years

Most NHANES chemicals do not have traditional PK models (Strope et al., 2018)

52 Tl Office of Research and Development .
Ring et al. (2017)
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meaSates Population simulator for HTTK
Agency \
4
Correlated Monte Carlo
sampling of physiological shanes
mOdel pa ra mete rs built National Health and Nutrition Examination Survey

into R “httk” package
(Pearce et al., 2017):

Sample NHANES
biometrics for
actual individuals:

Sex
Race/ethnicity
Age

Height

Weight

Serum creatinine

CXXJ Ml Office of Research and Development

Slide from Caroline Ring (ToxStrategies) Ring et al. (2017)



<EPA

meaSates Population simulator for HTTK
Agency \
'
Correlated Monte Carlo
sampling of physiological shanes
mOdel pa ra mete rs built National Health and Nutrition Examination Survey

into R “httk” package
(Pearce et al., 2017):

Sample NHANES
biometrics for
actual individuals:

—

Sex

Race/ethnicity Regression equations from literature
Age (McNally et al., 2014)

Height (+ residual marginal variability)
Weight

Serum creatinine (Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus,

PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

LY YOIl Office of Research and Development

Slide from Caroline Ring (ToxStrategies) Ring et al. (2017)



<EPA

meaSates Population simulator for HTTK

Agency \
'
Correlated Monte Carlo
sampling of physiological s ane
mOdel pa ra mete rS built National Health and Nutrition Examination Survey

into R “httk” package
(Pearce et al., 2017):

Predict physiological
guantities

Tissue masses
Tissue blood flows
GFR (kidney function)

Sample NHANES
biometrics for

actual individuals: Hepatocellularity
Sex
Race/ethnicity Regression equations from literature
Age (McNally et al., 2014)
Height (+ residual marginal variability)
Weight
Serum creatinine (Similar approach used in SImCYP [Jamei et al. 2009], GastroPlus,

PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

CEYJ Il Office of Research and Development

Slide from Caroline Ring (ToxStrategies) Ring et al. (2017)



wEPA Selecting Candidates for Prioritization

United States
Environmental Protection
Agency

High Throughput Screening + HTTK can estimate doses
needed to cause bioactivity (Wetmore, et al., 2012, 2015)

] . N
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1077 Exposure intake rates
can be Inferred from

biomarkers

(Wambaugh et al., 2014)

Estimated Equivalent Dose or
Predicted Exposure (mg/kg BW/day)

Chemicals Monitored by CDC NHANES
National Health and Nutrition Examination Survey (NHANES) is an ongoing
survey that covers ~10,000 people every two years

Most NHANES chemicals do not have traditional PK models (Strope et al., 2018)

56 Tl Office of Research and Development .
Ring et al. (2017)



"’UEI?SA Life-stage and Demographic Specific Predictions

Environmental Protection
Agency

Change in Activity : Exposure Ratio

24-d
Naphthalene
Triclosan
Methyiparaben
Fenitrothion
Malathion
Permethrin
[T Dimethoate
Di-n-octyl phthalate
Chiorethoxyfos
Pirimiphos-mettyl
Diethylphthalate
Parathion
Chlarpyrifos—methyl
-05 0 05 Diphenylenemethane
Alog(AER ), Group — Total Fenthion
FPhorate
B !ethidathion

Coumnaphos

Dibutylphthalate
mg/kg BW/day Ethiot?: ¥
Bisphenol-a
Lindane
Phosphonothioic acid
Phosmet
Methy! parathion

Quintozene

80

* We use HTTK to
calculate margin
between bioactivity and
exposure for specific
populations =

Count
60

40

20

Potential hazard from in

vitro Azinphos-m ethyl
Carbofuran
converted to dose by I Propyiparaben

Dicrotophos
HTTK —

Diazinon
Pentachlorophenol (=2.4-d)
I 2-phertylphenol
Disulfoton
Atrazrine
Chlarpyrifos
Dimethy phthalate

s|edlwayy SINVHN

Carharyl
Acephate

|
. . I Butylparaben
Potential Exposure
I

Rate ]

Pyrene

Paraben
Carbosulfan
Diethyltaluamide
p-tert-Octylphenol
Nitroberzens
Metalachlor
Acetochlor

& &
Lower Medium Risk Higher & &
Risk Risk &
Y—

&
X
LYAJ I Office of Research and Development QO
@
&

NHANES Demographic Groups  Ring et al. (2017)



YEPA In Silico HTTK Predictions

Environmental Protection
Agency

e Tox21 has screened >8000 chemicals — Sipes et al. (2017) wanted to compare in vitro active concentrations with HTTK
predicted maximum plasma concentrations with high throughput exposure predictions from Wambaugh et al. (2014)
* “httk” package only has ~500 chemicals (~400 more in preparation)

* Used Simulations Plus ADMet Predictor to predict for entire library (supplemental table) and used add_chemtable()
function to add into “httk” package

* Predictions available in httk v1.8

Dose range for all A 10'- B 10"
56 compounds
3925 Tox21 ~ — . :
> 0 with potential
compounds & 1077 in vivo
, eI-|C|t|’ng a o 5 biological
possible’-to- 10 . .
ot s . £ interaction at
likely’ humanin £ . b
vivo interaction 3 1077 TR o I (et (A Y| or above
: o olg | gag it eleneigiRiETe estimated
alongside 1070 o fRater i ssteststonstise ® environmental
estimated daily expOSUres
€Xposure 3,925 Compounds 56 Compounds

LNl Office of Research and Development

Sipes et al., (2017)



\eIEPA Summary mg/kg BW/day

United States
Environmental Protection
Agency
_ _ Potential hazard from
«  We would like to know more about the risk posed by in vitro
thousands of chemicals in the environment — which ones converted to dose by
should we start with? HTTK
« HTTK New approach methodologies (NAMs) are being
evaluated through
— uncertainty analysis
— comparison between in vitro predictions and in vivo Potential Exposure
measurements of both plasma concentrations and doses Rate
associated with the onset of effects
« Comparison between HTTK predicted time course
concentrations in plasma and in vivo data indicate that some
properties (e.g. average and maximum concentration) can be Lower  Medium Risk Higher
predicted with confidence. Risk Risk

 Comparison between in vitro bioactivity data and HTTK-adjusted internal dose predictions for in vivo points of
departure has refined assumptions of the HTTK NAMs.

* NAMs for TK allow risk-based prioritization of large numbers of chemicals.

The views expressed in this presentation are those of the author and

59 of 59 Nejii fR h and D | t . . . .
BEEEIEDN office of Research and Developmen do not necessarily reflect the views or policies of the U.S. EPA
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