Supplementary data

Preparation and re-activation of magnetic biochar by molten salt method: relevant performance for chlorine-containing pesticides abatement

1 State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China

2 College of Environmental Science and Engineering, Tongji University, Shanghai

3 Shanghai Institute of Pollution Control and Ecological Security, 1515 North

Zhongshan Rd. (No. 2), Shanghai 200092, PR China

4 China Everbright Greentech Limited, Shenzhen 518040, China

* Corresponding author. Tel: +86 0 15221522816; Fax: +86 021 6598 0041

E-mail address: niudongjie@tongji.edu.cn

Adsorption kinetics, namely pseudo-first-order and pseudo-second-order models was investigated. The linear forms of pseudo-first-order and pseudo-second-order models are expressed as follows:

$$Q_t = Q_e (1 - e^{-k_1 t}) \tag{1}$$

$$t/Q_{t} = 1/(k_{2}Q_{e}^{2}) + t/Q_{e}$$
⁽²⁾

Where $k_1 \text{ (min}^{-1)}$ and $k_2 \text{ (g} \cdot \text{mg}^{-1} \cdot \text{min}^{-1)}$ are successively the pseudo-first-order and pseudo-second-order rate constants; Q_t is the amount adsorbed at time t (min), and Q_e denotes the amount adsorbed at equilibrium, both in units of mg·g⁻¹.

The adsorption equilibrium experiment of DCP and atrazine was carried out at 20 °C and pH 7. The adsorption isotherm experimental data were fitted by Langmuir and Freundlich models, respectively. Langmuir isotherm model, which has been assumed that the monolayer coverage of sorption occurs in the process and the adsorption sites are identical and energetically equivalent (Ge et al., 2016), can be expressed as follows:

$$\frac{C_e}{Q_e} = \frac{C_e}{Q_m} + \frac{1}{K_L Q_m}$$
(3)

Where $Q_e \text{ (mg} \cdot \text{g}^{-1})$ is the amount of DCP and atrazine adsorbed at equilibrium; $C_e \text{ (mg} \cdot \text{L}^{-1})$ is the residual concentration in solution at equilibrium; $Q_m \text{ (mg} \cdot \text{g}^{-1})$ is the maximum adsorption capacity when an adsorbent is saturated; and $K_L \text{ (L} \cdot \text{mg}^{-1})$ is a constant related to the affinity of the binding sites.

The Freundlich model is an empirical equation that can be used to describe the multilayer adsorption equilibrium on a heterogeneous surface (Agrawal et al., 2004). It is mathematically described by Eq. (4).

$$\ln Q_e = \ln K_F + \frac{1}{n} \ln C_e \tag{4}$$

where K_F [(mg·g⁻¹)(L mg⁻¹)^{1/n}] and *n* are the Freundlich constants related to adsorption capacity and adsorption intensity, respectively. K_F and *n* can be determined from the linear plot of InQ_e versus InC_e .

Pollutant		Pseudo-first-	order		Pseudo-seco	nd-order	
2,4-	$Q_{\rm e,exp}({\rm mg}\cdot{\rm g}^{-1})$	$Q_{\rm e} ({\rm mg}\cdot{\rm g}^{-1})$	K_1	R^2	$Q_{\rm e} ({\rm mg}\cdot{\rm g}^{-1})$	K_2	R^2
DCP	298.12	304.88	0.038	0.981	343.36	0.0001	0.977
atrazine	102.17	111.15	0.022	0.921	140.20	0.0001	0.88

Table S1. Kinetic model parameters for 2,4-DCP sorption onto MBC

Pollutant	Langmuir model $R_L = 1/(1 + K_L C_0)$					Freundlich model		
2.4	$Q_{\mathrm{m,exp}}(\mathrm{mg}\!\cdot\!\mathrm{g}^{-1})$	$Q_{\mathrm{m,cal}}(\mathrm{mg}\cdot\mathrm{g}^{-1})$	K_L	R^2	R_L	K_F	п	R^2
DCP	1609.4	1706.64	0.015	0.984	0.0251- 0.340	102.80	2.06	0.929
atrazine	210.86	283.54	0.029	0.826	0.187-0.775	33.31	2.53	0.672

 Table S2. Isotherm parameters for 2, 4-DCP sorption onto MBC

Fig.S1. Man-made reactor for the detruction of saturated MBC