
Towards Resource-Aware Security Testing
of Software

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Sang Kil Cha

B.S., Electrical Engineering, Korea University
M.S., Electrical and Computer Engineering, Carnegie Mellon University

Thesis Committee:

Dr. David Brumley, Chair
Dr. Lujo Bauer
Dr. David Molnar
Dr. Vyas Sekar

Carnegie Mellon University
Pittsburgh, PA

August 10, 2015



Copyright c© 2015 Sang Kil Cha



For my daughter, Jaen.





Abstract

As software permeates every facet of life, it is imperative to assure the safety of soft-

ware systems. Software vulnerabilities—exploitable software bugs—allow an attacker

to destroy privacy, steal identities, and even extort money from victims. Therefore,

software bugs must be discovered before an attacker can exploit them.

This dissertation presents our work on mutational fuzzing, a software testing tech-

nique for finding software bugs. Specifically, we argue that the efficiency of mutational

fuzzing can drastically change depending on its parameters, and thus, automatic pa-

rameter optimization can help in improving the fuzzing efficiency. We validate this ar-

gument by designing, implementing, and evaluating several systems that employ novel

techniques optimizing parameter selection for mutational fuzzing. Our specific contri-

butions are that (1) we precisely define fuzzing and its parameter space; (2) we analyti-

cally study the effectiveness of mutational fuzzing in terms of bug finding probability;

(3) we then address three strategies in optimizing mutational fuzzing over the parame-

ter space in terms of the number of bugs found; and (4) we finally show a post-fuzzing

strategy that enables prioritizing security-relevant bugs under limited resources.
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Chapter 1

Introduction

If you know the enemy and know yourself you need not fear the

results of a hundred battles.
—Sun Tzu, The Art of War

Attackers exploit software bugs to intrude into systems, and to install malicious software (mal-

ware) such as viruses and worms. Even a single vulnerability—an exploitable bug—in a system

gives an attacker ammunition for compromising the entire system. Sadly, software bugs are far

from being eradicated. Launchpad—an open-source bug database—lists more than 1 million bug

reports in its bug database for 10,000 open-source applications as of 2014 [99]. Furthermore, the

National Vulnerabilities Database [53] publishes thousands of novel vulnerabilities per year.

In effect, discovering unknown software bugs has become a critical mission in software security

for both benign and malicious parties. On the one hand, benign software developers find vulnera-

bilities in order to prevent security breaches in advance. Software companies, including Facebook,

Google, andMicrosoft, even sponsor bug bounty programs [30] to boost well-intentioned bug find-

ing. On the other hand, cyber criminals look for new vulnerabilities in order to compromise com-

puter systems, and even sell them in an underground market [67].

1.1 A Vision for Securing Software

My vision is to automatically discover software vulnerabilities before an attacker grasps an oppor-

tunity to exploit them. Such an automatic technique will help developers fix security critical bugs

prior to releasing their software.

1



CHAPTER 1. INTRODUCTION

One may argue that devising defense mechanisms, e.g., establishing countermeasures to ex-

ploitations, is enough to assure software security. However, most defensive methods rely on as-

sumptions that can be invalidated in practice. For example, Control-Flow Integrity (CFI) [1] theo-

retically guarantees that a program execution will follow only legitimate paths. In practice, how-

ever, it may fail to protect against control-flow hijack attacks due to the incompleteness of the

Control-Flow Graph (CFG): there is no efficient algorithm to obtain a complete CFG from a bi-

nary executable [73].

In this dissertation, we address the resource-aware security testing challenge that is to find asmany

software bugs as possible given limited resources and to identify security-relevance of them. While

traditional software testing focuses on improving the testing techniques themselves [42, 69, 129,

137], the resource-aware security testing considers: (1) how to use the existing techniques appro-

priately in order to maximize their bug finding effectiveness, and (2) how to pick out exploitable

software bugs. At a high level, our approach consists of two major steps. First, we find as many

bugs as possible given a resource constraint. Second, we analyze the bugs that we found in the

first step in order to determine whether they are exploitable.

1.2 Overview: Resource-Aware Security Testing Challenge

The primary focus of this dissertation is on fuzzing, a software testing technique that is often used

to find security bugs in practice [116, 117, 119]. Mutational fuzzing, which is a category of fuzzing

(see §2.4), is of our particular interest, since it is straight-forward to formalize its algorithm. At a

high level, mutational fuzzing takes in a program and a seed—an input string to the program—as

input, and generates a test case by mutating the seed at random. The generated test case is then

used to run the program to test if it can crash the program. If so, we store the test case as a crashing

input. We repeat the process until a timeout is reached.

One of the major difficulties in fuzzing is that we cannot exhaustively generate all possible test

cases given limited computing resources. Resources appear in many forms such as the total time

budget or simply money to buy computing power. The key challenge is how we can maximize the

number of bugs found in fuzzing within the same resource bound.

We approach this problembyoptimizingparameters formutational fuzzing. Mutational fuzzing
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techniques typically employ a set of parameters that can be controlled by an analyst. We observed

that the efficiency of fuzzing, i.e., the number of bugs found per time, could drastically change de-

pending on the values of fuzzing parameters. Two different sets of parameter values can cause the

same fuzzing technique to explore totally different executions of the Software Under Test (SUT).

Therefore, we canmaximize fuzzing efficiency by automatically adjusting the values of parameters.

The key intuition is that there are several common characteristics for the outcome ofmutational

fuzzing, and we can exploit the characteristics to devise fuzzing strategies. First, two distinct bugs

of the same SUT are typically triggered with two executions exercising two different sets of pro-

gram statements. Second, if two distinct crashing inputs derived from the same seed are due to the

same bug, then they have common bit positions flipped from the seed. Third, a bug arrival process

of mutational fuzzing for the same SUT has diminishing returns. We can use these characteristics

in order to design a parameter selection strategy that gives higher priority to parameter values that

maximize the fuzzing efficiency.

In this dissertation, we describe our approaches to enhancing the performance of mutational

fuzzing in terms of resource utilization. We first start by formally defining the process of fuzzing

along with its parameter space. Given the formal definition of fuzzing, we design and implement

several strategies for optimizing the parameter choice of mutational fuzzing in order to improve

its efficiency. Finally, we address the problem of checking the exploitability of bugs found. To this

end, we augment typical safety properties in symbolic execution [26, 88, 94] with an exploitability

property, and find an execution path that the exploitability property holds.

This dissertation contributes to the areas of software security and software engineering. Specif-

ically, we demonstrate the impact of parameter optimization for mutational fuzzing in discovering

memory corruption bugs. The thesis of this work is:

“ Realizing the characteristics of the outcome of mutational fuzzing helps in designing fuzzing

strategies that optimize parameter selection and prioritize bug fixing under limited resources. ”
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1.3 Fuzzing for Bug Finding

As mentioned earlier, our primary focus is on fuzzing, a.k.a. fuzz testing, used by many security

practitioners [61, 86, 118, 119, 138, 141] to find security bugs. The term fuzzing is a largely over-

loaded term, thus, we need to precisely define what fuzzing is before discussing any new tech-

niques. The term was originally coined by Barton Miller [116] to mean a testing strategy that runs

a program under test with a series of randomly generated inputs. However, fuzzing is currently

used to mean various testing techniques including dynamic symbolic execution [71] and random

testing [11, 40–42]. Through out this dissertation, we use the term “fuzzing” to denote software

testing techniques that perform the following two steps: (1) generating a series of inputs (or test

cases), and (2) observing whether the program under test manifests bugs, i.e., crashes, when it is

executed with the produced inputs.

In Chapter 2, we present a formal definition of fuzzing. We then summarize the classes of

fuzzing techniques, and discuss how to analyze the effectiveness of them in terms of probability,

which will serve as a foundation of formal studies that we describe in the rest of the dissertation.

Techniques presented in this dissertation mainly focus on mutational fuzzing (§2.4).

1.4 Parameter Space Reduction for Resource-Aware Fuzzing

Fuzzing typically runs with a series of different parameters. Unfortunately, however, the choice of

parameters is largely manual and arbitrary in practice because a parameter can potentially have

an infinite number of values. For example, a seed—typically a well-structured input—is used as

a parameter for mutational fuzzing algorithms [86, 98], and one can choose any arbitrary size of

input of any value to be a seed. Even though we fixed the size of the input, simple enumeration

requires 2N number of inputs, where N is the number of input bits.

In Chapter 3, we investigate several seed reduction techniques for mutational fuzzing. The

question is, given a thousand of seed inputs, howwe can efficiently select a subset of them to max-

imize the number of bugs found? Previous research indicates that increased code coverage [60]

tends to find more bugs. Several papers [2, 8], presentations from well-respected computer se-

curity professionals [117, 118], as well as fuzzing tools such as Peach [61], indeed suggest using
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executable code coverage as a seed selection strategy. We focus on how to mathematically formu-

late and reason about seed selection algorithms. Specifically, we formalize the problem as a set

cover problem and check whether this formulation indeed helps in maximizing the total number

of bugs found during a campaign of mutational fuzzing.

1.5 Parameter Inference for Resource-Aware Fuzzing

Our parameter reduction technique examines every candidate value in order to decide a subset of

parameter values to use. However, trying out every potential parameter value can be inefficient in

practice. A natural question arises: can we reduce the parameter space without investigating all

potential parameter values?

In Chapter 4, we tackle this problem with respect to a fuzzing parameter called the mutation

ratio—the rate between the number of bit positions to flip and the number of total bits in a seed.

The key challenge in reducing the number of parameter values for the mutation ratio is that there

is no single representative program execution for a given mutation ratio. Suppose we are givenM

different N -bit seeds. In case of seed reduction, we can simply runM different seeds to compare

the quality of them. However, in case of mutation ratio reduction, we need to consider at least

M ×
(

2N

bN ·rc
)
executions for each different mutation ratio r.

Existingmutational fuzzers employ several techniques to reduce the number of mutation ratios

to consider. First, zzuf [98] lets an analyst choose the mutation ratio based on their expertise. It

runs with either a single or a range of mutation ratios, but the analyst must specify them. Second,

if not manual, the mutation ratios are derived non-adaptively, regardless of the program under

test. BFF [86], for instance, splits a set of all possible nonzero mutation ratios into a predefined set

of intervals, and performs scheduling over the intervals. FuzzSim [150] and zzuf use a predefined

mutation ratio if a user does not specify a value. AFL (American Fuzzy Lop) [156] also employs

several bit-flipping mutation strategies that only mutate a fixed number of bits, e.g., it flips only a

single bit at random, regardless of the program under test.

On the other hand, we tackle this challenge by directly inferring a “good” mutation ratio. We

observed that crashing inputs generated from the same seed inmutational fuzzing share some com-

mon properties. If two distinct crashing inputs derived from the same seed trigger the same bug,
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then they have common bit positions flipped from the seed. Furthermore, there are bit positions

in the seed that must not be flipped in order to trigger the crash. We use these common properties

between crashing inputs to formulate the probability of seeing crashing inputs in fuzzing, and de-

vise a way to infer a mutation ratio that maximizes it. Our results show that inferring a mutation

ratio helps in improving the efficiency of fuzzing.

1.6 Resource-Aware Fuzzing with Dynamic Parameter Scheduling

With our parameter reduction and inference techniques, we only need to consider a subset of pa-

rameter values for fuzzing. However, we still need to decide howmuch time to use for fuzzingwith

each of the parameter values because we are under a limited resource, i.e., time budget. We note

that fuzzing under constrained resources is akin to gamblingwith playerswagering their resources

on different fuzzing machines. Each machine in the game is configured with a distinct set of pa-

rameter values and outputs a random reward (bug) from a distribution for a given time resource.

The question then becomes how much time should we allocate for each machine to maximize the

fuzzing efficiency?

We tackle this problem by mathematically modeling the process of fuzzing. Since the number

of bugs that can be found for each machine is finite, we can view repeated fuzzing runs using the

same machine as a bug arrival process that has diminishing returns. From this observation, we

statistically estimate an upperbound probability to discover remaining bugs for every machine.

We then allocate resources to each of the machines to maximize the fuzzing efficiency based on the

estimated upperbound probabilities.

Chapter 5 presents several scheduling algorithms over given sets of parameter values. Unlike

previous works [34, 71, 122] that have mainly focused on how to improve bug finding techniques

themselves, our focus is on how to use the existing techniques effectively by choosing a “good” set

of parameter values.
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Figure 1.1: The number of open bugs in Ubuntu over time.

1.7 Resource-Aware Bug Prioritization

Fuzzing typically generates thousands of distinct crashing inputs and investigating each crashing

input is primarily a manual process, which is error-prone. Unfortunately, the number of bugs to

fix usually exceeds the number of developers dedicated for fixing them. For example, the num-

ber of open bugs—bugs that are reported, but not fixed—in Ubuntu keeps growing even if many

developers strive to correct them. Figure 1.1 illustrates the number of open bugs in Ubuntu from

January 2007 to September 2014. Of course, not all the bugs are security critical. Some of the open

bugs in Ubuntu are just feature requests or aesthetic bugs that do not affect the software security.

An immediate research question that arises after a fuzzing campaign is, how can we prioritize

fixing bugs that we found given limited resources? Out of thousands of bugs that are currently

listed in [99], which of them should be fixed first? We note that not all bugs are equivalent. Some

bugs lead to critical security breaches, but others are not. As a result, we automatically identify

which bugs are subject to control-hijack attacks, thus, must be security critical.

As the first step toward the problem, we demonstrate an automatic exploit generation (AEG) tech-

nique that partially verifies whether a given bug is exploitable [14, 15, 38] in Chapter 6. The crux of

the technique is to encode an exploitability property—the position of attack code, and the value of

overwritten addresses, and so forth—and to find a program pathwhere the exploitability property

holds. AEG is sound. The exploitable test cases generated by AEG lead to a control-hijack attack.

However, AEG is not complete. It does not handle all possible exploitation classes. Therefore, AEG
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may falsely report a bug to be not exploitable even if it is.

1.8 Summary of Contributions

In this work, we design several techniques to tackle the resource-aware security testing challenge.

Memory corruption bugs that lead to program crashes via segmentation fault are of particular

interest because they are the root cause of most software vulnerabilities [145]. Our techniques are

implemented and evaluated on black-box mutational fuzzing [113, 138]. This dissertation makes

the following high-level contributions.

1. A formal definition and an analytic framework of fuzzing techniques.

2. A mathematical formulation of fuzzing parameter (seed) reduction algorithms.

3. A novel approach in inferring a fuzzing parameter (mutation ratio) from a program execution

by leveraging a white-box analysis technique.

4. An investigation of various online scheduling algorithms that dynamically allocate time for

given fuzz parameters in order to maximize the number of attainable bugs.

5. Anovel bugprioritization strategy, called automatic exploit generation, that helps identifying

security relevance (exploitability) of bugs.
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Chapter 2

Theory of Fuzzing

The original work was inspired by being logged on to a modem

during a storm with lots of line noise. And the line noise was

generating junk characters that seemingly were causing programs to

crash. The noise suggested the term ‘fuzz’.
—Barton Miller

Fuzzing is a class of automated software testing [123]. The term “fuzz” was first used byMiller

et al. [116] in the early 90s to describe a technique that feeds in random inputs to the SoftwareUnder

Test (SUT) until encountering a crash. Since then, the term has been semantically overloaded to

refer to various techniques that execute the SUT using a series of inputs, called test cases, in order

to identify potential software bugs [71, 138]. Consequently, fuzzing nowadays refers to a variety

of testing methodologies including random testing [11, 42, 129], mutational fuzzing [138, 150],

dynamic symbolic execution [34, 71] and more. The details vary, but fuzzing techniques have the

common theme: fuzzer executes the SUT with a series of concrete inputs.

Fuzzing is attractive because of its dynamic nature. There is no need to simulate dynamic data

structures and environment as in static analyses, and the result of fuzzing is sound: when it finds a

bug, then it is indeed a bug. Consequently, fuzzing has become a de facto standard in bug finding.

Software companies such as Adobe [144], Google [142], and Microsoft [87] include fuzzing as a

mandatory step in their development life cycle.

In this chapter, we formally define fuzzing and characterize various fuzzing techniques. We

first start by defining several necessary terminologies. We then define the fuzzing algorithm,which
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CHAPTER 2. THEORY OF FUZZING

serves as a foundation for scientific studies that we present throughout this dissertation. Follow-

ing the definition we demonstrate several analytic studies on fundamental fuzzing methodologies

including random fuzzing and mutational fuzzing.

2.1 Terminology

Software bug (a.k.a. software error, fault, or flaw) [17] indicates a design or implementation mis-

take in a program that is introduced by one or more programmers. Sometimes a bug does not

yield any noticeable effect to the program behavior, but other times a bug causes an unexpected

result or behavior such as a program crash. In the worst case, a bug enables a remote attacker to

hijack the control flow of the program, and lets the attacker to run arbitrary code on behalf of the

victim [139]. We often call such bugs vulnerabilities.

Fuzzing involves executing a program under test with a series of concrete inputs. For each of

the program executions, a fuzzer determineswhether the programproduced a correct result or not.

We often call such an inspection process as ExecutionMonitoring (EM) or runtimemonitoring [19].

Ideally, there should be a perfect test oracle [3, 18] that specifies what the output of the program

should be for all possible inputs in order to find all potential bugs. In practice, however, only a

specific subset of the bugs can be examined by EM.

We formulate the fuzzing process in terms of EM-enforceable safety properties as Schneider

et al. [134]. An EM-enforceable safety property is a safety property [4] that bases its decision only on

the past (including the current) program execution. We view fuzzing as the process of finding a

set of inputs that violates an EM-enforceable safety property. Since our definition of bug finding

relies on a safety property, which is enforceable by an individual execution in isolation, we may

miss some bugs such as information leakages that can be discovered only with safety policies1.

Let a program execution be a sequence of instructions. We represent a universe of all possible

sequences as Ψ. Let Φ be the universe of all possible programs. Given a program p ∈ Φ, Σp denotes

a set of all possible program executions for the program p, where Σp ⊆ Ψ. We also let σp(i) to

denote an execution of p using i as an input. Since a program execution is determined by an input,
1 Notice that this does not mean we miss all information leakages. Since we are monitoring only an individual

execution at a time, we cannot determine implicit information leakage based on multiple execution paths. However, we
can still identify an explicit information flow, e.g., an information leakage from a sensitive data source to an untrusted
destination.
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All Inputs

Buggy Inputs

Exploitable Inputs

Figure 2.1: Inputs in the input space IN for a program under test p. There is a subspace of IN that
contains only buggy inputs for the program, and there is another subspace of the subspace that
contains only exploitable inputs for the program.

Σp = {∀i.σp(i)}. An EM-enforceable safety property π is a predicate on a program execution for

the program p, which returns false for a safety violation, or true otherwise. For example, π(σp(i))

is false when there is a safety violation detected by EM for the program pwhen it is executed with

the input i. We also let Π to denote a set of all possible safety properties that are EM-enforceable.

We say a program satisfies a safety property if and only if it holds true for all possible executions

of the program:

∀i, σp(i) ∈ Σp : π(σp(i)) = true.

We let an input, a.k.a. test case, be a bit string. In our model, each input has a fixed length of

N bits. An input space IN denotes the universe of all possible inputs of size N bits. Therefore,

|IN | = 2N . We call inputs that violate one or more safety properties as buggy inputs.

Definition 1 (Buggy Input). An input i ∈ IN is a buggy input for a program p, if and only if

∃π ∈ Π : π(σp(i)) = false.

Among the buggy inputs, there can be a subset of them that leads to a control-flow hijack at-

tack [139] while violating the safety properties. We call such inputs exploitable inputs, or exploits

for short2. Figure 2.1 represents the subset relationship between all inputs, buggy inputs and ex-
2 In this dissertation, we use the term “exploit” tomean a control-flowhijack exploit that allows an attacker to run any

arbitrary code. Considering other classes of exploits such as information leakage is outside the scope of this dissertation.
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ploitable inputs.

Many buggy inputs can correspond to a single bug (fault) in a program. Suppose a program

takes in an integer input, and the program crashes whenever we supply a negative integer as an

input. In this case, any negative integer is indeed a buggy input that triggers the same bug in

the program. A natural question is: which bug does a buggy input correspond to? We often call

the process of determining a corresponding bug from a given buggy input as triaging. We define a

triaging function Triage that takes in a program execution and a safety property, and returns either

a bug identifier when the safety property violates, or ⊥ if otherwise. For instance, if a program p

violates a safety property π when we execute p with a test case i, then Triage(π, σp(i)) = b, where

b is a number that uniquely identifies the corresponding bug.

We use a subscript to specify a bit position in an input. For example, s1 means the first bit of

the input s. We denote the Hamming distance [80]—the number of bit differences in two input

strings—between input i and j in the input space by δ(i, j). Given an input i, we let aK-neighbor

of i—denoted byNK(i)—be a set of inputs such that every input in the set has the same Hamming

distanceK from i.

Definition 2 (K-Neighbor). A K-neighbor of an input i of length N is an input whose Hamming

distance from i isK. We denote the set of allK-neighbors of i by NK(i):

NK(i) = {j ∈ {0, 1}N | δ(i, j) = K}.

Given the above definition, observe that two sets of K-neighbors of the same input with a

different value ofK are disjoint from each other:

∀i, 0 ≤ A,B ≤ N : NA(i) ∩NB(i) = ∅ ⇐⇒ A 6= B.

We let µ be a function that takes as input a test case and a set of bit positions, and returns a

mutated test case where every specified bit is flipped (exclusive-or-ed with 1) from the given test

case. For example, µ(s, {3, 4}) is an input where both the third and the fourth bit of s are flipped,

and δ(µ(s, {3, 4}), s) = 2.
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2.2 Our Mathematical Model

We now state and justify several assumptions of our mathematical model, all of which are satisfied

by typical fuzzers in practice.

Assumption 1. Each seed input has finite length.

This assumption is always satisfiedwhen fuzzing file inputs. In practice, some fuzzers can also per-

form stream fuzzing, which randomlymutates each bit in an input streamwith a user-configurable

probability. Notice that while the expected number of randomly-mutated bits is fixed, the actual

number is not. We do not model stream fuzzing.

Assumption 2. We can only observe the violation of safety property that exhibits a crash. Therefore, an

execution of the program can have exactly one of the following two possible outcomes—it either crashes

(bid) or properly terminates (⊥).

In essence, this assumption means we focus exclusively on finding bugs that lead to crashes. Find-

ing logical bugs that do not lead to crashes would typically require a correctness specification of

the program under test. At present, such specifications are rare in practice and therefore this as-

sumption does not impose a severe restriction.

Assumption 3. The outcome of an execution of the program depends solely on the input generated by the

fuzzer.

This assumption ensures we are not finding bugs caused by input channels not under the fuzzer’s

control. Since the generated input alone determines whether the program crashes or terminates

properly, all bugs found during fuzzing are deterministically reproducible. In practice, inputs that

do not cause a crash in downstream analyses are discarded.

2.3 Fuzzing

A fuzzing algorithm takes in a program and a set of other parameters as input. We call a set of

parameters including the program under test as fuzz configuration. A fuzz configuration always

include a program because any algorithm needs to know which program to test. However, types
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{tc, bid, t}

Test-Gen
tc

tid

Fuzz Configuration (c)

Program (p)

Safety Property (π)
Fuzz Run

Figure 2.2: A fuzz run consists of the two consecutive algorithms (Test-Gen and Test-Eval).

of fuzzing configurations may differ for different fuzzing algorithms. For example, some fuzzing

algorithms do not require any parameters other than a program, but other algorithms such as

mutational fuzzing require a seed as a parameter (see §2.4).

We now formally define fuzz campaign as a single-threaded function (Fuzz) that takes in a set

of fuzz configurations C, a timeout T , and a safety property π as input. Fuzz outputs a sequence

of log entries L for each bug found during fuzzing:

Fuzz(C, T, π) = L.

Each fuzzing log entry consists of a 4-tuple: a corresponding buggy input to trigger the bug (tci), a

unique identifier of the bug (bidi), a timestamp ti, and a fuzz configuration that is used for finding

the bug ci. Therefore, we can represent L as follows:

L = {(tc1, bid1, t1, c1), · · · , (tcn, bidn, tn, cn)} .

In our model, Fuzz consists of a series of fuzz runs. A fuzz run comprises two algorithms, namely

Test-Gen and Test-Eval, which behave as follows.

Test-Gen: (tid : N, c : {p : Φ, · · · })→ tc : {0, 1}N .

Test-Gen is either a randomized or a deterministic algorithm, which takes as input a test

identifier tid and a fuzz configuration c (a labeled record), and outputs a test case in the

input space IN where N > 0. Test-Gen generates an input for a program according to the

fuzz configuration. The test identifier is a unique number that is given to each generated test
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case: it is only meaningful in deterministic test case generation algorithms because it allows

an analyst to reproduce generated test cases. The fuzz configuration c can have different types

of elements depending on the underlying algorithm, e.g., mutational fuzzing has a seed as a

parameter (see § 2.4).

Test-Eval: (p : Φ, tc : {0, 1}N , π : Π)→ (tc : {0, 1}N , bid : {⊥,N}, t : N) .

Test-Eval takes as input a program p, a test case tc, and a safety property π. It executes pwith

tc, and returns the test case itself tc along with a unique bug identifier bid and the current

timestamp t (in seconds). The bug identifier bid can either be⊥ if the test case does not violate

the safety property π, or a unique number that identifies the corresponding bug if otherwise.

We can represent bidwith a triaging function Triage as: Triage(π, σp(tc)).

Figure 2.2 illustrates the process of a fuzz run. We first generate a test case tc in Test-Gen,

and evaluate the generated test case in Test-Eval. After running both algorithms, we perform a

post-processing step such as storing the test case to permanent storage. A fuzz campaign iterates a

series of fuzz runs with given fuzz configurations. At each iteration, fuzzers execute a scheduling

algorithm (Fuzz-Schedule) in order to decide which fuzz configuration to use for the next fuzz

run. Fuzz-Schedule behaves as follows.

Fuzz-Schedule: (L : {(bid1 : {⊥,N}, t1 : N, c1 : N), · · · } , C : {{p1 : Φ, · · · }, · · · })→ c : N .

Fuzz-Schedule takes as input a fuzzing log L and a set of fuzz configurations C, and outputs

a fuzz configuration c ∈ C based on the observed fuzzing log so far. The ultimate goal of

Fuzz-Schedule is to allocate an optimal amount of time for each fuzz configuration in C in

order to maximizes the fuzzing outcome (see Chapter 5).

We now formally define Fuzz with the three functions defined above. We represent the algo-

rithm in Algorithm 2.1. Fuzz iteratively executes fuzz runs until it reaches the timeout T . Note

that our definition of fuzzing differs from the notion of traditional software testing. Fuzzing is a

subset of software testing that involves running the SUT with a set of generated inputs. For exam-

ple, mutation testing [56, 89] is not fuzzing, because we do not allow a fuzzer to modify the SUT.

Randomized differential testing [62, 111, 154]—which uses multiple compilers to compare the out-

put of the compiled programs—are also not in the category of fuzzing, since program outputs are
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Algorithm 2.1: Fuzz Campaign (Fuzz).
input : Fuzz Configurations C, Timeout T , Safety Property π
output: Fuzzing Log L

1 tid← 0 // Used only for deterministic Test-Gens
2 L← [·] // Empty list
3 tinit ← CurrentTime() , t← CurrentTime() // Initialize with current timestamp
4 bid← ⊥
5 while t− tinit < T do
6 c← Fuzz-Schedule(L,C)

7 tc← Test-Gen(tid, c)

8 p← GetTargetProgram(c) // Extract a target program from a fuzz conf.
9 tc, bid, t← Test-Eval(p, tc, π)

10 if bid 6= ⊥ then
11 L← L + (tc, bid, t, c) // Append an entry to the fuzzing log
12 end
13 tid← tid+ 1

14 end
15 return L

not EM-enforceable safety properties: a program may not terminate.

2.4 Taxonomy of Fuzzing

In this section, we characterize several classes of fuzzing. Typically, fuzzing techniques split into

two categories based on the ability in analyzing the internals of the program under test: either

black- or white-box fuzzing.

Black-box fuzzing [20] does not see the internals of the program: it can only observe the in-

put/output behavior of the program, and thus, it consider the program as a black-box. In some

cases, such as Peach [61], it takes the input structure into account to generate more meaningful

inputs. We can further split black-box fuzzing techniques into two categories based on the under-

lying test case generation (Test-Gen) methodologies [138]: generation-based fuzzing and mutation-

based fuzzing. Generation-based fuzzing produces test cases from scratch, whereas mutation-based

fuzzing generates test cases by mutating existing sample inputs, which are also called seeds.

On the other hand, white-box fuzzing [71] generates test cases by analyzing the program un-

der test: it can see the internals of the program. Therefore, white-box fuzzing can utilize informed
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Generation-Based Mutation-Based

Black-Box Generation-Based Black-Box
[11, 42, 48, 78, 84, 97, 132, 157]

Mutation-Based Black-Box
[61, 86, 98, 118, 150, 156]

White-Box White-Box
[16, 26, 34, 44, 69–71, 88, 94, 106, 133, 137, 151]

Table 2.1: Fuzzing taxonomy.

feedback from the program under test, and can explore the state space of the program in a system-

atic way. However, the overhead of generating test cases in white-box fuzzing is typically much

higher than that of black-box fuzzing. For example, symbolic execution [16, 34, 71] requires dy-

namic instrumentation and SMT solving [55].

Previous literatures suggest a middle-ground approach, namely gray-box fuzzing [57, 141],

which considers some partial knowledge about the program under test such as code coverage

[120]. Strictly speaking though, gray-box approaches are also in the category of white-box fuzzing

because they do access the internals of the program. Throughout the thesis, we are going to use

the term white-box fuzzing to mean both gray- and white-box fuzzing.

Table 2.1 summarizes three categories of fuzzing approaches includingGeneration-basedBlack-

box Fuzzing (GBF), Mutation-based Black-box Fuzzing (MBF), and White-box Fuzzing (WF).

Generation-Based Black-Box Fuzzing (GBF). GBF generates test cases from scratch. When gen-

erating test cases, GBF typically relies on structural knowledge about inputs that the program un-

der test can take in. The structural knowledge includes grammars (grammar-based fuzzing [61, 84,

119, 132, 141, 157]) and input features (adaptive random testing [42] and partition testing [40, 41,

126]). Random testing, a.k.a. random fuzzing, [11, 59, 78] is also in this category although it does

not rely on any structural knowledge. Combinatorial testing [48, 97] studies an efficient way of

deriving inputs by combining a list of known inputs. Model-based testing [5, 127] uses an abstract

model of the program, which is a finite state automaton, to generate test cases: since it does not

directly work with the program under test, this is considered to be a black-box approach. There

are also feedback-driven approaches such as [129]. Popular fuzzing tools in this category include

cross_fuzz [157], jsfunfuzz [132], LangFuzz [84], and Randoop [129].
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Mutation-Based Black-Box Fuzzing (MBF). Unlike generation-based fuzzing, mutation-based

black-box fuzzing (mutational fuzzing for short) requires an initial seed to start generating test

inputs. AFL [156], BFF [86], Radamsa [77], and zzuf [98] are representative fuzzers in this category.

The rationale is to use a well-formed input seed to shift the fuzzer’s attention to likely-to-be-valid

inputs instead of spending their time on constructing a valid input from scratch. For example, a

buggy input for an MP3 player is likely to be a valid MP3 file instead of being a random bit-string.

White-Box Fuzzing (WF). WF generates test cases by analyzing the program under test. For ex-

ample, symbolic execution [26, 34, 70, 88, 94] is a popular way of generating test cases by systemat-

ically exploring execution paths of the program under test. Search-based testing [82, 112] typically

relies on the structural information of the program such as control flow in order to direct the search.

WF also uses an input seed to bootstrap its analysis. Concolic testing [16, 69, 137] is a variant of

traditional symbolic execution that performs symbolic analysis along a concrete execution path.

There also exists a combination of black- and white-box mutation-based fuzzing: hybrid-concolic

[106] is a combination of concolic testing and mutational fuzzing. Popular white-box fuzzing tools

include CUTE [137], KLEE [34], and Sage [71].

Our Scope. In this dissertation, we mainly focus on one of the fuzzing categories: MBF. In par-

ticular, we improve the efficiency of MBF using a variety of developed techniques to tackle the

resource-aware security testing challenge. Although our technique relies on some techniques in

WF, e.g., symbolic execution, but the primary focus is on improving the efficiency of MBF.

2.5 Fuzzing Algorithms

In this section, we investigate three fuzzing algorithms based on their test case generationmethods.

In particular, we define three fuzzing algorithms including random fuzzing, ball-basedmutational

fuzzing and surface-based mutational fuzzing. These algorithms will be used as a foundation for

scientific studies of the rest of the dissertation. Our focus is on fuzzing approaches that use a

randomized test case generation algorithm because it is suitable for defining the probability: de-

terministic algorithms require a strong assumption about the sample space in order to probabilis-

tically analyze them. A randomized fuzzing algorithm enables us to measure the effectiveness of
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fuzzing mathematically.

Random fuzzing generates random inputs to test the SUT. It falls under the category of GBF

because it generates test cases from scratch. Indeed random fuzzing is the original formof fuzz test-

ing used byMiller et al. [116]. Mutational fuzzers (MBF) generates test inputs by partially mutating

a given seed3. Theymay employ a fuzzing parameter called themutation ratio (r), which determines

the maximum number of bit positions to flip. There can be many variants of mutational fuzzing

depending on the way they mutate a seed input. In this section, we formally and succinctly define

two mutational fuzzing techniques: ball-based mutational fuzzing and surface-based mutational

fuzzing. Ball-basedmutational fuzzing generates test cases by sampling an input from aHamming

ball centered around a given seed, whereas surface-based mutational fuzzing does the same from

the surface of the Hamming ball.

2.5.1 Random Fuzzing

Random fuzzing is often called random testing [11, 59, 78] or dumb fuzzing [141]. The idea is to

generate a test case uniformly at random from an input space. Due to Assumption 1, our definition

of random fuzzing generates fixed-length inputs of N bits.

Definition 3 (Random Fuzzing). Random fuzzing is a fuzz campaign that generates test cases by

randomly sampling N -bit inputs from IN .

2.5.2 Ball-based Mutational Fuzzing

Ball-based mutational fuzzing selects test inputs from a Hamming ball centered around a given

seed. More formally, ball-based mutational fuzzing generates test cases that are in a K-neighbor

of an N -bit seed, where 1 ≤ K ≤ bN · rc.

Definition 4 (Ball-basedMutational Fuzzing). Ball-basedmutational fuzzing is a fuzz campaign that

generates test cases for a given N -bit seed s by randomly sampling inputs from

bN ·rc⋃
K=0

NK(s).

3 A seed is traditionally a well-structured input such as an MP3 file.
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2.5.3 Surface-based Mutational Fuzzing

Another way tomutate a seedwith respect to the mutation ratio r is to consider test cases that have

theHamming distance of exactly bN · rc. In otherwords, we can consider only a singleK-neighbor

from a given seed instead of taking the union of all possibleK-neighbors into account.

Definition 5 (Surface-based Mutational Fuzzing). Surface-based mutational fuzzing is a fuzz cam-

paign that generates test cases for a givenN -bit seed s by randomly sampling inputs fromNbN ·rc(s).

In most cases, the K-neighbor of the largest K is the one that is most frequently selected from

mutational fuzzing. For instance, given a 1,000-bit seed s and a mutation ratio 0.01, surface-based

mutational fuzzing only usesN100(s) to generate test cases. Notice that the cardinality ofN100(s) is(
1000
100

)
, and it is the biggestK-neighbor among 0 < K ≤ 100. In this case, surface-basedmutational

fuzzing is equivalent to ball-based mutational fuzzing 88.9% of the time because the size of the

N100(s) covers 88.9% of the entire set: |N100(s)|/
⋃100
K=1 |NK(s)| ≈ 0.889.

2.6 Measuring the Fuzzing Efficiency

Now that we have a formal definition of fuzzing, we can model the efficiency of fuzzing in terms

of probability. There are generally three ways [11] to measure the effectiveness of testing method-

ologies: (1) P-measure compares the probability of finding at least one buggy input using each

method; (2) E-measure analyzes the expected number of buggy inputs; and (3) F-measure con-

trasts the expected number of test cases required to trigger at least one buggy input.

2.6.1 Random Fuzzing

Each iteration of random fuzzing is a probabilistic experiment that randomly selects a test case

from an input space (IN ). A buggy input space (BpN ) is a subset of the input space, which contains

all buggy inputs for the program p. We call the probability of a randomly chosen input being a

buggy input as a failure rate θ [40]. The failure rate of random testing θR for a program p is

θR =
|BpN |
|IN |

=
|BpN |
2N

.
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Let l be the number of fuzz runs for a fuzz campaign: a fuzz campaign produces a sequence

of l random test cases. Due to Assumption 2, the program under test can either crash or execute

normally. We let Ω be the sample space of a fuzz run:

Ω = {crash,normal}. (2.1)

We assume that all test case generations in random fuzzing are independent, i.e., fuzzing al-

ways chooses a test case from the sample space with replacement. This means that each fuzzing

iteration has exactly the same failure rate θR. Therefore, it is possible to have duplicated test cases

during fuzzing.

P-measure. Let Xl be a random variable that represents the number of occurrences of “crash”

after l number of fuzz runs. Then the probability of not finding any crash after l trials is

Pr[Xl = 0] = (1− θR)l.

Therefore, the P-measure—the probability of finding at least one buggy input after l fuzz runs—of

random fuzzing is as follows.

Pr[Xl > 0] = 1− (1− θR)l.

E-measure. From the above definition of the probability, the random variable X follows the tra-

ditional binomial distribution [64] because an outcome of an experiment is either of two values—

crash and normal—which can be mapped to a success and a failure respectively. E-measure uses

the expected number of buggy inputs (successes) after l fuzzing trials to examine the effectiveness

as follows.

E[X] = l · θR.

F-measure. Let Y be a random variable that represents the number of fuzz runs resulting in

normal before a buggy input is found. The probability of finding a buggy input after y trials is

Pr[Y = y] = (1− θR)y−1 · θR.
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Since every event of random fuzzing is independent each other, the random variable Y follows the

traditional geometric distribution [64]. Therefore, the expected number of fuzz runs until finding

the first buggy input is

E[Y ] =
1

θR
.

Example. Suppose there is a program that takes in an input file of the size 1 byte (= 8 bits), and

there are only 4 buggy inputs out of 28 possible test cases. We also let our time budget allows us to

test only 100 test cases, i.e., l = 100. In each fuzz run, the failure rate θR is simply 4/28. In this case,

the P-measure gives a probability

Pr[X100 ≥ 1] = 1− (1− 4

28
)100 ≈ 0.79.

This means, that the probability of finding at least one buggy input out of 100 fuzzing trials is

approximately 0.79. The E-measure gives an expected number

E[X100] = 100× 4

28
≈ 1.56.

Therefore, the expected number of buggy inputs out of 100 test cases is approximately 1. Finally,

the F-measure derives an expected number

E[Y ] =
28

4
= 64.

That is, the expected number of test cases required to obtain at least one buggy input is 64. There-

fore, it is likely to hit a buggy input after generating 64 test cases.

2.6.2 Ball-based Mutational Fuzzing

Ball-based mutational fuzzing may miss some bugs unless the mutation ratio is 1 because it will

generate test inputs from a smaller subspace of the whole input space: it can find buggy inputs

only in a subset of BpN . Let B
p
N (K, s) be a set of buggy inputs that are in a K-neighbor of a seed s.

That is,

BpN (K, s) = {i|i ∈ NK(s) ∧ π(σp(i)) = false}.
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Then, a set of buggy inputs that ball-based mutational fuzzing with mutation ratio r can find from

a seed s for a program p is
bN ·rc⋃
K=0

BpN (K, s).

We now define the failure rate of ball-based mutational fuzzing θB , which is the probability of a

randomly chosen test case being a buggy input.

θB =

∣∣∣⋃bN ·rcK=0 B
p
N (K, s)

∣∣∣∣∣∣⋃bN ·rcK=0 NK(s)
∣∣∣ (2.2)

We note that the only difference between random fuzzing and ball-based mutational fuzzing is

that they have a different failure rate. Therefore, we can easily derive all three testing metrics from

those of random fuzzing by replacing the failure rate.

P-measure.

Pr[Xl > 0] = 1− (1− θB)l

E-measure.

E[Xl] = l · θB.

F-measure.

Pr[Y = y] = (1− θB)y−1 · θB.

2.6.3 Surface-based Mutational Fuzzing

Using the same notation as in §2.6.2, we can represent a set of buggy inputs that surface-based

mutational fuzzing with mutation ratio r can find from a seed s for a program p:

BpN (bN · rc , s).
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Wedefine the failure rate of surface-basedmutational fuzzing, which is denoted by θS with respect

to a seed s and a program p as follows.

θS =

∣∣BpN (bN · rc, s)
∣∣∣∣∣⋃bN ·rcK=0 NK(s)
∣∣∣ (2.3)

With θS , we show the efficiency of surface-based mutational fuzzing using the three metrics as

follows.

P-measure.

Pr[X > 0] = 1− (1− θS)l

E-measure.

E[X] = l · θS .

F-measure.

Pr[Y = y] = (1− θS)y−1 · θS .

2.6.4 Algorithmic Implementation

At this point, it is important to discuss how to design and implement an algorithm for ball-based

mutational fuzzing because it is not straightforward as it seems to be4. For random fuzzing, there

is a trivial O(N) algorithm, namely, generating a random number between 0 and 2N − 1 using a

Pseudorandom Number Generator (PRNG) [109, 110], where each bit takes O(1) time. However,

designing an algorithm for mutational fuzzing is not trivial, because we want to generate only

inputs in aK-neighbor of the input space for a fixedK.

Someone may argue that it is possible to use a rejection sampling to resolve the problem, but

the problem is that the number of rejections can be too large to be handled when the mutation

ratio gets bigger, especially when it is close to 1.0. Suppose the mutation ratio is 0.9, then it is

probabilistically infeasible to get the desired number of bit flips with a rejection sampling.

4 In fact, we are not aware of any practical fuzzers that implement either the ball-based or surface-based mutational
fuzzing: they use approximated algorithms instead, which is difficult to represent with closed-form expression.
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To handle this problem, we devise a two-step approach for ball-based mutational fuzzing: (1)

given a set of K-neighbors, where 1 ≤ K ≤ bN · rc, we select a K-neighbor with a weighted

probability that is proportional to the size of each neighbor; (2) we then randomly select a test case

within the chosenK-neighbor.

Step 1: choose a K-neighbor. The goal of the first step is to select a K-neighbor at random,

and proportionally to the size of each K-neighbor. Given an N -bit seed s and a mutation ratio

r, suppose we enumerate all possible inputs from 0-neighbor to bN · rc-neighbor in a sequential

order. Then, the problem of choosing a random K-neighbor is to select a random number from 1

to
∑bN ·rc

K=0

(
2N

K

)
, and then check which neighbor the number resides in.

Although computing the sum of binomial coefficients is expensive, we can precompute and

cache them. Let S0 =
∑bN ·rc

K=1

(
2N

K

)
, S1 =

∑bN ·rc−1
K=1

(
2N

K

)
, · · · , SbN ·rc−1 =

∑1
K=1

(
2N

K

)
, and SbN ·rc = 1.

Then we cache the values from S0 to SbN ·rc, and check whether the random value exceeds one of

the cached values. Starting from S0, we linearly check each cached value because the likelihood of

selecting each neighbor decreases.

Step 2: randomly generate an input within a K-neighbor. We note that the second step of our

algorithm requires an ability to selecting test cases that have the Hamming distance K from the

seed s, for any given K. This is equivalent to selecting K-bit positions from the seed and flipping

them, since flippingK bits results in a test case i such that δ(i, s) = K.

This is the classic random k-subset selection problem. The crux of the problem is to devise an

algorithm to selectK elements at random fromN bit positions. A straightforward algorithm such

as computing a random permutation and taking the topK elements requiresO(N) space and time

complexity. One might consider using reservoir sampling [146] to reduce the space complexity to

O(K), but it still requires O(N) time complexity. There are several known algorithms that have

O(K) space complexity while requiring only O(K) time complexity in expectation [21, 125]. In

this dissertation, we use Floyd-Bentley’s algorithm [21, Algorithm F1] to compute the subset. This

algorithm outperforms permutation-based algorithms in terms of both time and space complexity

when K < N . Once we obtain K random bits to modify from the Floyd-Bentley’s algorithm, we

simply flip the selectedK bits (by XORing the bits with s), and generate a new test case.
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We claim that the two-step approach is theoretically the same as the ball-based mutational

fuzzing, which generates a random test case from the union of K-neighbors. Both approaches

have the equivalent failure rate, and thus, they have to the same result of fuzzing. Let θ′B be the

failure rate of the two-step version of ball-based mutational fuzzing. Then, the following theorem

holds.

Theorem 1. θB = θ′B

Proof. Let s be an N -bit seed input. In ball-based mutational fuzzing, the probability of choosing

a buggy input θB is given by (2.2):

θB =

∣∣∣⋃bN ·rcK=0 B
p
N (K, s)

∣∣∣∣∣∣⋃bN ·rcK=0 NK(s)
∣∣∣ .

Since two sets ofK-neighbors of the same input with a different value ofK are disjoint from each

other, ∣∣∣∣∣∣
bN ·rc⋃
K=0

BpN (K, s)

∣∣∣∣∣∣ =

bN ·rc∑
K=0

|BpN (K, s)|. (2.4)

EachK-neighbor has a failure rate:
|BpN (K, s)|
|NK(s)|

.

Since each K-neighbor is selected proportionally to the size, the final failure rate of the modified

mutational fuzzing is:

θ′B =

bN ·rc∑
K=0

 |BpN (K, s)|
|NK(s)|

· |NK(s)|∣∣∣⋃bN ·rcL=0 NL(s)
∣∣∣


=

∑bN ·rc
K=0 |B

p
N (K, s)|∣∣∣⋃bN ·rcL=0 NL(s)

∣∣∣ .

Due to (2.4),

θ′B =

∣∣∣⋃bN ·rcK=0 B
p
N (K, s)

∣∣∣∣∣∣⋃bN ·rcL=0 NL(s)
∣∣∣ . (2.5)

From (2.2) and (2.5), θB = θ′B .

26



Chapter 3

Parameter Reduction

If you love life, don’t waste time, for time is what life is

made up of.
—Bruce Lee

Fuzzers typically take in a variety of parameters—we define a set of parameters as a fuzz con-

figuration in §2.3—that an analyst can control. Unfortunately, some parameters have too many

potential values to choose. An example of such parameter is the seed. Suppose we are fuzzing

an MP3 player that takes in an MP3 file as an input. There are potentially infinite MP3 files, all

of which can be a valid seed parameter for fuzzing. Therefore, a natural question is which seeds

should we use for fuzzing? Can we reduce the set of seed inputs to consider for fuzzing?

In this chapter, we investigate a technique for reducing the parameter space of seed for fuzzing.

Specifically, we answer the following questions. First, given millions, billions, or even trillions of

seed inputs, e.g., MP3 files, which should we use for fuzzing? Second, how do we measure the

quality of a seed selection technique independently of the fuzz scheduling algorithm? For example,

if we ran algorithm A on seed set S1 and S2, and S1 maximized bugs, we would still be left with

the possibility that with a more intelligent scheduling algorithmA′ would do better with S2 rather

than S1. Can we develop a theory to justify when one seed set is better than another with the bets

possible fuzzing strategy, instead of specific examples? Finally, can we converge on a “good” seed

set for fuzzing on programs for a particular file type? Specifically, if S′ performs well on program

P1, how does it work on other similar applications P2, P3, · · · ?
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3.1 Exploiting Characteristics of Fuzzing Outcome

We exploit the fact that two distinct bugs in a program tend to arise from two different locations

of a program. Therefore, if we can find a set of seeds that maximizes the code coverage, then the

likelihood of finding distinct bugs can increase. The proposed technique in this chapter is based

on the following assumption.

Assumption. We assume that mutational fuzzing tends to find more bugs at the program lines

that a seed can exercise. Suppose we are testing an MP3 player, and there is a bug that can only

be triggered with an MP3 file compressed at a bit rate 128 Kbit/s. Then, it is more likely to find

the bug with a 128 Kbit/s seed, then a 192 Kbit/s seed, although it is still possible that mutational

fuzzing can correctly modify a certain input field to make the seed to be a 128 Kbit/s seed.

3.2 Seed Selection Challenge

How shall we select seed files to use for fuzzers? For concreteness, we downloaded a set of seed

files S consisting of 4, 912, 142 distinct files and 274 file types from Bing. The overall database of

seed files is approximately 6TB. Fuzzing each program for a sufficient amount of time to be effective

across all seed files is computationally expensive. Further, sets of seed files are often duplicative in

the behavior elicited during fuzzing, e.g., s1 may produce the same bugs as s2, thus fuzzing both

s1 and s2 is wasteful. Which subset of seed files S′ ⊆ S shall we use for fuzzing?

Existing research [2, 8, 58, 117] as well as tools such as Peach [61] suggest using executable code

coverage as a seed selection strategy. The intuition is that many seed files likely execute the same

code blocks, and such seeds are likely to produce the same bugs. For example, Miller reports a 1%

increase in code coverage increases the percentage of bugs found by .92% [117]. This intuition can

be formalized as an instance of the set cover problem [2, 8]. Does set cover work? Is the minimal

set cover better than other set covers? Should we weight the set cover, e.g., by how long it takes to

fuzz a particular seed? Previous work has shown a correlation between coverage and bugs found,

but has not performed comparative studies among a number of approaches, nor studied how to

measure optimality (§3.4).

Recall that in the set cover problem (SCP) [50] we are given a set X and a finite list of subsets
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F = {S1, S2, . . . , Sn} such that every element of X belongs to at least one subset of F:

X =
⋃
S∈F

S

We say that a set S ⊆ F is a set cover of X when:

X =
⋃
S∈S

S

The seed selection strategy is formalized as:

Step 1. The user computes the coverage for each of the n individual seed files. The output is the

set of code blocks1 executed per seed. For example, suppose a user is given n = 6 seeds such

that each seed executes the following code blocks:

S1 = {1, 2, 3, 4, 5, 6} S2 = {5, 6, 8, 9}

S3 = {1, 4, 7, 10} S4 = {2, 5, 7, 8, 11}

S5 = {3, 6, 9, 12} S6 = {10, 11}

Step 2. The user computes the cummulative coverage X =
⋃
Si, e.g., X = {1, 2, . . . , 12} for the

above.

Step 3. The user computes a set cover to output a subset S of seeds to use in a subsequent fuzzing

campaign. For example, S1 = {S1, S4, S3, S5} is one set cover, as is S2 = {S3, S4, S5}, with S2

being optimal in the unweighted case.

The goal of theminimal set cover problem (MSCP) is to minimize the number of subsets in the set

cover S ⊆ F. We call such a set C aminset. Note that a minset need not be unique, i.e., there may be

many possible subsets of equal minimal cardinality. Each minset represents the fewest seed files

needed to elicit the maximal set of instructions with respect to S, thus represents the maximum

data seed reduction size.

In addition to coverage, we may also consider other attributes, such as speed of execution, file

size, etc. A generalization of the set cover is to include a weight w(S) for each S ∈ F. The total cost
1 We assume code blocks, though any granularity of unit such as instruction, function, etc. also work.
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of a set cover S is:

Cost (S) =
∑
S∈S

w(S)

The goal of the weightedminimal set cover problem (WMSCP) is to find the minimal cost cover set,

i.e., arg min
S

Cost (S).

Both theMSCP andWMSCP can be augmented to take an optional argument k (forming k-SCP

and k-WSCP respectively) specifying the maximum size of the returned solution. For example, if

k = 2 then the number of subsets is restricted to at most 2 (|S| ≤ 2), and the goal is to maximize the

number of covered elements. Note the returned set may not be a complete set cover.

Both MSCP and WMSCP are well-known NP-hard problems. Recall that a common approach

to dealing with NP-hard problems in practice is to use an approximation algorithm. An approx-

imation algorithm is a polynomial-time algorithm for approximating an optimal solution. Such

an algorithm has an approximation ratio ρ(n) if, for any input of size n, the cost C of the solution

produced by the algorithm is within a factor of ρ(n) of the cost C∗ of an optimal solution. The

minimal set cover and weighted set cover problems both have a greedy polynomial-time ln |X|+ 1-

approximation algorithm [45, 90], which is a threshold below which set cover cannot be approx-

imated efficiently assuming NP does not have slightly superpolynomial time algorithms, i.e., the

greedy algorithm is essentially the best algorithm possible in terms of the approximation ratio it

guarantees [63]. Since ln |X| grows relatively slowly, we expect the greedy strategy to be relatively

close to optimal.

The optimal greedy polynomial-time approximation algorithm2 for WSCP is shown in Algo-

rithm 3.1 as follows.

Note that the unweighted minset can be solved using the same algorithm by setting ∀S : w(S) = 1.

3.3 Seed Selection Algorithms

In this section we consider: the set cover algorithm from Peach [61], a minimal set cover [2], a

minimal set cover weighted by execution time, a minimal set cover weighted by size, and a hotset

algorithm. The first two algorithms have previously been proposed in literature; the remaining are

additional design points we propose and evaluate here. We put these algorithms to the test in our
2 Other algorithms exist to compute the weighted minset (see [50, 35-3.3]).
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Algorithm 3.1: Optimal greedy polynomial-time approximation algorithm for WSCP.

Greedy-Weighted-Set-Cover (X, F)
1 U ← X

2 S← ∅
3 while U 6= ∅ do
4 S ← arg max

S∈F
|S∩U |/w(S)

5 S← S ∪ S
6 U ← U\S

end
7 return S

evaluation section to determine the one that yields the best results (see §3.5).

All algorithms take the same set of parameters: given |F| seed files, the goal is to calculate a

data reduction to k files where k � |F|. We assume we are given t seconds to perform the data

reduction, after which the selected k files will be used in a fuzzing campaign (typically of much

greater length than t). We break ties between two seed files by randomly choosing one.

• Peach Set. Peach 3.1.53 [61] has a class calledMinSet that calculates a cover set S as follows3.

Algorithm 3.2:Minset algorithm used in Peach fuzzer 3.1.53.

Peach Set (P, F)
1 S← ∅
2 i = 1

3 for S in F do
4 cov[i]←MeasureCoverage( S )
5 i = i+ 1

end
6 sort( cov ) // sort seeds by coverage
7 for i← 1 to |F| do
8 if cov[i] \ S 6= ∅ then
9 S← S ∪ cov[i]

end
end

10 return S

3 This is a high-level abstraction of the Delta and RunCoverage methods. We checked the current Peach implemen-
tation noticed that the sorting was removed (At Line 4 of the algorithm) in their MinSet implementation since Peach
3.1.95.
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Despite having the nameMinSet, Algorithm 3.2 does not calculate the minimal set cover nor

a proven competitive approximation thereof.

• Random Set. Pick k seeds at random. This approach serves as a baseline for other algorithms

to beat. Since the algorithm is randomized, Random Set can have high variance in terms of

seed quality and performance. To measure the effectiveness of Random Set, unless specified

otherwise, we take the median out of a large number of runs (100 in our experiments).

• Hot Set. Fuzz each seed for t seconds and return the top k seeds by number of unique bugs

found. The rationale behind Hot Set is similar to multi-armed bandit algorithms—a buggy

program is more likely to have more bugs. In our experiments, we fuzz each seeds for 5

minutes (t = 300) to compute the Hot Set.

• Unweighted Minset. Use an unweighted k-minset. This corresponds to standard coverage-

based approaches [2, 118], and serves as a baseline for measuring their effectiveness. To com-

pute Unweighted Minset when k is greater than the minimum required to get full coverage,

the minset is padded with files sorted based on the quality metric (coverage). We follow the

same approach for Time Minset and Size Minset.

• Time Minset. Return a k-execution timeweightedminset. This algorithm corresponds to the

observation in Chapter 5 that weighting by time in a multi-armed bandit fuzzing algorithm

tends to perform better than the unweighted version. The intuition is that seeds that are fast

to execute ultimately lead to far more fuzz runs during a campaign, and thus potentially

more bugs.

• Size Minset. Return a k-size weighted minset. Weighting by file size may change the ulti-

mate minset, e.g., many smaller files that cover a few code blocks may be preferable to one

very large file that covers many code blocks—both in terms of time to execute and bits to flip.

For example, Size Minset will always select a 1KB seed over a 100MB seed, all other things

being equal.
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s1 b3 b1 b2 · · ·

s2 b1 b3 b4 · · ·

s3 b2 b1 b2 · · ·

5 10 9

2 1 2

1 10 10

t1,1 c1,2

c3,1

Figure 3.1: An example of output from fuzzing 3 seeds. Bugs may be found across seeds (e.g., b1 is
found by all seeds. A single seed may produce the same bug multiple times, e.g., with s3. We also
show the corresponding ILP variables t (interarrival times) and c (crash ids).

3.4 Measuring Seed Selection Quality

There are a variety of seed selection strategies, e.g., to use minset or to pick k seeds at random.

How can we argue a particular seed selection strategy performs well?

One strawman answer is to run seed selection algorithm A to pick subset SA, algorithm B

to pick subset SB . We then fuzz SA and SB for an equal amount of time and declare the fuzz

campaign with the most bugs the winner. The fuzz campaign will incrementally fuzz each seed

in each set according to its own scheduling algorithm. While such an approach may find the best

seed selection for a particular fuzzing strategy, it provides no evidence that a particular subset is

inherently better than another in the limit.

The main intuition in our approach is to measure the optimal case for bugs found with a partic-

ular subset of seeds. The best case provides an upper bound on any scheduling algorithm instead

of on a particular scheduling algorithm. Note the lower bound on the number of bugs found for a

subset is trivially zero, thus all we need is an upper bound.

To calculate the optimal case, we fuzz each seed in si for t seconds, recording as we fuzz the

arrival rate of bugs. Given n seeds, the total amount of time fuzzing is n ∗ t. For example, given 3

seeds we may have a bug bi arrival time given by Figure 3.1.

Post-fuzzing, we then calculate the ex post facto optimal search strategy to maximize the num-

ber of bugs found. It may seem strange at first to calculate the optimal seed selection strategy after

all seeds have been fuzzed at first blush. However, by doing so we can measure the quality of the

seed selection strategy with respect to the optimal, thus give the desired upper bound. For exam-
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ple, if the seed selection strategy picks s1 and s2, we can calculate the maximum number of bugs

that could be found by any scheduler, and similarly for the set s2, s3 or any other set. Note we are

calculating the upper bound to scientifically justify a particular strategy. For example, our experi-

ments suggest to use Unweighted Minset for seed selection. During a practical fuzzing campaign,

one would not recompute the upper bound for the new dataset; instead, she would use the seed

selection strategy that was shown to empirically perform best in previous tests.

Recall from §2.3, a fuzz campaign returns a sequence of 4-tuples:

[(tc1, bid1, t1, c1), · · · , (tcn, bidn, tn, cn)].

Given thatwe know the ground truth, i.e., we know the return value of Fuzzwhen applied on every

singleton in F, we can model the computation of the optimal scheduling/seed selection across all

seed files in F. Note that the ground truth is necessary, since any optimal solution can be only

computed in retrospect (if we know how each seed would perform). We measure optimality of a

scheduling/seed selection by computing the maximum number of unique bugs found.

The optimal budgeted ex post facto scheduling problem is given the ground truth for a set of seeds

and a time threshold T , automatically compute the interleaving of fuzzed seeds (time slice spent

analyzing each one) to maximize the number of bugs found. The number of bugs found for a given

minset gives an upper bound on the performance of the set and can be used as a quality indicator.

Note that the same bug may be found by different seeds and may take different amounts of time to

find. Unlike our approximated algorithm described in Chapter 5, we find an optimal schedule for a

given ground truth. We observe finding an optimal scheduling algorithm is inherently an integer

programming problem. We formulate finding the exact optimal seed scheduling as an Integer

Linear Programming (ILP) problem [135]. While computing the optimal schedule is NP-hard, ILP

formulations tend to work well in practice.
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3.4.1 ILP Formulation

First, we create an indicator variable for unique bugs found during fuzzing.

bgx =

 1 The schedule includes finding unique bug x

0 Otherwise

The goal of the optimal schedule is to maximize the number of bugs. However, we do not see

bugs, we see individual crashes arriving during fuzzing. We create an indicator variable cri,j that

determines whether the optimal schedule includes the jth crash of seed i:

cri,j =

 1 The schedule includes crash j for seed i

0 otherwise

Note that multiple crashes cri,j may correspond to the same bug. Crashes are triaged to unique

bugs via a uniqueness function denoted by µ. In our experiments, we use stack hash [122], a non-

perfect but industry standard method. Thus, if the total number of unique stack hashes is U , we

say we found U unique bugs in total. The invariant is:

bgx = 1 iff ∃ i, j : µ(ci,j) = x (3.1)

Thus, if two crashes cri,j and cri′,j′ have the same hash, a schedule can get at most one unique bug

by including either or both crashes.

Finally, we include a cost for finding each bug. We associate with each crash the incremental

fuzzing cost for seed Si to find the bug:

∀i : tci,j =

 ai,1 , j = 1

ai,j − ai,j−1 , j > 1

where ai,j is the arrival time for the cri,j crash, and tci,j represents inter-arrival time—the time

interval between the occurrences of cri,j−1 and cri,j . Figure 3.1 visually illustrates the connection

between cri,j , bgx and tci,j .

We are now ready to phrase optimal scheduling with a fixed time-budget as an ILP maximiza-
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tion problem:

maximize
∑
x

bgx

subject to ∀
i,j
. cri,j+1 ≤ cri,j (3.2)

∑
i,j

cri,j · tci,j ≤ T (3.3)

∀
i,j
. cri,j ≤ bgx where µ(ci,j) = x (3.4)

∀
x
. bgx ≤

∑
i,j

cri,j where µ(ci,j) = x (3.5)

Constraint (3.2) ensures that the schedule considers the order of crashes found. In particular,

if the j-th crash of a seed is found, all the previous crashes must be found as well. Constraint (3.3)

ensures that the time to find all the crashes does not exceed our time budget T . Constraints (3.4)

and (3.5) link crashes and unique bugs. Constraints (3.4) says that if a crash is found, its corre-

sponding bug (based on stack-hash) is found, and the next equation guarantees that if a bug is

found, at least one crash triggering this bug was found.

Additionally, by imposing one extra inequality:

∑
i

cri,1 ≤ k (3.6)

we can bound the number of used seeds by k (if the first crash of a seed is not found, there is no

value in fuzzing the seed at all), thus getting k-bounded optimal budgeted scheduling, which gives

us the number of bugs found with the optimal minset of size up to k.

3.4.2 Optimal Seed Selection for Round-Robin

The formulation for optimal budgeted scheduling gives us a best solution any scheduling algo-

rithm could hope to achieve both in terms of seeds to select (minset) and interleaving between

explored seeds (scheduling). We can also model the optimal seed selection for specific scheduling

algorithms with the ILP formulation. We show below how this can be achieved for Round-Robin,
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as this may be of independent interest.

Round-Robin scheduling splits the time budget between the seeds equally. Given a time thresh-

old T andN seeds, each seedwill be fuzzed for T
N units of time. Round-Robin is a simple but effec-

tive scheduling algorithm in many adversarial scenarios as we discussed in Chapter 5. Simulating

Round-Robin for a given set of seeds is straightforward, but computing the optimal subset of seeds

of size k with Round-Robin cannot be solved with a polynomial algorithm. To obtain the optimal

minset for Round-Robin, we add the following inequality to Inequalities 3.2-3.6:

∀
i
.
∑
j

cri,j · tci,j ≤
T

k
(3.7)

The above inequality ensures that none of the seedswill be explored formore than T
k time units,

thus guaranteeing that our solution will satisfy the Round-Robin constraints. Similar extensions

can be used to obtain optimal minsets for other scheduling algorithms.

3.5 Experiments

We now evaluate the overall performance of seed selection algorithms in terms of bug discovered,

and answer several research questions regarding the algorithms. We start by describing our exper-

imental setup.

Experimental Setup. All of our experiments were run on medium and small VM instance types

on Amazon EC2 (the type of the instance used is mentioned in every experiment). All VMs were

running the same operating system, Debian Linux 7.4. The fuzzer used throughout our experi-

ments is the CERT Basic Fuzzing Framework (BFF) [86]. All seed files gathered for our fuzzing

experiments (4,912,142 files making up more than 6TB of data) were automatically crawled from

the internet using the Bing API. Specifically, file type information was extracted from the open

source Gnome Desktop application launcher data files and passed to the Bing API such that files

of each type could be downloaded, filtered, and stored onAmazon S3. Coverage datawas gathered

by instrumenting applications using the Intel PIN framework and a standard block-based coverage

collection PIN tool.
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3.5.1 Establishing Ground Truth

We first collect the ground truth data for fuzzing campaigns that account for every possible seed

selection and scheduling. We present our methodology for selecting the target applications, files

to fuzz, and parameters for computing the ground truth.

Target Applications. We selected 10 applications and 5 popular file formats: PDF, MP3, GIF, JPG

and PNG for our experiments. Our program selection contains GUI and command line applica-

tions, media viewers, players, and converters. We manually mapped each program to a file format

it accepts and formed 13 distinct (application, file formats) to be fuzzed—shown in Table 3.2. We

selected at least two distinct command lines for each file type to test transferability (§3.5.5).

Seed Files. For each file type used by the target applications, we sampled uniformly at random

100 seed files (hence selecting |F| = 100 for the seed file pool size) of the corresponding type from

our seed file database. Note that determining ground truth for a single seed requires 12 hours,

thus finding ground truth on all 4,912,142 is—for our resources—infeasible.

Fuzzing Parameters. Each of the target applications was fuzzed for 12 hours with each of the 100

randomly selected seed files of the right file type. Thus, each target application was fuzzed for

1,200 hours for a total of 650 CPU-days on an EC2 (m1.small) instance. All detected crashes were

logged with timestamps and triaged based on BFF’s stack hash algorithm.

Fuzzing results. BFF found 2,941 unique crashes, identified by their stack hash. BFF crashed 8

programs out of the 10 target applications. 2,702 of the unique crashes were found on one ap-

plication, mp3gain. Manual inspection showed that the crashes were due to a single exploitable

buffer overflow vulnerability that mangled the stack and confused BFF’s stack-based uniqueness

algorithm. When reporting our results, we therefore count the 2,702 unique crashes in mp3gain as

one. With that adjustment, BFF found 240 bugs. Developing and experimenting with more robust,

effective, and accurate triaging algorithms is an open research problem and a possible direction for

future work.

38



CHAPTER 3. PARAMETER REDUCTION

Simulation. The parameters of the experiment allow us to run simulations and reason about

all possible seed selections (among the 100 seeds of the application) and scheduling algorithms

for a horizon of 12 hours on a single CPU. Our simulator uses our ILP formulation from §3.4.1

to compute optimal seed selections and scheduling for a given time budget. Using the ground

truth, we can run simulations to evaluate the performance of hour-long fuzzing campaigns within

minutes, following a replay-based fuzzing simulation strategy similar to FuzzSim.

3.5.2 Seed Selection Algorithms vs. Random Sampling

Spending resources on a seed selection algorithm is only useful if the selected seeds outperform

random seed sampling (Random Set). In this experiment, we compare the performance of selection

algorithms as presented in §3.3 against the random sampling baseline.

All selection algorithms are deterministic, while Random Set is randomized. Thus, we cannot

show that Random Set is always better (or worse), but we can instead compute the probability

that Random Set is better (or worse). To estimate the probability, we setup the following random

experiment: we randomly sample a set of seeds—the size of the set is the same (k = 10 in our

experiment for an order of magnitude reduction) as the competing reduced set—from the seed

pool and measure the number of bugs found. The experiment has three possible outcomes: (1)

the random set finds more bugs, (2) the random set finds fewer bugs, or (3) the random and the

competitive set find the same number of bugs.

We performed 13,000 repetitions of the above experiment—1,000 for each (application, file for-

mat) tuple—and measured the frequency of each event when the optimal scheduling algorithm

is employed for both. We then repeated the same experiment while using Round-Robin as the

scheduling algorithm. We calculated the probability by dividing the frequency by the number of

samples. Figure 3.2 summarizes the results. For instance, the left-most bar is the result for Hot Set

with the optimal scheduling. You can see that Hot Set finds more bugs than a Random Set of the

same size with a probability of 32.76%, and it is worse with a probability of 18.57%. They find the

same amount of bugs with a probability of 48.66%.

The first pattern that seems to persist through scheduling and selection algorithms (based on

Figure 3.2) is that there is a substantial number of ties—Random Set seems to behave as well as

selection algorithms for the majority of the experiments. This is not surprising, since 3/13 (23%) of
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Figure 3.2: Comparing bug-finding performance of seed selection algorithms against Random Set.

MinSet Algorithm Optimal Round-Robin
Hot Set 63.58% 67.12%
Peach Set 50.64% 60.30%
Unweighted Minset 75.24% 70.24%
Size Minset 66.33% 75.78%
Time Minset 52.60% 57.62%

Table 3.1: Conditional probability of an algorithm outperforming Random Set with k=10, given
that they do not have the same performance (Pwin).

our (application, file format) combinations—(mplayer, MP3), (eog, JPG), (jpegtran, JPG)—do not

crash at all. With no crash to find, any algorithm will be as good as random. Thus, to compare an

algorithm to Random Set we focus on the cases where the two algorithms differ, i.e., we compute

the conditional probability of winning when the two algorithms are not finding the same number

of bugs.

We use Pwin to denote the conditional probability of an algorithm outperforming Random Set,

given that they do not have the same performance. For example, for Size Minset, Pwin is defined

as: P [Size Minset > Random Set | Size Minset 6= Random Set]. Table 3.1 shows the values of Pwin

for all algorithms for sets of size k = 10. We see that Unweighted Minset and Size Minset are

the algorithms that more consistently outperform Random Set with a Pwin ranging from 66.33%
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Random
Set

Hot
Set

Unweighted
Minset

Time
Minset

Size
Minset

Peach
Set

Files Programs Crashes Bugs #S #B #S #B #S #B #S #B #S #B #S #B

PDF
xpdf 706 57 10 7 10 9 32 19 32 16 40 19 54 31
mupdf 6,570 88 10 13 10 14 40 29 43 29 49 31 59 31
pdf2svg 5,720 81 10 14 10 27 36 48 39 43 45 47 53 49

MP3
ffmpeg 1 1 10 0 10 1 11 0 11 0 22 0 19 0
mplayer 0 0 10 0 10 0 10 0 12 0 14 0 23 0
mp3gain 434,400 2,702 10 92 10 9 9 150 8 74 10 74 14 175

GIF
eog 9 1 10 0 10 1 29 0 27 0 43 1 44 1
convert 72 2 10 1 10 1 13 1 14 0 24 2 22 1
gif2png 162,302 6 10 4 10 4 16 5 17 5 29 5 33 4

JPG eog 0 0 10 0 10 0 31 0 31 0 47 0 53 0
jpegtran 0 0 10 0 10 0 10 0 12 0 21 0 23 0

PNG eog 123 2 10 1 10 1 30 2 30 2 45 2 49 2
convert 2 1 10 0 10 0 11 1 12 1 17 1 16 1

Total 609,905 2,941 132 67 278 255 288 170 406 182 462 295

Table 3.2: Programs fuzzed to evaluate seed selection strategies and obtain ground truth. The
columns include the number of seed files (#S) obtained with each algorithm, and the number of
bugs found (#B) with the optimal scheduling strategy.

to 75.78%. Hot Set immediately follows in the 63-67% range, and Time Minset, Peach Set have the

worst performance. Note that Peach Set has a Pwin of 50.64% in the optimal schedule effectively

meaning that it performs very close to a random sample on our dataset.

Conclusion: seed selection algorithms help. With the exception of the Peach Set and Time Min-

set algorithms which perform very close to Random Set, our data shows that heuristics employed

by seed selection algorithms perform better than fully random sampling. However, the bug dif-

ference is not sufficient to show that any of the selection algorithms is strictly better with statistical

significance. Fuzzing for longer and/or obtaining the ground truth for a larger seed pool are pos-

sible future directions for showing that seed selection algorithms are strictly better than choosing

at random.

3.5.3 Comparison

Table 3.2 shows the full breakdown of the reduced sets computed by each algorithm with the

optimal scheduling algorithm. Columns 1 and 2 show the file type and programwe are analyzing,

while columns 3 and 4 show the total number of crashes and unique bugs (identified by stack hash)

found during the ground truth experiment. The next six columns show twomain statistics (in sub-
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columns) for each of the seed selection algorithms: 1) the size of the set k (#S), and 2) the number

of bugs (#B) identified with optimal scheduling. All set cover algorithms (Peach Set, Unweighted

Minset, Time Minset, Size Minset) were allowed to compute a full-cover, i.e., select as many files as

required to cover all blocks. The other two algorithms (Random Set and Hot Set) were restricted

to sets of size k = 10.

BugDistribution and Exploitability. The fuzzing campaign found bugs in 10/13 configurations

of 〈program,file type〉, as shown in table 3.2. In 9/10 configurations we found less than 100 bugs,

with one exception: mp3gain. We investigated the outlier further, and discovered that our fuzzing

campaign identified an exploitable stack overflow vulnerability—the mangled stack trace can cre-

ate duplicates in the stack hash algorithm. We verified the bug is exploitable and notified the

developers, who promptly fixed the issue.

Reduced Set Size. Table 3.2 reflects the ability of the set cover algorithms to reduce the original

dataset of 100 files. As expected, Unweighted Minset is the best in terms of reduction ability, with

278 files for obtaining full cover. Time Minset requires slightly more files (288). Size Minset and

Peach Set require almost twice as many files to obtain full cover (406 and 462 respectively).

Bug Finding. The Peach Set algorithm finds the highest number of bugs (295), followed by Un-

weighted Minset (255), Size Minset (182) and Time Minset (170). Hot Set and Random Set find

substantially fewer bugs when restricted to subsets of size up to 10. We emphasize again that bug

counts are measured under optimal scheduling and thus size of the reduced set is analogous to the

performance of the selection algorithm (the highest number of bugs will be found when all seeds

are selected). Thus, to compare sets of seeds in terms of bug-finding ability we need a head to head

comparison where sets have the same size k.

Figure 3.3 shows all selection algorithms and how they perform in terms of average number

of bugs found as a function of the parameter k—the size of the seed file set. The “×” symbols

represent the size after which each algorithm achieves a full cover (after that point extra files are

added sorted by the metric of the selection algorithm, e,g„ by coverage in Unweighted Minset).

As witnessed in the comparison against Random Set, Unweighted Minset consistently performs

better than other seed selection algorithms. Time Minset and Peach Set also eventually converge
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Figure 3.3: Number of bugs found by different seed selection algorithms
with optimal scheduling.
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Figure 3.4: Number of bugs found by different seed selection algorithms
with Round-Robin.
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to the performance of Unweighted Minset under optimal scheduling, closely followed by random.

Hot Set performs the worst, showing that spending time exploring all seeds can be wasteful. We

also note, that after obtaining full cover (at 20 seed files), Unweighted Minset’s performance does

not improve at the same rate—showing that adding new files that do not increase code coverage is

not beneficial (even with optimal scheduling).

We performed an additional simulation, where all reduced sets were run with Round-Robin

as the scheduling algorithm. Figure 3.4 shows the performance of each algorithm as a function

of the parameter k. Again, we notice that that Unweighted Minset is outperforming the other

algorithms. More interestingly, we also note that Unweighted Minset’s performance actually drops

after obtaining full cover. This shows that minimizing the number of seeds is important; adding

more seeds in Round-Robin seems to hurt performance for all algorithms.

Conclusion: Unweighted Minset performed best. Unweighted Minset outperformed all other

algorithms in our experiments, both for optimal and Round-Robin scheduling. This experiment

confirms conventional wisdom that suggests collecting seeds with good coverage for successful

fuzzing. More importantly, it also shows that computing a minimal cover with an approximation

with a proven competitiveness ratio (Unweighted Minset) is better than using an algorithm with

no guaranteed competitive ratio (Peach Set).

3.5.4 Seed Reduction Usefulness

We now test the premise of using a reduced data set. Will a reduced set of seeds find more bugs

than the full set? We simulated a fuzzing campaign with the full set, and with different reduced

sets. We compare the number of bugs found by each technique.

Using the optimal scheduling, the full set will always find more, or the same amount of bugs,

than any subsets of seeds. Indeed, the potential schedules of the full set is a superset of the potential

schedules of any reduced set. Therefore, the full set will always better than or equal to any reduced

set. To be more realistic, we use a Round-Robin schedule to test the premise.

The “×” symbols on Figure 3.4 shows the unpadded size of the different selection algorithms.

For those sizes, Unweighted Minset found 4 bugs on average, and the other minset algorithms

found between 2.5 and 3 bugs. Fuzzing with the full set uncovered only 1 unique bug on average.
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File Application Full Set
Unweighted
Minset (k=10)

PDF
xpdf 53% 70%
mupdf 83% 90%
pdf2svg 71% 80%

MP3
ffmpeg 1% 0%
mplayer 0% 0%
mp3gain 95% 100%

GIF
eog 8% 0%
convert 12% 10%
gif2png 97% 100%

JPG eog 0% 0%
jpegtran 0% 0%

PNG eog 22% 30%
convert 2% 10%

Table 3.3: Probability that a seed will produce a bug in 12 hours of fuzzing.

We also measure the quality of seeds by looking at the average seed quality contained in that

set. Our hypothesis is that a reduced set increases the average seed quality compared to the full

set. To measure quality, we computed the probability of a seed producing a bug after fuzzing it for

12 hours, when the seed is picked from the full set or the Unweighted Minset. Table 3.3 lists the

results of this experiment. The Unweighted Minset had a higher seed quality than the full set in 7

cases, while the opposite was true in 3 cases. They were tied on the 3 remaining cases.

Conclusion: Fuzzing with a reduced sets is more efficient in practice. The Unweighted Minset

outperformed the full set in our two experiments. Our data demonstrates that using seed selection

techniques is beneficial to fuzzing campaigns.

3.5.5 Seed Transferability

We showed that seed selection algorithms improve fuzzing in terms of bug-finding performance.

However, performing the data reduction may be computationally expensive; for instance, all set

cover algorithms require collecting coverage information for all the seeds. Is it more profitable to

invest time computing the minset to fuzz an efficient reduced set, or to simply fuzz the full set of

seeds for the full time budget? In otherwords, is the seed selectionworth the effort to be performed

online?
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We answer that question by presenting parts of our dataset. For example, our JPG bucket con-

tains 530,727 distinct files crawled from the web. Our PIN tool requires 55 seconds (on average

based on the 10 applications listed in Table 3.2) to compute code coverage for a single seed. Col-

lecting coverage statistics for all our JPG files would take 368 CPU-days. For fuzzing campaigns

shorter than a year, there would not be enough time to compute code coverage, let alone finding

more bugs than the full set.

The result above indicates that, while seed selection techniques help improve the performance

of fuzzing, their benefits may not outweigh the costs. It is impractical to spend a CPU year of com-

putation to perform a separate seed selection for every new application that needs fuzzing.

However, recomputing the reduced set for every applicationmay not be necessary if we can reuse

a reduced set for every file type. Our intuition is a reduced set that is of high-quality for application

A should also be high-quality for application B—assuming they accept the same file type. Thus,

precomputing reduced sets for popular file types once, would allow us to instantly select a high-

quality set of seed files to start fuzzing. To test transferability of reduced sets, we measure seed

quality by computing code coverage achieved by a minset across programs.

Do Reduced Sets Transfer Coverage? Using the seed files from our ground truth experiment

(§3.5.1) we measured the cumulative code coverage achieved in each configuration (program and

file format) with reduced Unweighted Minsets computed on all other configurations (for a total

of 13 × 13 × 100 coverage measurements). All measurements were performed on a c1.medium

instance on amazon.

Figure 3.5 is a heat map summarizing our results. The configurations on the bottom (x-axis)

represent all computed Unweighted Minsets, while the configurations on the left (y-axis) repre-

sent the configurations tested. Darker colors indicate that the selected Unweighted Minset obtains

higher coverage. For example, if we select the pdf.mupdf minset from the x-axis, we can see how

it performs on all the other configurations on the y-axis. For instance, we notice that pdf.mupdf

minset performs noticeably better on 5 configurations: pdf.mupdf (expected since this is the con-

figuration on which we computed the minset), pdf.xpdf and pdf.pdf2svg (expected since these

applications also accept pdfs), and interestingly png.convert and gif.convert. Initially we were

surprised that a PDF minset would perform so well on convert; it turns out that this result is not
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jpg.eog

jpg.jpegtran
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Figure 3.5: Transferability of Unweighted Minset coverage across configurations. The base config-
urations, on which the reduced sets were computed, are on the bottom; the tested configurations
are on the left. Darker colors indicate higher coverage.

surprising since convert can also process PDF files. Similar patterns can be similarly explained—

for example, GIF minsets are performing better than MP3 minsets for mplayer, simply because

mplayer can render GIF images.

The heat map allows us to see two clear patterns:

1. High coverage indicates the application accepts a file type. For instance, by following the

row of the gif.eog configuration we can immediately see that eog accepts GIF, JPG, and

PNG files, while it does not process MP3s or PDFs.

2. Coverage transfers across applications that process the samefile type. For example, we clearly

see the PDF cluster forming across all PDF configurations, despite differences in implemen-

tations. While xpdf and pdf2svg both use the poppler library for processing PDFs, mupdf has

a completely independent implementation. Nevertheless, mupdf’s minset performs well on

xpdf and vice versa. Our data shows that similar clusters appear throughout configurations

of the same file type, suggesting that we can reuse minsets across applications that accept the

same file type.
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Conclusion: Reduced sets are transferable. Our data suggests that reduced sets can be trans-

ferred to programs parsing the same file types with respect to code coverage. Therefore, it is nec-

essary to compute only one reduced set per file type.

3.6 Discussion

The proposed seed reduction algorithms were designed based on the fact that seeds with higher

code coverage will find more number of bugs since we can test diverse parts of the code. What if

an attacker tries to find bugs that can be obtained from seeds that cover fewer lines of code instead?

Can an attacker take advantage by knowing the fact the defenders are using our seed reduction

technique?

We believe that one can find a distinct set of bugs than the bugs that our technique would find

by selecting seeds that cover the fewest lines of code. However, this cannot be a significant threat

in practice, because the selected seeds will essentially cover a small portion of the code, and thus,

one can only find bugs in the exercised code region.

3.7 Summary

In this chapter we designed and evaluated six seed selection techniques based on the observations

on several bug characteristics. In addition, we formulated the optimal ex post facto seed selection

scheduling problem as an integer linear programming problem to measure the quality of seed

selection algorithms. We performed over 650 days worth of fuzzing to determine ground truth

values and evaluated each algorithm. We found 240 new bugs. Our results suggest how best to

use seed selection algorithms to maximize the number of bugs found.
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Chapter 4

Parameter Inference

If you realize that all things change, there is nothing you

will try to hold on to. If you are not afraid of dying, there

is nothing you cannot achieve.
—Lao Tzu

Some fuzzing parameters such as mutation ratio can have arbitrary many values. Parameter

reduction techniques introduced in Chapter 3 requires complete evaluation of all potential pa-

rameters, i.e., we need to execute the SUT once for each parameter value. Furthermore, there are

millions of different executions to consider for a single mutation ratio. A natural question follows:

can we directly infer a good parameter value without evaluating all candidates?

Current mutational fuzzers either manually select a single mutation ratio, or use random ra-

tios from a range. Thus, the fundamental challenge is that they all involve either manual or non-

adaptive parameter selection. First, an analyst has to choose the fuzzing parameters based on their

expertise. For example, zzuf [98] runs with either a single or a range of mutation ratios, but the

analyst must specify those parameters. Second, if not manual, the parameters are derived non-

adaptively regardless of the program under test. BFF [86], for instance, splits a set of all possible

nonzero mutation ratios into a predefined set of intervals, and performs scheduling (FCS) over the

intervals. zzuf uses a predefined mutation ratio if a user does not specify a value. AFL (Ameri-

can Fuzzy Lop) [156] also employs several bit-flipping mutation strategies that only mutate a fixed

number of bits, e.g., flip only a single random bit, regardless of the program under test.

In this chapter, we introduce our system, SymFuzz that automatically infers a good mutation
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ratio—a parameter used to confine the Hamming distance from the seed to generated test cases for

MBF—from a single program execution.

4.1 Exploiting Characteristics of Fuzzing Outcome

We observed that one can produce multiple crashing inputs by mutating a single seed, and if the

crashing inputs are due to the same bug, they present similar patterns in their mutated bit po-

sitions. We use this characteristic to recognize a good mutation ratio for fuzzing. The primary

intuition of our work is that a desirable mutation ratio that maximizes the fuzzing efficiency can

be deduced from the dependence relations between the input bits of a seed for a program.

Suppose we are given a program and a 96-bit seed that consists of a 32-bit magic number fol-

lowed by two consecutive 32-bit integer fields. We also assume that themagic number is 4242424216

and two integer values are zero. The program crashes when an input value satisfies the following

two conditions: (1) the magic number remains 4242424216; and (2) the third field is negative in-

teger. To trigger the crash, one needs to flip the most significant bit in the third field, but never

touch the bits in the first field of the seed. The value of the second field does not affect the crash.

In this case, there exists a dependence relation between the first and the third field: the third field

depends on the first field. That is, even though we have a negative value for the third field, we will

never be able to trigger the crash if we flip any of the bits in the first field. In this chapter, we show

that the dependence between the input bits indeed decides the best mutation ratio for this crash,

which is about 0.031.

4.2 Input-Bit Dependence

We define dependence between input bits using control dependence [9]. Informally, when a node

u in a Control-Flow Graph (CFG) decides if another node v is executed or not, then we say v is

control-dependent on u. We extend the notion of control dependence to define the relationship

between input bits as follows.

Definition 6 (Input-Bit Dependence). Given an execution σp(s), consider two bit positions x and y

of s. We say that the bit sx is dependent on sy, denoted by sx
dep(p)−−−−→ sy, if either of the following
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{1,2,3,4}

. . .

. . .
(a) Bits 1, 2, 3, 4 are dependent each other.

{1}

{2}

. . .
(b) Bit 2 is dependent on bit 1.

{1}

{2}

. . .
(c) Bits 1 and 2 are independent.

Figure 4.1: Input-bit dependence. Each gray box represents a conditional branch that is controlled
by a set of input bit positions.

conditions holds: (1) there is a conditional branch that reads both sx and sy; (2) there are two

conditional branches c1 and c2 that read sx and sy respectively, and c1 is control-dependent on c2.

Figure 4.1 demonstrates input-bit dependence for three different cases. Figure 4.1a and Fig-

ure 4.1b show examples that satisfy the first and the second condition of input-bit dependence re-

spectively. In Figure 4.1a, every bit involved in the same condition is dependent on each other due

to the first condition of Definition 6: s1
dep(p)−−−−→ s1, s1

dep(p)−−−−→ s2, s1
dep(p)−−−−→ s3, s1

dep(p)−−−−→ s4, s2
dep(p)−−−−→

s1, · · · , s4
dep(p)−−−−→ s3, s4

dep(p)−−−−→ s4. In Figure 4.1b, s2
dep(p)−−−−→ s1. Finally, Figure 4.1c presents a case

where two input bits are not dependent on each other.

As an example, let us consider the following C program.

char x = input [ 0 ] ; char y = input [ 1 ] ;

i f ( x > 42 ) {

i f ( y > 42 ) {

. . . /∗ om i t t e d ∗ /

Given a program execution that exercises Line 4, the second byte (bits 9 to 16) of the input is de-

pendent on the first byte (bits 1 to 8), all the bits in the first byte are dependent upon each other,

and all the bits in the second byte are dependent upon each other.

Based on the definition of the input-bit dependence, we can compute the set of dependency

bits for each bit in a seed; we use the term “dependency” in the same vein to the term “library

dependencies”. We call such a set as a dependency bitset, and denote it with a function ↑. The

upward arrow is intended to reflect the direction of the dependence relation in a CFG. For instance,
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↑ps({3, 4}) is the set of bits that are depended on either by s3 or by s4 in the execution σp(s).

Definition 7 (Dependency Bitset). Given a set of bit positions X of a seed s for a program p, the

dependency bitset of X is defined as

↑ps(X) =

{
y

∣∣∣∣ x ∈ X, sx dep(p)−−−−→ sy

}
.

Intuitively, we have defined input-bit dependence to reveal the approximate syntactic structure

of an input. Most input structures consist of a series of input fields. For instance, a PNG file has a

series of data chunks each of which consists of four input fields. Intuitively, every bit in an input

field should depend on each other, because all the bits together decide the control-flow of the

program. Indeed, a notion similar to input-bit dependence has been used in recovering the format

of an input from a given program execution [102]. More precisely, bits in a dependency bitset can

be a superset of a bits in an input field: input-bit dependence can involve multiple input fields. In

this chapter, we use the input-bit dependence to infer the optimal mutation ratio for surface-based

mutational fuzzing (§4.4.3).

4.3 Failure Rate based on Mutation Ratio

Recall from §2.6, we defined the failure rate of surface-based mutational fuzzing. In this chapter,

we are interested in finding a mutation ratio r that maximizes the failure rate of surface-based

mutational fuzzing. Therefore, we need to represent the failure rate in terms of r. To do so, we

first categorize bit positions in a seed into several kinds, and approximate the failure rate in terms

of mutation ratio and input-bit dependence. In the rest of the chapter we are going to use the term

mutational fuzzing to mean surface-based mutational fuzzing for simplicity. See §4.8 for more

discussion about the type of mutational fuzzing algorithms.

Given a program p and a seed s, suppose the program crashes when it is executed on amutated

s, i.e., there is an input among the K-neighbors of s that triggers the crash. Specifically, there is a

set of bits in s that, when flipped, generates a buggy input for p. We call such a set a buggy bitset of

s. There can be multiple buggy bitsets for a single bug.
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Definition 8 (Buggy Bitset). Given a program p and an N -bit seed s, a buggy bitset is a set of bit

positions B ⊆ {1, 2, . . . , N}where Triage(π, σp(µ(s,B))) 6= ⊥.

Some of the bits in a buggy bitset may not need to be flipped to generate an input that triggers

the bug. Among all subsets of a buggy bitset, there exists a combination of bits with a minimum

cardinality while still producing a buggy input for the same bug. We call such a subset a mini-

mum buggy bitset.1 Notice that there may be multiple minimum buggy bitsets with the same size.

Suppose there is an 8-bit seed, and flipping both the first and second bits of the seed leads a pro-

gram p to crash. The buggy bitset is therefore {1, 2}, and Triage(π, σp(µ(s, {1, 2}))) 6= ⊥. Now,

suppose flipping only the second bit of the seed produces a buggy input that leads to the same

crash, i.e., Triage(π, σp(µ(s, {1, 2}))) = Triage(π, σp(µ(s, {2}))). Since we assume that a seed does

not produce a program crash by itself, a minimum buggy bitset is {2}.

Definition 9 (Minimum Buggy Bitset). Given a buggy bitset B for a program p and a seed s, a

minimum buggy bitset B′ of B is an element of the set

arg min
{B∗⊆B|Triage(π,σp(µ(s,B∗)))=Triage(π,σp(µ(s,B)))}

|B∗| .

A minimum buggy bitset B′ includes a set of bits that must be flipped to generate a buggy

input. Any bit position other than B′, i.e., any element of {1, 2, . . . , N} \ B′, either (1) does not

affect the crash regardless of its values; or (2) thwarts the crash when it is flipped. We let a set of

bits that must not be flipped for triggering the crash as fixed bitset, and denote it with F . F (B′) is a

set of bits that must not be flipped to trigger the corresponding crash of B′.

We now compute a failure rate for each minimum buggy bitset. For simplicity, let b be the

cardinality of a minimum buggy bitset (b = |B′|), and let f be the cardinality of the F (B′) (f =

|F (B′)|). We also let r be the mutation ratio. The failure rate of mutational fuzzing forB′ follows a

multivariate hypergeometric distribution [24], where the population size is N and the number of

1 Deriving a minimum buggy bitset is often called bug minimization [85].
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draws is (N × r). Therefore, the failure rate of a minimum buggy bitset that has b elements is:

θb =

(
b
b

)(
N−f
N ·r−b

)(
N
N ·r
) =

(
N−f
N ·r−b

)(
N
N ·r
) , when N · r ≥ b (4.1)

This formula can be explained as follows. Given anN -bit seed, the total number of possible inputs

that mutational fuzzing can generate is
(
N
N ·r
)
. To generate a buggy input from a seed, we need to

flip all the bits in the minimum buggy bitset (this is the
(
b
b

)
term), while not flipping the bits in the

dependency bitset of B′ (this is the
(
N−f
N ·r−b

)
term). Since

(
b
b

)
= 1, the term can be eliminated.

To find a fixed bitset, a set of bits that must not be flipped for triggering the crash, we overap-

proximate a set of bits that changes the program execution with respect to the bits in B′, which is

a dependency bitset of B′ by definition. If any of the bits in ↑ps(B′) are flipped, it will change the

execution of the program. Since all the bits in B′ must be flipped, the other bits in (↑ps(B′) \ B′)

must not be flipped to maintain the same execution path for the crash.2

The above argument can be intuitively explained by an example. A bug is typically triggered

when one or more input fields have specific values, e.g., one needs to set an integer field to be

greater than the size of a program buffer to trigger a buffer overflow. However, even though the

integer field has a value greater than the buffer size, the program might take an execution path

that does not even read the values. This happens when the program checks the value of another

input field x before it reaches the buffer overflow, and jumps to another execution path. Therefore,

the integer input field is dependent on x. This is the key intuition of approximating the failure rate

of mutational fuzzing in terms of the input-bit dependence.

Using the idea of the input-bit dependence, we can approximate the failure rate of a minimum

buggy bitset from Equation 4.1 by replacing f with the cardinality of the dependency bitset of B′.

For simplicity, we use d to denote the cardinality (d = |↑ps(B′)|). Then, the failure rate of aminimum

buggy bitset that has b elements is:

θb =

(
N−f
N ·r−b

)(
N
N ·r
) ≈ ( N−dN ·r−b

)(
N
N ·r
) , when N · r ≥ b (4.2)

The failure rate is only meaningful when the number of flipped bits is not less than the size

2 The dependency bitset ofB′ is an over-approximation of the immutable bit positions for the crash, because flipping
some bits in (↑ps(B′) \B′) may still trigger the same crash.
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of B′, i.e., N · r ≥ b. When N · r < b, we simply cannot flip every bit in B′. By the definition of

the minimum buggy bitset (Definition 9), one needs to flip all the bits in B′ in order to generate a

buggy input. Therefore, the failure rate is effectively 0 in this case.

4.4 Mutation Ratio Optimization

In this section we introduce a systematic way, calledmutation ratio optimization, of deciding a set of

mutation ratios for a given program and a seed using the formal definitions addressed in §4.2 and

§4.3. Our technique automatically adapts to a given program-seed pair, and it enables efficient bug

finding for mutational fuzzing.

4.4.1 Mutation Ratio Optimization Challenge

We first address mutation ratio optimization challenge as follows.

Definition 10 (Mutation Ratio Optimization Challenge). Given a program p and an N -bit seed s,

consider a crash that is identified by a minimum buggy bitset B′, and let b = |B′|. The mutation

ratio optimization challenge is to derive a mutation ratio r that maximizes the failure rate θb of p.

Notice the cardinality of a minimum buggy bitset (b) is not known unless we have found the

corresponding bug. Moreover, we may have multiple optimal mutation ratios for different values

of b. Therefore, several questions remain: How do we solve the mutation ratio optimization chal-

lenge? How dowe compute the cardinality of the dependency bitsets (d) for a given program-seed

pair? We address these questions in the following sections.

4.4.2 Solving for an Optimal Mutation Ratio

Recall in §4.3 we described the failure rate θb of mutational fuzzing with respect to three variables:

the bit size of a seed (N ), the cardinality of a minimum buggy bitset (b), and the cardinality of a

dependency bitset of the minimum buggy bitset (d). One of the primary challenges is to find a

mutation ratio 0 < r ≤ 1 that maximizes θb. When d = b, i.e., B′ = ↑ps(B′), it is trivial to show that

the maximum failure rate is achieved with r = 1: we simply let d = b and r = 1 from Equation 4.2,

and then the failure rate θb becomes always 1 regardless of the value of b. When d = N , there is no
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bit position to flip other than the ones in ↑ps(B′), and, as a result, the only way to trigger the crash

is to flip exactly b bit positions. That is, the optimal mutation ratio is b/N . When b < d < N , we

solve the mutation ratio optimization problem by modeling it as a classic nonlinear programming

problem (NLP) [23] as follows.

For N, b, and d, find r to

maximize θb =

(
N−d
N ·r−b

)(
N
N ·r
)

subject to (0 < r ≤ 1)

∧ (b < d < N)

∧ (b ≤ N · r ≤ N − d+ b).

The first constraint of the NLP is from the definition of mutation ratio: mutation ratio must be

between zero and one. The second constraint (b < d < N ) is to restrict the range of the d value.

When d = b, the optimal mutation ratio is 1, and when d = N , the optimal mutation ratio becomes

b/N as we discussed above. The third constraint (b ≤ N · r ≤ N − d) is due to our problem

definition: (1) we should flip more than the cardinality of a minimum buggy bitset in order to

generate an input that trigger the bug (b ≤ N · r); (2) we should not flip any bits in (↑ps(B′) \ B′),

hence the maximum number of bit flips is (N − d+ b).

We now solve the above NLP to obtain an optimal mutation ratio for a given minimum buggy

bitset. The solution to it is the optimal mutation r with respect to b, d and N . See Appendix A.1

for a complete proof.

Theorem 2 (Optimal Mutation Ratio). Given a minimum buggy bitset B′ and the corresponding ↑ps(B′)

for a program p and a seed s, let b = |B′| and d = |↑ps(B′)|. The optimal mutation ratio r for finding the

bug Triage(π, σp(µ(s,B′))) is

r =
b× (N + 1)

d×N
when N · r > b. (4.3)

We find an optimal mutation ratio r that maximizes the failure rate as follows when b < d < N .

First, when b = N · r, we compute a failure rate θ1 by letting r = b/N from Equation (4.2). Next, we
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obtain another mutation ratio r2 for the case of b < N · r using Equation (4.3). We then compute

a failure rate θ2 for r2 from Equation (4.2). Finally, we compare the two failure rates and return an

optimal mutation ratio as follows: if θ1 is greater than θ2 then the optimal ratio is b/N ; otherwise

it is r2. We note, when computing r2, N is given from the seed, but b and d are unknown. We

know neither buggy bitsets nor minimum buggy bitsets prior to fuzzing the program under test:

our goal is to pre-compute the optimal mutation ratio before fuzzing. That is, we cannot know the

corresponding minimum buggy bitset before hitting a bug. This problem suggests that we must

find a way to estimate the value of b and dwithout the prior knowledge about the buggy bitsets.

4.4.3 Estimating r

Suppose there exist M unique crashes that can be produced by mutating an N -bit seed s for a

program p. Since each crash can have its own distinct minimum buggy bitsets, the value of b and

d may differ depending on the crash, and thus, each crash may have different optimal mutation

ratios. Ideally, one may find a set of distinct mutation ratios for allM crashes, but knowing exact

b and d for every unique crash is infeasible in practice.

To estimate effective mutation ratios in finding allM crashes, we use the averaged values of b

and d. Although buggy bitsets are unknown in advance, we can still compute dependency bitsets

of every bit in the seed: we can obtain all possible d values from the given program-seed pair,

which will expose the trend of the input-bit dependence of the seed. We then use this information

to estimate d. LetP(S) be the powerset of S. We then denote d̄all as the average cardinality of every

possible dependency bitsets for the program-seed pair:

d̄all =

∑
x∈P({1,2,...,N}) |↑

p
s(x)|

2N
.

Recall from §4.2, the input-bit dependence indicates the overall input structure for a given

program-seed pair: it reveals which chunk of the input bits together affects the control flow of

the program. Therefore, the average input-bit dependence d̄all is an approximate indicator that

shows how many bits are dependent on each other for a given program-seed pair. When d̄all is

high, that means many input bits in the seed are dependent on each other, and thus, there are

likely to be more input bits that should not be mutated to trigger the crashes. That is, a larger d̄all
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corresponds to a smaller r and vice versa. This relationship between d̄all and r is evident from the

above NLP formulation. The optimal mutation ratio ranges from b/N (when d = N ) to 1.0 (when

d = b), and as we have smaller d, i.e., less dependence between input bits, we have a higher optimal

mutation ratio.

Although d̄all shows the trend of input-bit dependence, there are two remaining problems in

using it. First, just averaging the cardinality of all possible dependency bitsets is not necessarily the

bestway to represent the trend, because the cardinality ofminimumbuggy bitsets (b)may be biased

towards several values. Second, the number of dependency bitsets to consider is exponential inN ,

and N is typically not small.

To mitigate both challenges, we incorporate the distribution of b (β) into the average input-

bit dependence by using adaptive sampling [143], which also helps in computing an approximate

average efficiently. The algorithm is shown in Algorithm 4.1. First, we select a random cardinality b

with the probability associated with each cardinality in β (Line 4, WeightedRand). Next, we sample

a set of random bit positions S of cardinality b (Line 5, RandomK). RandomK takes in N and b, and

returns b distinct random numbers from the interval [1, N ]. We then compute |↑ps(S)|, and use the

cardinality to compute a new cardinality sum. Then, we check the difference between the previous

and the new mean values to see if it is smaller than a threshold ε (Line 8). We repeat the process

until the difference is negligible (we use ε = 10−7 in our experiment). After breaking out of the

while loop, the algorithm returns the final average input-bit dependence denoted as d̄.

Since d̄ relies on the distribution of b (β), it is important to note how the distribution looks like.

We obtained a large scale fuzzing dataset from a previous work, and computed the cardinality of

minimum buggy bitsets for each unique crash found in [131]. The average b value was 9 and the

standard deviation was 18. This result conforms to the observations from practitioners [85]. See

§4.7.3 for further discussion on how we obtained b values from the dataset.

Now thatwe have a distribution of b values from a large-scale experiment, we need to estimate r

using the averaged d value (d̄). Since d̄ is the average cardinality of dependency bitsets per each bit

in minimum buggy bitsets, we can estimate the cardinality of a dependency bitset for a minimum

buggy bitset of cardinality b using b× d̄. By letting d = d̄× b, we can simplify the Equation 4.3 as
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Algorithm 4.1: Computing d̄ using adaptive sampling.
input : A distribution of b values (β)
output: d̄
prevN← 0
prevSum← 0
while true do

b← WeightedRand(N , β)
S ← RandomK(N , b)
newN← prevN + b
newSum← prevSum + |↑ps(S)|
if prevN 6= 0 ∧ |newSum/newN− prevSum/prevN| < ε then break
else prevN← newN; prevSum← newSum

end
return prevSum/prevN /* Returns d̄ */

follows.

r =
b× (N + 1)

b× d̄×N
=

1

d̄
· N + 1

N
. (4.4)

The value of b is now included in d̄, and we only need to consider the value of d̄ to estimate the

optimal mutation ratio r. Given the distribution of b in crashes, d̄ provides a way to estimate the

cardinality of dependency bitsets for the crashes, which, in turn, helps in estimating r.

4.5 Input-Bit Dependence Inference

At a high level, Input-Bit Dependence Inference (IBDI) is a process of computing the input-bit

dependences for every bit in a seed from a program execution. We then use these dependence

relations to compute d̄ as in Algorithm 4.1. From the perspective of program analysis, IBDI is a

symbolic analysis that is more specific than the traditional taint analysis [46, 124, 155], and more

abstract than the traditional symbolic execution [26, 88, 94]. Our approach is inspired by several

automatic input format recovery approaches including [31, 49, 54, 102], where they share a common

theme as us: they use a program execution to reveal the structure of an input. However, our focus

is on figuring out the input-bit dependence rather than precise input formats.
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p ::= stmt∗

exp ::= get_input(src) | load(exp) | var
| exp ♦b exp | ♦u exp | v

stmt ::= var:= exp
| goto exp
| if exp then goto exp1 else goto exp2

| call exp
| ret exp
| store(exp,exp)

v ::= 〈unsigned integer, a set of affecting bits〉
♦b ::= binary operators
♦u ::= unary operators

Table 4.1: A simple language for IBDI.

Context Meaning
Σ a list of program statements
µc mapping from an address to concrete value
∆c mapping from a variable to concrete value
µa mapping from an address to abstract value
∆a mapping from a variable to abstract value
Γ current dependence predicate
c current input-dependence stack
l current delay queue
pc current program counter
i current statement

Table 4.2: The execution context of our analysis.

4.5.1 The Algorithm

Input-Bit Dependence Inference (IBDI) takes as input a program and a seed, and outputs the input-

bit dependence for every bit of the seed. Similar to dynamic symbolic execution [34, 71], IBDI runs

the program under test both concretely and symbolically. The key difference between IBDI and

dynamic symbolic execution is that IBDI operates on a set of dependent bits instead of generating

bit-vector-level path formulas, hence it does not rely on SMT solvers [55]. As in dynamic symbolic

execution, IBDI introduces symbolic values whenever reading from a user input, e.g., read system

call. It then symbolically evaluates program statements on a programexecution. It also constructs a

CFGwhile symbolically executing the program in order to compute control dependences between

variables and the corresponding input bits.

We describe our IBDI algorithm using the formal runtime semantics over a simple language
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shown in Table 4.1. In our language, a program is a sequence of statements. There are four different

jump statements including goto, if-else, call, and ret. The first two are regular jump statements:

goto is an unconditional jump statement, and if-else is a conditional jump statement. The last

two kinds, call and ret, are special jump instructions that represent calls and returns respectively.

Notice, however, we do not allow call/ret instructions to implicitly manipulate call-stacks in our

language. For example, call instruction in x86 will be jitted into into stackmanipulation statements

followed by a call statement.

Since we execute a program both concretely and symbolically, expressions in our language

evaluate to a value v, which is a tuple of a concrete value and an abstract value. A concrete value

is an unsigned integer, and an abstract value is a set of input bits that affects either directly or

indirectly the value, which is often called data lineage [102, 103]. We denote data lineage of a

variable as a set of bit positions. For example, if a variable x evaluates to 〈1, {2, 3, 4}〉, it means the

variable x has a concrete value of 1, and is also affected by the three other input bits.

We use♦b to denote binary operators such as addition, subtraction, etc. Similarly, ♦u represents

unary operators such asminus. Whenwe evaluate♦b over abstract values (data lineages), we apply

set union between them. For example, whenwe evaluate a subtraction between {1} and {1, 2, 3, 4},

we obtain {1, 2, 3, 4}. For ♦u, we simply propagate abstract values from a source to a destination.

The execution context of our analysis consists of ten fields as shown in Table 4.2. We store

abstract and concrete values for variables in ∆a and ∆c respectively in a map.3 Similarly, we store

abstract and concrete values of memory addresses in µa and µc respectively in a map. To access

maps, we use a bracket notation. For example, ∆a[x] returns the current abstract value of x, and

∆c[x ← 1] returns a new map, which is equivalent to the previous map except that the value

of x is 1. We use ⇓ to represent evaluation of an expression under a given context. For example,

µc,∆c, µa,∆a ` e ⇓ v is an evaluation of an expression e to a value v in the context given as 4-tuples

(µc,∆c, µa,∆a).

We encode the input-bit dependence for every bit in an input using a data structure that we call

dependence predicate (Γ). The dependence predicate is essentially a map from a bit of an input to a

set of bit positions that the bit is dependent on. As we execute the program under test, we update

Γ using a merge function. For example, suppose Γ has a mapping from the first bit to {3, 4}. Then,
3 Variables at the machine-code level are really registers.
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vc = a concrete value from src va = {set of input bit positions}
µc,∆c, µa,∆a ` get_input(src) ⇓ 〈vc, va〉

Input

µc,∆c, µa,∆a ` var ⇓ 〈∆c[var],∆a[var]〉 Var

µc,∆c, µa,∆a ` e ⇓ 〈vc, va〉 v′c = µc[vc] v′a = µa[vc]♦bva

µc,∆c, µa,∆a ` load e ⇓ 〈v′c, v′a〉
Load

µc,∆c, µa,∆a ` e ⇓ 〈vc, va〉 v′c = ♦uvc

µc,∆c, µa,∆a ` ♦ue ⇓ 〈v′c, va〉
Unary-Op

µc,∆c, µa,∆a ` e1 ⇓ 〈vc1, va1〉 µc,∆c, µa,∆a ` e2 ⇓ 〈vc2, va2〉
µc,∆c, µa,∆a ` e1♦be2 ⇓ 〈vc1♦bvc2, va1♦bva2〉

Binary-Op

µc,∆c, µa,∆a ` v ⇓ 〈v, {}〉
Const

µc,∆c, µa,∆a ` e ⇓ 〈vc, va〉
∆′c = ∆c[var← vc]
∆′a = ∆a[var← va]

c′ = checkIDS(c, pc)

l′ = l.add(〈va, c′.top()〉) i = Σ[pc+ 1]

Σ, µc,∆c, µa,∆a,Γ, c, l, pc, var := e Σ, µc,∆′c, µa,∆
′
a,Γ, c

′, l′, pc+ 1, i
Assign

µc,∆c, µa,∆a ` e ⇓ 〈vc, va〉 c′ = checkIDS(c, pc) i = Σ[vc]

Σ, µc,∆c, µa,∆a,Γ, c, l, pc, goto e Σ, µc,∆c, µa,∆a,Γ, c′, l, vc, i
Goto

µc,∆c, µa,∆a ` e ⇓ 〈1, va〉
µc,∆c, µa,∆a ` e1 ⇓ 〈vc1, va1〉

c = checkIDS(c, pc)
c′ = updateIDS(c, pc, va)

l′ = l.add(〈va1 ∪ va, c′.top()〉) i = Σ[vc1]

Σ, µc,∆c, µa,∆a,Γ, c, l, pc, if e then goto e1 else goto e2  Σ, µc,∆c, µa,∆a,Γ, c′, l′, vc1, i
True-Cond

µc,∆c, µa,∆a ` e ⇓ 〈0, va〉
µc,∆c, µa,∆a ` e2 ⇓ 〈vc2, va2〉

c = checkIDS(c, pc)
c′ = updateIDS(c, pc, va)

l′ = l.add(〈va2 ∪ va, c′.top()〉) i = Σ[vc2]

Σ, µc,∆c, µa,∆a,Γ, c, l, pc, if e then goto e1 else goto e2  Σ, µc,∆c, µa,∆a,Γ, c′, l′, vc2, i
False-Cond

µc,∆c, µa,∆a ` e ⇓ 〈vc, va〉 c = checkIDS(c, pc) c′ = c.push(〈pc+ 1, c.pop()〉) i = Σ[vc]

Σ, µc,∆c, µa,∆a,Γ, c, l, pc, call e Σ, µc,∆c, µa,∆a,Γ, c′, l, vc, i
Call

µc,∆c, µa,∆a ` e ⇓ 〈vc, va〉 c′ = returnIDS(c, pc) 〈Γ′, l′〉 = delayedUpdate(Γ, l) i = Σ[vc]

Σ, µc,∆c, µa,∆a,Γ, c, l, pc, ret e Σ, µc,∆c, µa,∆a,Γ′, c′, l′, vc, i
Ret

µc,∆c, µa,∆a ` e1 ⇓ 〈vc1, va1〉
µc,∆c, µa,∆a ` e2 ⇓ 〈vc2, va2〉

c′ = checkIDS(c, pc)
µ′c = µc[vc1 ← vc2]
µ′a = µa[vc1 ← va1♦bva2]

i = Σ[pc+ 1]

Σ, µc,∆c, µa,∆a,Γ, c, l, pc, store(e1, e2) Σ, µ′c,∆c, µ′a,∆a,Γ, c′, l, pc+ 1, i
Store

Figure 4.2: Operational semantics of input-bit dependence inference.
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Algorithm 4.2: Dependence predicate update algorithm.

Function merge(Γ, X, Y )
Γ′ ← Γ

for x ∈ X do
Γ′ ← Γ′ [x← (Γ[x] ∪ Y \ {x})]

end
return Γ′

end

Algorithm 4.3: Delay queue update algorithm.

Function delayedUpdate(Γ, l)
for 〈X,Y 〉 ∈ l do

if 〈X,Y 〉 is not memoized then
Γ← merge(Γ, X, Y )
memoize 〈X,Y 〉

end
end
return 〈Γ, [ ]〉

end

merge(Γ, {1, 2}, {5, 6}) will return a new dependence predicate which contains two mappings: (1)

from the first bit to {3, 4, 5, 6}, and (2) from the second bit to {5, 6}. Algorithm 4.2 describes the

merge function. Notice, in Line 4 of the algorithm, we compute the relative complement of {x} in

order to exclude the dependence relations that self-referencing.

One may call the merge function for every instruction encountered on the fly. However, we de-

lay the predicate update until we reach a return instruction—thus, update the dependence pred-

icate per control-dependent region [152]—for two reasons. First, it is more cache-efficient to per-

formupdates once in awhile. Second, we can employ a heuristic to eliminate unnecessary updates:

there are many duplicated updates, thus we canmemoize the last updates to speed up the process.

To perform delayed update, we employ an additional field in our execution context, which we call

a delay queue (l). l stores a tuple of the current data lineage and the current set of dependent bits

from the control stack. To add an entry to a delay queue, we use an addmethod.

We maintain an input-bit dependence stack (c) to store a set of bit positions that the current

instruction is control-dependent on. The idea is similar to dynamic control-dependence analysis

in [152], but input-bit dependence stackmaintains a set of control-dependent bits instead of storing
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control-dependent statements. We use three methods to access the input-dependence stack (IDS):

top() returns the top element of a stack, pop() returns a tuple of the top element of a stack and a

new stack without the top element, and push(X) returns a new stack which contains an additional

element X .

Each element on the stack is a 2-tuple (an address of an instruction that is beyond the scope

of the current control dependence, a set of control-dependent bits). In our analysis, control de-

pendence of a conditional branch is valid in two scenarios: (1) until we reach an immediate post-

dominator of the conditional branch; (2) until we reach a return instruction. Therefore, we need to

update the input-bit dependence stack either when we enter a function (call instructions), or when

we encounter a conditional branch. However, to efficiently handle recursions, we use the same

intuition as [152]: either when we enter the same function more than once or when we have the

same immediate post-dominator, we replace the top element of the stack instead of pushing a new

one.

Algorithm 4.4 illustrates three major functions to access the IDS. For every conditional branch,

we call updateIDS to register a control-dependent region [152] from a conditional branch to an

immediate post-dominator. For every return statement, we call returnIDS to clear up the IDS. We

also update the IDS for every call instruction. Finally, we call checkIDS for every statement to check

whether we have encountered the end of control-dependent region. When a CFG is incomplete,

i.e., indirect jumps, we might not be able to find an immediate post-dominator. In this case, we use

a conservative approach: we always merge the current set of control-dependent bits with the top

element of the IDS.

We formulate the algorithm of input-bit dependence inference in an operational semantics in

Figure 4.2. In the rule of assignment statement, we highlight the delay queue update using a

box, because we optionally disable the function. In fact, even though we do not update the delay

queue in assignment statements, we can still capture most of the input-bit dependence conditional

branches. If we do not take the input-bit dependence for assignment statements, we may miss

some dependence due to implicit data flow [93].
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Algorithm 4.4: Input-dependence stack update algorithm.

Function updateIDS(c, pc, va)
pd← immediate post-dominator of the current instruction at pc
〈toppd, topdep〉 ← c.top()
if toppd = pd then
〈·, c〉 ← c.pop()

end
c′ ← c.push(〈pd, va ∪ topdep〉)
return c′

end
Function returnIDS(c, pc)
〈toppd, ·〉 ← c.top()
while c.isNotEmpty() ∧ toppd 6= pc do
〈·, c〉 ← c.pop()

end
if c.isNotEmpty() then
〈·, c〉 ← c.pop()

end
return c

end
Function checkIDS(c, pc)
〈toppd, ·〉 ← c.top()
if c.isNotEmpty() ∧ toppd = pc then
〈·, c〉 ← c.pop()

end
return c

end

4.5.2 Example

Figure 4.3 is our running example showing a typical PNG parsing algorithm. It parses the first 8

characters using a series of conditional branches—which is an unrolled version of a for loop—from

Line 2 to 14. It then reads the next 4 bytes as an integer in Line 16, and checks the value in Line 17.

Figure 4.3b shows a control flow of the program, where each node is annotated with a line number

of a branch instruction and a set of input bits affecting the condition of the branch at runtime. We

use C to describe IBDI algorithm, but our system runs on raw binary executables. Additionally, we

represent input positions in a byte-level granularity in our example for brevity.

Suppose we provide a valid PNGfile to the parser, and follow the execution path of 1, 2, 5, 8, 14,
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/∗ i npu t r e ad in bu f ∗ /
i f ( buf [ 0 ] != ’\x89 ’ ) {

e r ro r ( ) ;
} e lse {

i f ( buf [ 1 ] != ’\x50 ’ ) {
e r ro r ( ) ;

} e lse {
i f ( buf [ 2 ] != ’\x4e ’ ) {

e r ro r ( ) ;
} e lse {

. . .
}

}
}
/∗ nex t f i e l d ∗ /
len = ∗ ( (∗ int32 )&buf [ 8 ] ) ;
i f ( len > PNG_MAX)

er ro r ( ) ;
. . .

(a) A PNG parser in C

1: entry

2: {1}

5: {2}

8: {3}

· · ·

17: {9, 10, 11, 12}

. . .

(b) A control-flow graph.

Line Γ c l

1 · · ·
2 · 〈14, {1}〉 〈{1}, {1}〉

5 · 〈14, {1, 2}〉 〈{1}, {1}〉;
〈{2}, {1, 2}〉

8 · 〈14, {1, 2, 3}〉
〈{1}, {1}〉;
〈{2}, {1, 2}〉;
〈{3}, {1, 2, 3}〉

14

1 7→ {1}
2 7→ {1, 2}
3 7→ {1, 2, 3}
· · ·

· ·

17

1 7→ {1}
2 7→ {1, 2}
3 7→ {1, 2, 3}
· · ·

〈19, {9, 10, 11, 12}〉 〈{9, 10, 11, 12},
{9, 10, 11, 12}〉

19

1 7→ {1}
2 7→ {1, 2}
3 7→ {1, 2, 3}
· · ·
9 7→ {9, 10, 11, 12}
10 7→ {9, 10, 11, 12}
· · ·

· ·

(c) The state transition table where each row is the execution context after executing the corresponding line.
For delay queue l, each item is separated with a semicolon. The second column contains a mapping from a
byte position to a set of byte positions.

Figure 4.3: A PNG parser example. We represent the input positions using a byte-level granularity
in this figure for brevity.
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16, 17, and 19. On Line 1, Γ, l, and c are empty. When the first conditional branch is encountered

on Line 2, we check which input bytes are affecting the condition. Since the first byte is affecting

the condition, we call updateIDS(c, 2, {1}), which first statically expands the control flow from the

instruction on Line 2, and computes the immediate post-dominator of the instruction, which is

Line 14 in this case. Then it updates c to have an element of 〈14, {1}〉. Next, we push the input byte

information 〈{1}, {1}〉 into l, which represent a dependence relation from the first byte to the first

byte itself.4

On Line 5, we reach another conditional branch, which has a condition affected by the second

byte. Since the top element of c has the same address as the immediate post-dominator of the

branch, we replace the top element of cwith 〈14, {1, 2}〉 (due to Line 4-7 of updateIDS). The delayed

queue is also updated with the updated control-dependence, which will call merge(Γ, {2}, {1, 2})

later in the delayedUpdate function. Similarly, we update the delay queue and the IDS until we

reach the Line 14. Since the current instruction has the same address as in the top element of the

IDS, we pop one element from the IDS (Line 23 of Algorithm 4.4), and then we call delayedUpdate

of Algorithm 4.3 to update Γ. After executing Line 14, Γ has a mapping from each byte to the

byte positions that the byte is dependent on. To be more precise, Γ should represent bit-level

dependences, but we show byte-level dependences for simplicity. We perform the similar steps

along the execution.

4.6 SymFuzz Design

In this section, we describe SymFuzz [39], a system that automatically finds an optimal mutation

ratio for mutational fuzzing based on the input-bit dependence inference. Figure 4.4 summarizes

our system design, which consists of two major components: symbolic analysis and mutational

fuzzing. The symbolic analysismodule takes in a program and a seed, and returns a recommended

optimal mutation ratio. The mutational fuzzing module then uses the mutation ratio to perform

fuzzing, and outputs buggy inputs found. Finally, we triage buggy inputs using our safe stack

hash technique described in §4.6.3.

4 In a bit-level granularity, this represents the input-bit dependences between the first eight input bits, where each of
the bits is dependent on each other.
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BugsTriageMutational
Fuzzing

Symbolic
Analysis

Mutation
RatiosProgram

Seed s

Figure 4.4: SymFuzz architecture.

4.6.1 Implementation

Webase our system for input-bit dependence inference onBAP [28], an open-source binary analysis

framework. BAP converts an x86 executable to an intermediate language suitable for program

analysis. SymFuzz consists of 5,300 lines of OCaml for symbolic analysis and 1,600 lines of C++

code for instrumentation. We leverage PIN [104] to instrument a target binary. We also implement

our mutational fuzzing framework in about 1900 lines of OCaml and 700 lines of C++.

4.6.2 Symbolic Analysis

The symbolic analysismodule implements the operational semantics described in Figure 4.2 on top

of the BAP [28] intermediate language. We employ several optimizations to our analysis including

(1) tainted-block optimization, (2) JIT and PD caching, and (3) set memoization.

First, we use the taint information of each basic block to reduce the cost of symbolic analysis as

follows. For each instrumented basic block, we perform a lightweight taint analysis. When a basic

block does not involve any tainted instructions, we do not perform the symbolic analysis, and pro-

ceed to the next block. Notice our symbolic analysis inherently provides precise taint information

for each block. Therefore, we do not need to maintain additional data structure for storing taints.

In fact, the data-lineage tracking [102, 103] part of our symbolic analysis is more specific than the

traditional taint analysis [46, 124, 155], and more abstract than the traditional symbolic execution

[26, 88, 94].

Second, we employ several caches to improve the performance. The JIT cache is to cache

recently-usedBAP ILs, and the PD cache is to store the recently-computed immediate post-dominator
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nodes. We note that expanding a static CFG for each conditional branch to compute an immedi-

ate post-dominator is an expensive operation compared to symbolic evaluation. This is because it

involves not only jitting but also recursive disassembling and graph analysis.

Finally, we note that IBDI uses significant amount of memory footprint, because each bit in a

seed needs to store a pointer to a set of bit positions, and each memory bit that is touched by the

program under test also stores such a set for in µa. Although we perform byte-level analysis in our

implementation, this problem still remains. The crux of the problem is that there can be multiple

instances of the same set representation. Therefore, wememoize every set throughout the analysis,

and make sure that there exists physically a single distinct set throughout the analysis.

4.6.3 Safe Stack Hash

Security practitioners use a call-stack trace or a part of a call-stack trace [118], e.g., taking only top

five entries of a full stack-trace as in the fuzzy stack hash [122]. The rationale is that if two crashes

have the same call-stack traces, then they are likely to have an equivalent final program state, and

thus, it is an evidence of having the same root cause. This approach works for many cases, but it

exhibits a false bucketing problem: it can put a single bug into multiple buckets.

We note that this false bucketing problem can significantly increase the number of bugs found

for fuzzing especiallywhen a buffer overflowmangles the return addresses on the stack. For exam-

ple, suppose a mutated input data overwrites a return address of a call stack. The return address

of the stack trace may contain any arbitrary values due to the mutation. In the worst case, we can

have 232 distinct call-stack traces on 32-bit machine just because of the mangled return address.

To mitigate this problem, we employ a technique, called safe stack hash, which stops traversing

the call stack when it finds an unreachable return address. Specifically, we check for each return

address of a call-stack trace starting from the top, i.e., the crashing stack frame, whether each return

address falls in a mapped page. If not, we assume that the stack is mangled in the corresponding

stack frame, and discard the rest of the return addresses in the call-stack trace. We also use the same

heuristic as the fuzzy stack hash, and consider only the top five stack entries when computing the

hash. Notice the number of bugs found from safe stack hash can only be less than the one from

regular stack hash techniques such as the fuzzy stack hash. We implemented our safe stack hash

using a GDB script written in Python.
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Program #Crashes #Bugs Seed Size (bits) Seed Type
abcm2ps 299,204 34 35,040 abc
autotrace 15,848 23 16,304 bmp
bib2xml 603 2 177,152 bib
catdvi 2,045,327 8 1,632 dvi
figtoipe 443,301 38 8,016 fig
gif2png 21,600 3 1,816 gif
pdf2svg 125 1 23,368 pdf
mupdf 30 5 23,368 pdf
Total 2,826,038 114

Table 4.3: The ground truth data.

4.7 Evaluation

Wenow evaluate our system SymFuzz on 8 real-world applications in order to answer the following

questions.

1. Does it make sense to optimize the mutation ratio in mutational fuzzing? How does the

number of bugs differ per mutation ratio? (§4.7.2)

2. What is the cardinality of minimum buggy bitsets? Is the conventional wisdom about choos-

ing small mutation ratios correct? (§4.7.3)

3. How effective is it to use the SymFuzz’s adaptive strategy in terms of number of bugs found?

(§4.7.4)

4. Does SymFuzz work well in practice? Howmany bugs did we find compared to the practical

fuzzers such as BFF, zzuf, AFL? (§4.7.5)

4.7.1 Experimental Setup

We ran experiments on a private cluster consisting of 8 virtual machines. Each VM was running

Debian Linux 7.4 on a single Intel 2.68 GHz Xeon core with 1GB of RAM, and all the applications

that we tested were up-to-date as of May 2014. Each VM in our cluster was committed to only a

single application throughout the experiments. The number of bugs reported from this chapter is

based on our safe stack hash introduced in §4.6.3.
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Program Version Size (bytes)
abcm2ps 6.6.17-1 347,664
autotrace 0.31.1-16 20,464
bib2xml 4.12-5 10,564
catdvi 0.14-12.1 93,220
figtoipe 20080517-1 48,644
gif2png 2.5.8-1 27,512
mupdf 0.9-2 5,999,472
pdf2svg 0.2.1-2+b3 6,548

Table 4.4: Applications used to compare ball-based and surface-based mutational fuzzing.

Collecting Ground Truth. We ran the mutational fuzzing module of SymFuzz individually to

gather the ground-truth data ofmutational fuzzing. We initially obtained a list of 100 file-conversion

applications of Debian as in Chapter 5, and manually created a seed file for each application. We

then fuzzed all 100 program-seed pairs with BFF [86] to know which programs exhibit crashes.

We found 8 programs that resulted in at least one crash (see Table 4.4). We first ran our tool on

each of the programs for 1,000 hours using 1,000 distinct mutation ratios from 0.001 to 1.000, i.e.,

1 hour per each mutation ratio. Table 4.3 summarizes our ground truth experiment. In total, we

have spent 8,000 CPU hours fuzzing the applications, and found 114 previously unknown bugs

based on our safe stack hash. Since all the applications that we tested read in an input file, all the

bugs found are potentially on the attack surface. For example, an attacker can craft a malicious file

and upload it to the Internet, or send it as an email attachment in order to compromise users that

run the applications with the file. We leave it as future work to check the exploitability of the bugs

found [15, 38, 65].

4.7.2 Mutation Ratio Optimization

To justify our research, we first studied our ground truth data from fuzzing, and measured how

the effectiveness of fuzzing changes with respect to the mutation ratio. We answer two specific

questions as follows. First, is it meaningful to optimize the mutation ratio? Second, what is the

potential benefit of using an adaptive optimization for fuzzing?
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Figure 4.6: Empirically best mutation ratios for 8 programs.

Is Mutation Ratio Optimization Useful?

Optimizing mutation ratio is useful when the result of fuzzing varies significantly depending on

a mutation ratio, and when there is a clear bias in the distribution of mutation ratios in terms of

fuzzing efficiency. Figure 4.5a and Figure 4.5b illustrate respectively the normalized number of

bugs and crashes found for each of the 8 programs in our ground truth dataset, that is, the number

of bugs (crashes) divided by themaximum attainable number of bugs (crahses). Both figures show

that the effectiveness of fuzzing largely depends on the mutation ratio. For example, we found the

maximum number of bugs from abcm2ps using the mutation ratio of 0.071, but did not find any

bug from the same program using the mutation ratio of 0.262. However, using the mutation ratio

of 0.071 on pdf2svg, we found no bug in our dataset.

We note that the optimalmutation ratios differ across the programs. Figure 4.6 shows an empir-

ically optimal mutation ratio per program based on the number of bugs found. The optimal ratios

range from 0.003 to 0.085 depending on the program under test. We also notice fuzzing efficiency

is biased towards the optimal mutation ratios from both the figures. Thus, our data suggest that

mutation ratio optimization is useful in fuzzing.

HowMuch Better to Use Adaptive Optimization?

An immediate follow-up question of the first question is: howmuch better can adaptive optimiza-

tion strategies be compared to non-adaptive strategies? In particular, we want to know what is

the potential gain of using an adaptive strategy over non-adaptive strategies such as selecting ei-
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Figure 4.7: Comparison between a non-adaptive method, which is to choose a single default mu-
tation ratio, and an adaptive (optimal) method, which is to select an empirically optimal mutation
ratio per program.

ther (1) a single default mutation ratio, or (2) multiple ratios at random from a given range. Both

the approaches are indeed employed in zzuf [98]. To answer the question, we first computed the

maximum possible number of bugs that can be obtained by an optimal adaptive strategy for each

program from our dataset; it was 76. We then compared this number against the number of bugs

that can be found from the non-adaptive strategies.

The first non-adaptive strategywe checked is to choose a single default mutation ratio through-

out an entire fuzzing campaign. Figure 4.7 shows the comparison. For all the mutation ratios in

our dataset, the optimal adaptive strategy—represented as the horizontal line at the top of the

figure—always found more bugs than the non-adaptive way. Moreover, even for the best case of

the non-adaptive strategy, which is to choose the ratio of 0.039, the adaptive optimization found

18.8% more bugs compared to the non-adaptive method. Additionally, we notice that if we con-

sider only a single mutation ratio per program, even a perfect adaptive strategy can only find 76

bugs out of 114 from our dataset. This result suggests the need for inferring multiple instead of a

singlemutation ratio, although this is outside the scope of this dissertation (see §4.8 for discussion).

The second strategy that we evaluated is to select a fixed range of mutation ratios throughout a

fuzzing campaign. We used three different ranges suggested by the zzufmanual for this compar-

ison, namely, [0.00001, 0.01], [0.00001, 0.02], and [0.00001, 0.10]. We fuzzed each application in our

dataset for 1 hour with each of the ranges. In this experiment, we used the same algorithm that

zzuf employs for selecting mutation ratios from a given range, which works as follows. We first
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discretize the given range into a set of uniformly distributed mutation ratios, where the cardinal-

ity of the set is 65,535. We then select a mutation ratio from the set uniformly at random for each

fuzzing iteration. The best range was [0.00001, 0.02], which results in 44 bugs from our dataset.

This number of bugs was indeed 57.9% of the optimal adaptive case. From the two experiments,

we conclude that optimizing the mutation ratio benefits fuzzing in practice.

4.7.3 Distribution of b Values

In this subsection, we answer the following two questions. First, how do we compute b from a

crash? Second, what is the distribution of b in crashes of real-world programs?

Recall from §4.4.3, we estimate an optimal mutation ratio r using d̄, which depends upon the

distribution of b values. To obtain the distribution, we first collected 4,255 distinct pairs of a crash-

ing input and a seed from our previous study [131]. The crashing inputs are gathered by fuzzing

a variety of applications that take in a file as an input for over 650 CPU days. The size of the seeds

in the dataset ranged from 43B to 31MB, and the average seed size was 954KB. For each crashing

input, we computed the Hamming distance from them to the corresponding seeds. The average

Hamming distance was 151,721; the median was 11,430; and the standard deviation was 862,055.

Notice that the Hamming distance in this case does not represent the size of a minimum buggy

bitset: it represents the size of a buggy bitset instead.

To compute the size of a minimum buggy bitset (b), we used a delta debugging technique

[47, 158] called bug minimization, presented by Householder et al. [85]. The idea is simple: given

a crashing input and a corresponding seed, bug minimization iteratively restores bits in the crash-

ing input to the original value of the seed, and determines which bit flips are necessary to crash

the program. After the minimization, we compute the Hamming distance from each minimized

crashing input to its corresponding seed, which is essentially the value of b.

We used the above algorithm in order to compute the distribution of b in the 4,255 distinct

crashes that we collected. Figure 4.8 shows the distribution of b values from our dataset. We found

that it is enough to flip 9 bits of a seed on average to trigger crashes in our dataset. The median

Hamming distance was 6, and the standard deviation was 18. More than 80% of the b values

were less than or equal to 10. In addition, we performed the same experiment on our ground

truth data. As a result, we obtained the Hamming distance of 5 on average (median 3), and the

75



CHAPTER 4. PARAMETER INFERENCE

0

500

1000

1500

0 50 100 150 200

# of Minimum Buggy Bits (b)

#
C

ra
s
h
in

g
 I
n
p
u
ts

Figure 4.8: The number of minimum buggy bits for 4,255 crashing inputs derived from previous
studies. The average was 9 and the median was 6.

standard deviation of the Hamming distance was 10. The result shows that most of the crashes can

be triggered by flipping only few bits—less than a byte size in our dataset—from the corresponding

seeds.

HowMany Bits to Flip? It is important to note that the above result does not necessarily mean

that we need to flip only few bits of a seed to effectively trigger program crashes in mutational

fuzzing. For example, there may be an input field that is independent from crashes: no matter

what value the field has, we can still crash the program. Therefore, in this case, we want to flip

more than b bits to increase the likelihood of finding crashes. We indeed found the most number

of bugs in abcm2ps using a mutation ratio of 0.071, which corresponds to about 2, 500 bit flips.

This result highlights the key idea of SymFuzz: a good mutation ratio depends on the input-bit

dependence of a seed.

4.7.4 Estimating r

Recall from §4.4.3, the core part of SymFuzz is to derive the average number of dependent bits

(d̄) from a distribution of b in estimating r. We used Algorithm 4.1 to compute d̄ and obtained

r for each program. Table 4.5 summarizes the result. The second column of the table shows d̄.

The third column of the table is the size of the seed N that is used for each of the programs. The

fourth column is the number of bugs found using the obtained r for 1 hour of fuzzing. The fifth
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Program d̄
Seed Size

N
#Bugs Max.

#Bugs Diff.

abcm2ps 164 35,040 22 24 2
autotrace 69 16,304 10 14 4
bib2xml 484 177,152 2 2 0
catdvi 24 1,632 7 8 1
figtoipe 44 8,016 14 21 7
gif2png 144 1,816 3 3 0
pdf2svg 434 23,368 0 1 1
mupdf 201 23,368 1 3 2

Table 4.5: The number of bugs found with IBDI.

column is the maximum attainable number of bugs in each program for 1 hour of fuzzing when

the empirically optimal mutation ratio is selected. The last column is the difference between the

number of bugs found with SymFuzz and the optimal number of bugs.

SymFuzz successfully estimated effective mutation ratios for each program, and found 77.6%

of the bugs that can be found from the optimal adaptive strategy. Most mutation ratios that we

obtained was close to optimal mutation ratios except for the case of figtoipe. To investigate the

problem, we first ran bug minimization on every unique crash that we obtained for figtoipe. We

then checked the cardinality of theminimumbuggy bitsets (b) for the crashes, and found that d̄was

5× greater than the average input-bit dependence for the minimum buggy bitsets, which results

in a smaller mutation ratio than the optimal one. This is a corner case where buggy bits are not

close to the other bits in a seed, in which our algorithm can perform poorly.

4.7.5 SymFuzz Practicality

In this subsection, we test the practicality of mutation ratio optimization by comparing the number

of bugs found with existing mutational fuzzers such as BFF, zzuf, and AFL.

Comparison against BFF and zzuf

The closest practical mutational fuzzers in terms of the underlying mutation process are BFF and

zzuf: they use bit-flipping-based mutation for fuzzing. We fuzzed each of the programs in our

dataset for 1 hour using zzuf, BFF, and SymFuzz, and compared the number of bugs found. To run

zzuf, we used a single mutation ratio of 0.004, which is a default ratio. Notice BFF uses dynamic
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Figure 4.9: Final comparison in the number of bugs found.

scheduling algorithm to automatically find good mutation ratios to use, whereas zzuf requires an

analyst to specify either a mutation ratio or a range of mutation ratios. In total, BFF found 43 bugs;

zzuf found 38 bugs; and SymFuzz found 59 bugs. The result indicates that SymFuzz’s adaptive

strategy found 37.2% and 55.3% more bugs than BFF and zzuf respectively. For further analysis,

we show a head-to-head comparison against BFF and zzuf for each program in Figure 4.9. Notice

that SymFuzz found equal or more number of bugs compared to BFF for all the programs. SymFuzz

was also superior than zzuf except for one program: mupdf. The primary reason is because the

performance of fuzzing for mupdf is sensitive to the mutation ratio from Figure 4.5a. SymFuzz

obtained a ratio of 0.003, which is just 0.001 off from the empirically optimal mutation ratio (0.004).

zzuf’s default mutation ratio happened to be the same as the optimal one.

Comparison against AFL

AFL [156] is the state-of-the-art mutational fuzzer that is used by many security practitioners. The

mutation process of AFL consists of two major phases. First, it performs a series of determinis-

tic bit-flipping algorithms based on several heuristics. Second, it uses a random combination of

the algorithms in order to non-deterministically generate test cases. These two steps are applied

for every seed during a fuzzing campaign. If any one of the generated test cases exhibits a new

execution path (based on branch coverage), AFL uses it as a new seed.
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Figure 4.10: Branch coverage difference between AFL and modified AFL (with mutation-ratio-
based mutation logic).

Since AFL uses radically different mutation algorithms than SymFuzz, we cannot measure the

effectiveness of mutation ratio optimization by directly comparing AFL with SymFuzz. Instead,

we replaced the first phase of AFL with SymFuzz’s mutation algorithm with mutation ratio op-

timization, which allows us to compare the effect of using our algorithm over their bit-flipping

mutation algorithm. We downloaded AFL 1.45b for this experiment. We ran both the modified

AFL and the original AFL on 7 programs (excluding mupdf because AFL does not support GUI

application) for 24 hours. After 24 hours of fuzzing we triaged all the crashes found using our safe

stack hash. As a result, we found 54 bugs from the original AFL, and 64 bugs from the modified

AFL. In other words, we found 18.5%more bugs by applying our technique on AFL. We also com-

puted the branch coverage per time during the 24 hours of fuzzing. Figure 4.10 shows the coverage

differences in 4 applications that present the most significant differences; we did not observe sig-

nificant coverage differences from the rest. We conclude that AFL can benefit from our technique

in our dataset.

4.8 Discussion

Statistical Significance. Currently, SymFuzz outperforms previous fuzzers in our dataset. How-

ever, the resultmay changewith other applications that have different statistical properties in terms

of b and d values. Furthermore, our ground truth dataset is based only on fuzzing campaigns of
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one hour. Since fuzzing usually runs for several weeks in practice, fuzzing longer would allow a

stronger conclusion. We leave fuzzing for more time as future work.

Multiple Mutation Ratios. Two distinct bugs can have significantly different d values, although

our current strategy focuses on finding a single d̄ from the overall average of d values. This is a

fundamental limitation of SymFuzz because we do not know exact minimum buggy bitsets prior

to fuzzing. One potential future direction is to consider multiple d values and perform scheduling

over the derived mutation ratios.

Seed File. Currently, we assume a seed file for a program is given by an analyst. This is a common

assumption for most of the fuzzers in practice. Recent work [131] partially addresses the problem

using a coverage-based inference. We leave combining the seed selection algorithm with SymFuzz

as future work. Additionally, our analysis only analyzes a single execution path based on a given

seed. Therefore, it is possible to miss several input-bit dependence relations that manifest only

when a different execution path is taken. Furthermore, our operational semantics (§4.5.1) do not

differentiate bit-level operators such as logical-AND from other operators. This may result in an

over-approximated results for our analysis, i.e., some bits may have more dependent bits than it is

supposed to be. Guaranteeing a bit-level accuracy is out of scope of this work.

Mutational Fuzzing Types. Recall from §2.5, we defined two types of mutational fuzzing meth-

ods. Although SymFuzz’s primary focus was on surface-based mutational fuzzing, we believe our

formulation can also be applied to ball-based mutational fuzzing. As we discussed in §2.5.3, the

difference between ball-based and surface-basedmutational fuzzing is negligible in practice where

the choice of mutation ratios is typically small: the best mutation ratios in our dataset were all less

than 0.01.

Bit-Flip-Based Fuzzing. SymFuzz currently focuses on bit-flip-based mutational fuzzing where

the size of generated inputs is fixed. Although this constraint simplifies our mathematical model,

it is important to support other types of mutational fuzzing for completeness. We leave it as future

work to support different types of MBF.
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Input-Format-Aware Fuzzing. Although IBDI is inspired by automatic input format recovery [31,

54, 101, 102], our technique currently does not leverage the input field information. One may use

the existing input format recovery techniques to find a set of input fields, andmutate a set of specific

input fields instead of fuzzing the entire seed file. One potential research direction is to derive the

optimal time allocation for each of the input fields in order to maximize the number of bugs found.

4.9 Summary

We designed an algorithm to optimize the mutation ratio in mutational fuzzing given a program

and a seed. In particular, we introduced SymFuzz, which runs both black- and white-box analysis

to find bugs in a program. We also have formulated the failure rate of mutational fuzzing in terms

of the input-bit dependences among bit positions in an input. Our mathematical model led us

to design a novel technique for mutation ratio optimization, which estimates a probabilistically

optimal mutation ratio from an execution trace. With our data set, we showed that SymFuzz can

find 39.5% more bugs than BFF and 57.9% more bugs than zzuf in the same amount of fuzzing

time. We have also applied our technique to improve AFL. With our modifications, AFL was able

to find 18.5% more bugs in the same 24-hour experiment.
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Parameter Scheduling

Study the past, if you would divine the future.

—Confucius

While the techniques described in Chapter 3 and Chapter 4 help us reducing the number of

fuzz configurations to consider, we still need to decide how much time to allocate for each of the

reduced configurations. The choice of a fuzz configuration can dramatically affects the number of

bugs found from fuzzing. For example, a bug in a program may only be triggered when the input

size is greater than 42 bytes. There can be a seed input that allows a mutational fuzzer to find a

bug less than a minute, whereas other seed inputs require the same fuzzer to spend more than an

hour to find the same bug.

The key question we try to answer in this chapter is how can we organize our time budget

to maximize the outcome of fuzzing for a given set of fuzz configurations. Specifically, Which

programs should we fuzz? Which fuzz configuration should we use, and in what order? How

much time should we dedicate to a fuzz configuration?

5.1 Exploiting Characteristics of Fuzzing Outcome

We exploit the following characteristics of fuzzing outcome in this chapter. First, we view the

outcome of mutational fuzzing as a bug arrival process that has diminishing returns. This allows

us to model the probability of seeing a new bug in the next trial of fuzz run. Second, mutational

fuzzing tends to produce more number of bugs in the future with a configuration that found the
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most number of bugs so far. Therefore, one can prioritize a configuration that found the most

number of bugs so far in order to maximize the fuzzing outcome given limited time.

5.2 Problem Setting

Recall from §2.1, a fuzz configuration is a set of parameters that a fuzzing algorithm takes in. As a

simplification, we assume that a fuzz campaign is orchestrated in epochs—an epoch is a sequence

of fuzz runs. At the beginning of each epoch, we select one fuzz configuration based only on

information obtained during the campaign, and we fuzz that configuration for the entire epoch.

This assumption has two subtle but important implications. First, though it does not limit us to

fuzzing with only one computer, it does require that every computer in the campaign fuzz the

same configuration during an epoch. Second, what we need to select for each epoch is really a fuzz

configuration, which gives rise to our naming of the Fuzz Configuration Scheduling (FCS) problem.

Fuzz Configuration Scheduling Challenge. Given a list ofK fuzz configurations {c1, c2, · · · , cK}

and a time budget T , the Fuzz Configuration Scheduling problem seeks tomaximize the number of

unique bugs discovered in a fuzz campaign that runs for a duration of length T . A fuzz campaign is

divided into epochs, starting with epoch 1. We consider two epoch types: fixed-run and fixed-time.

In a fixed-run campaign, each epoch corresponds to a constant number of fuzz runs; since the time

required for individual fuzz runs may vary, fixed-run epochs may take variable amounts of time.

On the other hand, in a fixed-time campaign, each epoch corresponds to a constant amount of time.

Thus, the number of fuzz runs completed may vary across fixed-time epochs.

An online scheduling algorithm Fuzz-Schedule for the Fuzz Configuration Scheduling prob-

lem operates before each epoch starts. When the campaign starts, Fuzz-Schedule receives the

number K. Suppose the campaign has completed ` epochs so far. Before epoch (` + 1) begins,

Fuzz-Schedule should select a number i ∈ [1,K] based on the information it has received from

the campaign. Then the entire epoch (`+ 1) is devoted to fuzzing ci. When the epoch ends, Fuzz-

Schedule receives a sequence of IDs representing the outcomes of the fuzz runs completed during

the epoch. If an outcome is a crash, then the returned ID is the bug ID computed by the bug triage

process, which we assume is non-zero. Otherwise, the outcome is a proper termination, and the
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returned ID is 0. Also, any ID that has never been encountered by the campaign prior to epoch

(`+ 1) is marked as new. Notice that a new ID can signify either the first proper termination in the

campaign or a new bug discovered during epoch (` + 1). Besides the list of IDs, Fuzz-Schedule

also receives statistical information about the epoch. In a fixed-run campaign, it receives the time

spent in the epoch; in a fixed-time campaign, it receives the number of fuzz runs that ended inside

the epoch.

5.3 Algorithmic Considerations

We now turn to a few technical issues that we withheld from the above problem statement. First,

we allow Fuzz-Schedule to be either deterministic or randomized. This admits the use of various

existing MAB algorithms, many of which are indeed randomized.

Second, notice that Fuzz-Schedule receives only the number of configurations K but not the

actual configurations. This formulation is to prevent Fuzz-Schedule from analyzing the content of

any fuzz configurations. Similarly, we prevent Fuzz-Schedule from analyzing bugs by sending it

only the bug IDs but not any concrete representation.

Third, Fuzz-Schedule also does not receive the time budget T . This forces Fuzz-Schedule to

make its decisions without knowing how much time is left. Therefore, Fuzz-Schedule has to at-

tempt to discover new bugs as early as possible. While this rules out any algorithm that adjusts

its degree of exploration based on the time left, we argue that this not a severe restriction from

the perspective of algorithm design. For example, one of the algorithms we use is the EXP3.S.1

algorithm [12]. It copes with the unknown time horizon by partitioning time into exponentially

longer periods and picking new parameters at the beginning of each period, which has a known

length.

Fourth, our analysis assumes that the K fuzz configurations are chosen such that they yield

disjoint sets of bugs. This assumption is needed so that we can consider the bug arrival process

of fuzzing each configuration independently. While this assumption may be valid when every

configuration involves a different program, as in one of our two datasets, satisfying it when one

program can appear inmultiple configurations is non-trivial. In practice, it is achieved by selecting

seeds that exercise different code regions. For example, in our other data set, we use seeds of
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various file formats to fuzz the different file parsers in a media player.

Finally, at present we do not account for the time spent in bug triage, though this process re-

quires considerable time. In practice, triaging a crash takes approximately the same amount of

time as the fuzz run that initially found the crash. Therefore, bug triage can potentially account for

over half of the time spent in an epoch if crashes are extremely frequent. We plan to incorporate

this consideration into our project at a future time.

5.4 Multi-Armed Bandits

To find the greatest number of unique bugs given the above problem setting, we must allocate our

time wisely. Since initially we have no information on which configuration will yield more new

bugs, we should explore the configurations and reduce our risk by fuzzing each configuration for

an adequate amount of time. As we start to identify some configurations that we believe may

yield more new bugs in the future, we should also exploit this information by increasing the time

allocated to fuzz these configurations. Of course, any increase in exploitation reduces exploration,

whichmay cause our analyst to under-explore andmiss configurations that are capable of yielding

more new bugs. This is the classic “exploration vs. exploitation” trade-off, which signifies that we

are dealing with a Multi-Armed Bandit (MAB) problem [22].

This has already been observed by previous researchers. For example, the CERT Basic Fuzzing

Framework (BFF) [86], which supports fuzzing a single program with a collection of seeds and a

set of mutation ratios, uses an MAB algorithm to select among the seed-ratio pairs during a fuzz

campaign. However, we must stress that recognizing the MAB nature of our problem is merely

a first step. In particular, we should not expect an MAB algorithm with provably “good” per-

formance, such as one from the UCB [13] or the EXP3 [12] families, to yield good results in our

problem setting. There are at least two reasons for this.

First, although many of these algorithms are proven to have optimal regret in various forms,

the most common form of regret does not actually give good guarantees in our problem setting.

In particular, this form of regret measures the difference between the expected reward of an algo-

rithm and the reward obtained by consistently fuzzing the single best configuration that yields the

greatest number of unique bugs. However, we are interested in evaluating performance relative to
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the total number of unique bugs from all K configurations, which may be much greater than the

number from one fixed configuration. Thus, the low-regret guarantee of many MAB algorithms

is in fact measuring against a target that is likely to be much lower than what we desire. In other

words, given our problem setting, these algorithms are not guaranteed to be competitive at all.

Second, while there exist algorithms with provably low regret in a form suited to our problem

setting, the actual regret bounds of these algorithms often do not give meaningful values in prac-

tice. For example, one of theMAB algorithmswe use is the EXP3.S.1 algorithm [12], proven to have

an expected worst-case regret of S+2e√
2−1

√
2K` ln(K`), where S is a certain hardness measure of the

problem instance as defined in [12, §8] and ` is the number of epochs in our problem setting. Even

assuming the easiest case where S equals to 1 and pickingK to be a modest value of 10, the value

of this bound when ` = 4 is already slightly above 266. However, as we see in §5.9, the number of

bugs we found in our two datasets are 200 and 223 respectively. What this means is that this regret

bound is very likely to dwarf the number of bugs that can be found in real-world software after

a very small number of epochs. In other words, even though we have the right kind of guarantee

from EXP3.S.1, the guarantee quickly becomes meaningless in practical terms.

Having said the above, we remark that this simply means such optimal regret guarantees may

not be useful in ensuring good results. As we will see in §5.9, EXP3.S.1 can still obtain reasonably

good results in the right setting.

5.5 Fuzzing as a Weighted CCP

As a first step to design more suitable MAB algorithms for our problem, we discover that the

memoryless property of MBF1 allows us to formally model the repeated fuzzing executions as a

bug arrival process. Our insight is that this process is a weighted variant of the Coupon Collector’s

Problem (CCP) where each coupon type has its own fixed but initially unknown arrival probability.

As we explained in §2.3, the output of repeated fuzzing executions is a stream of crashes inter-

mixed with proper terminations, which is then transformed into a stream of bug IDs by a triaging

process. Since we want to maximize the number of unique bugs found, we are naturally interested

in when a new bug arrives in this process. This insight quickly leads us to the Coupon Collector’s
1 Both ball-based and surface-based mutational fuzzing (§2.5) have the memoryless property: any fuzz run is inde-

pendent of the past fuzz runs.

86



CHAPTER 5. PARAMETER SCHEDULING

Problem (CCP), a classical arrival process in probability theory.

TheCCP concerns a consumerwho obtains one couponwith each purchase of a box of breakfast

cereal. Suppose there are M different coupon types in circulation. One basic question about the

CCP is: what is the expected number of purchases required before the consumer amasses k (≤M)

unique coupons? In its most elementary formulation, each coupon is chosen uniformly at random

among theM coupon types. In this setting, many questions related to the CCP—including the one

above—are relatively easy to answer.

Unfortunately, our problem setting actually demands a weighted variant of the CCP which we

dub the WCCP. Intuitively, this is because the probabilities of the different outcomes from a fuzz

run are not necessarily (and unlikely to be) uniform. This observation has also beenmade byArcuri

et al. [10].

Let (M−1) be the actual number of unique bugs discoverable by fuzzing a certain configuration.

Then including proper termination of a fuzz run as an outcome gives us exactlyM distinct outcome

types. We thus relate the process of repeatedly fuzzing a configuration to the WCCP by viewing

fuzz run outcomes as coupons and their associated IDs as coupon types.

However, unlike usual formulations of the WCCP where the distribution of outcomes across

type is given, in our problem setting this distribution is unknown a priori. In particular, there is

no way to know the true value ofM for a configuration without exhaustively fuzzing all possible

mutations. As such, we utilize statistical estimations of these distributions rather than the ground-

truth in our algorithm design. An important question to consider is whether accurate estimations

are feasible.

We now explain why we prefer the sets of bugs from different configurations used in a cam-

paign to be disjoint. Observe that our model of a campaign is a combination of multiple indepen-

dent WCCP processes. If a bug that is new to one process has already been discovered in another,

then this bug cannot contribute to the total number of unique bugs. This means that overlap in the

sets of bugs diminishes the fidelity of our model, so that any algorithm relying on its predictions

may suffer in performance.

WCCP Notation. Before we go on, let us set up some additional notation related to the WCCP.

In an effort to avoid excessive indices, our notation implicitly assumes a fixed configuration ci that
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is made apparent by context. For example, M , the number of possible outcomes when fuzzing a

given configuration as defined above, follows this convention.

(i) Consider the fixed sequence σ of outcomes we obtain in the course of fuzzing ci during a

campaign. We label an outcome as type k if it belongs to the kth distinct type of outcome in σ. Let

Pk denote the probability of encountering a type-k outcome in σ, i.e.,

Pk =

∣∣{x ∈ Nb|si|·rc(si) : x triggers an outcome of type k}
∣∣∣∣Nb|si|·rc(si)∣∣ . (5.1)

(ii) Although both the number and frequency of outcome types obtainable by fuzzing ci are

unknown a priori, during a campaign we do have empirical observations for these quantities up to

any point in σ. Let M̂(`) be the number of distinct outcomes observed from epoch 1 through epoch

`. Let nk(`) be the number of inputs triggering outcomes of type k observed throughout these `

epochs. Notice that over the course of a campaign, the sequence σ is segmented into subsequences,

each of which corresponds to an epoch in which ci is chosen. Thus, the values of M̂(·) and nk(·)

will not change if ci is not chosen for the current epoch. With this notation, we can also express the

empirical probability of detecting a type-k outcome following epoch ` as

P̂k(`) =
nk(`)∑M̂(`)

k′=1 nk′(`)
.

5.6 Impossibility Results

The absence of any assumption on the distribution of outcome types in the WCCP quickly leads

us to our first impossibility result. In particular, no algorithm can consistently outperform other

algorithms for the FCS problem. This follows from a well-known impossibility result in optimiza-

tion theory, namely the “No Free Lunch” theorem by Wolpert and Macready [149]. Their theorem

implies that “any two optimization algorithms are equivalent when their performance is averaged

across all possible problems.” In our problem setting, maximizing the number of bugs found in

epoch (`+1) amounts to, for each configuration, estimating itsPM̂(`)+1 in equation (5.1) using only

past observations from that configuration. Intuitively, by averaging across all possible outcome

type distributions, any estimation will be incorrect sufficiently often and thus lead to suboptimal
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behavior that cancels any advantage of one algorithm over another.

While we may consider this result to be easy to obtain once we have properly set up our prob-

lem, we consider it to be an important intellectual contribution for the pragmatic practitioners who

remain confident that they can design algorithms that outperform others. In particular, the state-

ment of the No Free Lunch theorem itself reveals precisely howwe can circumvent its conclusion—

our estimation procedure must assume the outcome type distributions have particular characteris-

tics. Our motto is thus “there is no free lunch—please bring your own prior!”

Our second impossibility result shows that there are problem instances in which the time spent

by any deterministic online algorithm to find a given number of unique bugs in a fixed-time cam-

paign is at least K times larger than the time spent by an optimal offline algorithm. Using the

terminology of competitive analysis, this shows that the competitive ratio of any deterministic on-

line algorithm for this problem is at leastK.

To show this, we fix a deterministic algorithm A and construct a contrived problem instance in

which there is only one bug among all the configurations in a campaign. Since A is deterministic,

there exists a unique configuration c∗i that gets chosen last. In other words, the other (K − 1)

configurations have all been fuzzed for at least one epoch when c∗i is fuzzed for the first time. If

the lone bug is only triggered by fuzzing c∗i , then A will have to fuzz for at least K epochs to find

it. For an optimal offline algorithm, handling this contrived scenario is trivial. Since it is offline, it

has full knowledge of the outcome distributions, enabling it to hone in on the special configuration

c∗i ) and find the bug in the first epoch. This establishes thatK is a lowerbound for the competitive

ratio of any deterministic algorithm. Finally, we observe that Round-Robin is a deterministic online

algorithm that achieves the competitive ratio K in every problem instance. It follows immediately

thatK is tight.

5.7 Scheduling Algorithm Design

Having seen such strong impossibility results, let us consider what a pragmatist might do before

bringing in any prior on the outcome type distribution. In other words, if we do not want to make

any assumptions on this distribution, is there a justifiable approach to designing online algorithms

for the FCS problem?

89



CHAPTER 5. PARAMETER SCHEDULING

We argue that the answer is yes. Consider two fuzz configurations c1 and c2 for which we

have upperbounds on the probability of finding a new outcome if we fuzz them once more. As-

sume that the upperbound for c1 is the higher of the two. We stress that what we know are merely

upperbounds—it is still possible that the true probability of yielding a new outcome from fuzzing

c1 is lower than that of c2. Nonetheless, with no information beyond the ordering of these up-

perbounds, fuzzing c1 first is arguably the more prudent choice. This is because to do otherwise

would indicate a belief that the actual probability of finding a new outcome by fuzzing c1 in the

next fuzz run is lower than the upperbound for c2. Accepting this argument, howmight we obtain

such upperbounds? We introduce the Rule of Three for this purpose.

5.7.1 Rule of Three

Consider an experiment of independent Bernoulli trials with identical success and failure proba-

bilities p and q = (1− p). Suppose we have carried out N ≥ 1 trials so far and every trial has been

a success. What can we say about q other than the fact that it must be (i) at least 0 to be a valid

probability and (ii) strictly less than 1 since p is evidently positive? In particular, can we place a

lower upperbound on q?

Unfortunately, the answer is a resounding no: even with q arbitrarily close to 1, we still have

(pN > 0). This means our observation really could have happened even if it is extremely unlikely.

Fortunately, if we are willing to rule out the possibility of encountering extremely unlikely

events, then we may compute a lower upperbound for q by means of a confidence interval. For

example, a 95% confidence interval on q outputs an interval that includes the true value of q of

the underlying experiment with 95% certainty. In other words, if the outputted interval does not

contain the true value of q for the experiment, then the observed event must have a likelihood of

at most 5%.

For the above situation, there is particularly neat technique to compute a 95% confidence inter-

val on q. Known as the “Rule of Three”, this method simply outputs 0 and 3/N for the lowerbound

and upperbound, respectively. The lowerbound is trivial, and the upperbound has been shown to

be a good approximation for N > 30. See [91] for more information on this technique, including

the relationship between 95% confidence and the constant 3.
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How We Use Rule of Three. In order to apply the Rule of Three, we must adapt our fuzzing

experiments with anyM > 1 possible outcome types to fit the mold of Bernoulli trials. We make

use of a small trick. Suppose we have just finished epoch ` and consider a particular configuration

c1. Using our notation, we have observed M̂(`) different outcomes so far and for 1 ≤ k ≤ M̂(`), we

have observed nk(`) counts of outcome of type k. LetN(`) =
∑M̂(`)

k=1 nk(`) denote the total number

of fuzz runs for this configuration through epoch `. The trick is to define a “success” to be finding

an outcome of type 1 through type M̂(`). Then, in hindsight, it is the case that our experiment has

only yielded success so far.

With this observation, wemay now apply the Rule of Three to conclude that [0, 3/N(`)] is a 95%

confidence interval on the “failure” probability—the probability that fuzzing this configuration

will result in an outcome type that we have not seen before, i.e., a new outcome. Then, as desired,

we have an easy-to-compute upperbound on the probability of finding a new outcome for each

configuration. We introduce one more piece of notation before proceeding: define the Remaining

ProbabilityMass (RPM) of ci at the end of epoch `, denotedRPM(`), to be the probability of finding

a new outcome if we fuzz ci oncemore. Note that the pair in RPM(`) is implicit, and that this value

is upperbounded by 3/N(`) if we accept a 95% confidence interval.

5.7.2 Design Space

In this section, we explore the design space that a pragmatist may attempt when designing on-

line algorithms for the FCS problem. Our focus here is to explain our motivation for choosing the

three dimensions we explore and the particular choices we include in each dimension. By com-

bining these dimensions, we obtain 26 online algorithms for our problem. We implemented these

algorithms inside our simulator, FuzzSim, the detail of which is presented in §5.8.

Epoch Type

We consider two possible definitions of an epoch in a fuzz campaign. The first is the more tradi-

tional choice and is used in the current version of CERT BFF v2.6 [86]; the second is our proposal.

• Fixed-Run. Each epoch executes a constant number of fuzz runs. In FuzzSim, a fixed-run

epoch consists of 200 runs. Note that any differential in fuzzing speed across configurations
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translates into variation in the time spent in fixed-run epochs.

• Fixed-Time. Each epoch is allocated a fixed amount of time. In FuzzSim, a fixed-time epoch

lasts for 10 seconds. Ourmotivation to investigate this epoch type is to see how heavily epoch

time variation affects the results obtained by systems with fixed-run epochs.

Belief Metrics

Two of the MAB algorithms we present below make use of a belief metric that is associated with

each configuration and is updated after each epoch. Intuitively, the metrics are designed such that

fuzzing a configuration with a higher metric should yield more bugs in expectation. The first two

beliefs below use the concept of RPM to achieve this without invoking any prior; the remaining

three embrace a “bug prior”. For now, suppose epoch ` has just finished and we are in the process

of updating the belief for the configuration ci.

• RPM. We use the upperbound in the 95% confidence interval given by the Rule of Three to

approximate RPM(`). The belief is simply 3/N(`).

• Expected Waiting Time Until Next New Outcome (EWT). Since RPM does not take into

account of the speed of each fuzz run, we also investigate a speed-normalized variant of

RPM. Let Time(`) be the cumulative time spent fuzzing this configuration from epoch 1 to

epoch `. Let avgTime(`) be the average time of a fuzz run, i.e., Time(`)
N(`) . Let W be a random

variable denoting the waiting time until the next new outcome. Recall that RPM(`) is the

probability of finding a new outcome in the next fuzz run and assume it is independent of

avgTime(`). To compute E[W ], observe that either we find a new outcome in the next fuzz

run, or we do not and we have to wait again. Therefore,

E[W ] = RPM(`)× avgTime(`)

+ (1− RPM(`))× (avgTime(`) + E[W ]).

(Notice that RPM does not change even in the second case; what changes is our upperbound

on RPM.) Solving for E[W ] yields avgTime(`)
RPM(`) , and we substitute in the upperbound of the 95%

confidence interval for RPM(`) to obtain E[W ] ≥ avgTime(`)
3/N(`) = Time(`)

3 . Since a larger waiting
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time is less desirable, the belief used is its reciprocal, 3/Time(`).

• RichGets Richer (RGR). Thismetric is grounded inwhatwe call the “bug prior”, which cap-

tures our empirical observation that code tends to be either robust or bug-ridden. Programs

written by programmers of different skill levels or past testing of a program might explain

this real-world phenomenon. Accordingly, demonstrated bugginess of a program serves as

a strong indicator that more bugs will be found in that program and thus the belief is M̂(`).

• Density. This is a runs-normalized variant of RGR and is also the belief used in CERT BFF

v2.6 [86]. The belief function is M̂(`)/N(`). Observe that this is the belief function of RPM

scaled by M̂(`)/3. In other words, Density can be seen as RPM adapted with the bug prior.

• Rate. This is a time-normalized variant of RGR. The belief function is M̂(`)/Time(`). Similar

to Density, Rate can be seen as EWT adapted with the bug prior.

Bandit Algorithms

Since the FCS problem is an instance of an MAB problem, naturally we explore a number of MAB

algorithms.

• Round-Robin. This simply loops through the configurations in a fixed order, dedicating

one epoch to each configuration. Note that Round-Robin is a non-adaptive, deterministic

algorithm.

• Uniform-Random. This algorithm selects uniformly at random from the set of configurations

for each epoch. Like Round-Robin, this algorithm is non-adaptive; however, it is randomized.

• Weighted-Random. Configurations are selected at random in this algorithm, with the prob-

ability associatedwith each configuration is linked to the belief metric in use. Theweight of a

well-performing configuration is adjusted upward via the belief metric, thereby increasingly

the likelihood of selecting that configuration in future epochs. This mechanism functions in

reverse for configurations yielding few or no bugs.

• ε-Greedy. The ε-Greedy algorithm takes an intuitive approach to the exploration vs. ex-

ploitation trade-off inherent to MAB problems. With probability ε, the algorithm selects a

93



CHAPTER 5. PARAMETER SCHEDULING

configuration uniformly at random for exploration. With probability (1 − ε), it chooses the

configuration with the highest current belief, allowing it to exploit its current knowledge for

gains. The constant ε serves as a parameter balancing the two competing goals, with higher

ε values corresponding to a greater emphasis on exploration.

• EXP3.S.1. This is an advanced MAB algorithm by Auer et al. [12] for the non-stochastic MAB

problem. We picked this algorithm for three reasons. First, it is from the venerable EXP3

family, and so likely to be picked up by practitioners. Second, this is one of the EXP3 algo-

rithms that is not parameterized by any constants and thus no parameter tuning is needed.

Third, this algorithm is designed to have an optimal worst-case regret, which is a form of

regret that suits our problem setting. Note that at its core EXP3.S.1 is a weighted-random

algorithm. However, since we do not have a belief metric that corresponds to the one used

in EXP3.S.1, we did not put it inside the Weighted-Random group.

Out of budgetary constraints, we have taken a simulation approach so that we can replay the

events from previous fuzzings to try out new algorithms. Since we have recorded all the events

that may happen during any fuzz campaign of the same input configurations, we can even attempt

to compute what an optimal offline algorithmwould do and compare the results of our algorithms

against it. In the case when the configurations do not yield duplicated bugs, such as in our Inter-

Program dataset (§5.9), we devise a pseudo-polynomial time algorithm that computes the offline

optimal. In the other case where duplicated bugs are possible, we propose a heuristic to post-

process the solution from the above algorithm to obtain a lowerbound on the offline optimal.

Assuming that the sets of unique bugs from different configurations are disjoint, our algorithm

is a small variation on the dynamic programming solution to the Bounded Knapsack problem.

Let K be the number of configurations and B be the total number of unique bugs from all K

configurations. Let t(i, b) be the minimum amount of time it takes for configuration i to produce

b unique bugs. Note that t(i, b) is assumed to be∞when configuration i never produces b unique

bugs in our dataset. We claim that t(i, b) can be pre-computed for all i ∈ [1,K] and b ∈ [0, B],

where each entry takes amortized O(1) time given how events are recorded in our system.

Let m(i, b) be the minimum amount of time it takes for configurations 1 through i to produce

b unique bugs. We want to compute m(K, b) for b ∈ [0, B]. By definition, m(1, b) = t(1, b) for
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b ∈ [0, B]. For i > 1, observe that m(i, b) = minc∈[0,B]{t(i, c) + m(i − 1, b − c)}. This models

partitioning the b unique bugs into c unique bugs from configuration i and (b − c) unique bugs

from configurations 1 through (i− 1). Computing eachm(i, b) entry takes O(B) time. Since there

are O(K ×B) entries, the total running time is O(K ×B2).

The above algorithm is incorrect when the sets of unique bugs from different configurations

are not disjoint. This is because the recurrence formula of m(i, b) assumes that the c unique bugs

from configuration i are different from the (b − c) unique bugs from configurations 1 through

(i− 1). In this case, we propose a heuristic to compute a lowerbound on the offline optimal. After

obtaining the m(i, b) table from the above, we post-process bug counts by the following discount

heuristic. First, we compute the maximum number of bugs that can be found at each time by the

above algorithm by examining the K-th row of the table. Then, by scanning forward from time

0, whenever the bug count goes up by one due to a duplicated bug (which must have been found

using another configuration), we discount the increment. Since the optimal offline algorithm can

also pick up exactly the same bugs in the same order as the dynamic programming algorithm, our

heuristic is a valid lowerbound on the maximum number of bugs that an optimal offline algorithm

would find.

We formalize the notion of ex post facto optimality seed selection and give the strategy that

provides an optimal algorithm even if the bugs found by different configurations are correlated in

Chapter 3.

5.8 Design & Implementation of FuzzSim

This section presents FuzzSim, a replay-based simulation system for mutational fuzzing that is

designed to run different configuration scheduling algorithms using logs from previous fuzzings.

FuzzSim employs a three-step approach: (1) fuzzing, (2) triage, and (3) simulation.

Fuzzing. The first step is fuzzing and collecting run logs from a fuzzer. FuzzSim takes in a list of

program-seed pairs (pi, si) and a time budget T . It runs a fuzzer on each configuration for the full

length of the time budget T andwrites to the log each time a crash occurs. Log entries are recorded

as 5-tuples of the form (pi, si, time stamp, #runs, mutation identifier).
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In our implementation, we fuzz with zzuf, one of the most popular open-source fuzzers. zzuf

uses an approximated version of surface-based mutational fuzzing algorithm. The randomization

in zzuf can be reproduced given the mutation identifier, thus enabling us to reproduce a crashing

input from its seed file and the log entry associated with the crash. For example, an output tuple of

(FFMpeg, a.avi, 100, 42, 1234) specifies that the program FFMpeg crashed at the 100-th second with

an input file obtained from “a.avi” according to the mutation identifier 1234. Interested readers

may refer to zzuf [98] for details on mutation identifiers and the actual implementation.

The deterministic nature of zzuf allows FuzzSim to triage bugs after completing all fuzz runs

first. In other words, FuzzSim does not compute bug identifiers during fuzzing and instead re-

derives them using the log. This does not affect any of our algorithms since none of them relies on

the actual IDs. In our experiments, we have turned off address space layout randomization (ASLR)

in both the fuzzing and the triage steps in order to reproduce the same crashes.

Triage. The second step of FuzzSim maps crashing inputs found during fuzzings into bugs. At a

high level, the triage phase takes in the list of 5-tuples (pi, si, time-stamp, #runs, mutation identifier)

logged during the fuzzing step and outputs a new list of 5-tuples of the form (pi, si, time-stamp,

#runs, bug identifier). More specifically, FuzzSim replays each recorded crash under a debugger to

collect stack traces. If FuzzSim does not detect a crash during a particular replay, then we classify

that test case to be a non-deterministic bug and discard it.

We then use the collected stack traces to produce bug identifiers, essentially hashes of the stack

traces. In particular, we use the fuzzy stack hash algorithm [122], which identifies bugs by hashing

the normalized line numbers from a stack trace. With this algorithm, the number of stack frames

to hash has a significant influence on the accuracy of bug triage. For example, taking the full stack

trace often leads to mis-classifying a single bug into multiple bugs, whereas taking only the top

frame can easily lead to two different bugs being mis-classified as one. To match the state of the

art, FuzzSim uses the top 3 frames as suggested in [122]. We propose a variant of this technique

that reduces false positives in §4.6.3.

Simulation. The last step simulates a fuzz campaign on the collected ground-truth data from

the previous steps using a user-specified scheduling algorithm. More formally, the simulation
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Algorithm 5.1: FuzzSim algorithms.

Fuzzing: ({(pi, si)}, T )
→ {pi, si, timestamp, #runs, mutation id}

Triage: {(pi, si, timestamp, #runs, mutation id)}
→ {(pi, si, timestamp, #runs, bug id)}

Simulation: {(pi, si, timestamp, #runs, bug id)}
→ {(timestamp, #bugs)}

step takes in a scheduling algorithm and a list of 5-tuples of the form (pi, si, timestamp, #runs,

bug identifier) and outputs a list of 2-tuples (timestamp, #bugs) that represent the accumulated

time before the corresponding number of unique bugs are observed under the given scheduling

algorithm.

Since FuzzSim can simulate any scheduling algorithm in an offline fashionusing the pre-recorded

ground-truth data, it enables us to efficiently compare numerous scheduling algorithms without

actually running a large number of fuzz campaigns. During replay, FuzzSim outputs a timestamp

whenever it finds a new bug. Therefore, we can easily plot and compare different scheduling algo-

rithms by comparing the number of bugs produced under the same time budget. We summarize

FuzzSim’s three-step algorithm in Algorithm 5.1.

5.9 FuzzSim Evaluation

To evaluate the performance of the 26 algorithms presented in §5.7.2, we focus on the following

questions:

1. Which scheduling algorithm works best for our datasets?

2. Why does one algorithm outperform the others?

3. Which of the two epoch types—fixed-run or fixed-time—works better, and why?

5.9.1 Experimental Setup

Our experiments were performed on Amazon EC2 instances that have been configured with a

single Intel 2GHz Xeon CPU core and 4GB RAM each. We used the most recent Debian Linux
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Dataset #runs #crashes #bugs
Intra-program 636,998,978 906,577 200
Inter-program 4,868,416,447 415,699 223

Table 5.1: Statistics from fuzzing the two datasets.
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Figure 5.1: Distribution of the number of bugs per configuration in each dataset.

distribution at the time of our experiment (April 2013) and downloaded all programs from the

then-latest Debian Squeeze repository. Specifically, the version of FFMpeg we used is SVN-r0.5.10-

4:0.5.10-1, which is based on a June 2012 FFMpeg release with Debian-specific patches.

5.9.2 Fuzzing Data Collection

Our evaluation makes use of two datasets: (1) FFMpeg with 100 different input seeds, and (2)

100 different Linux applications, each with a corresponding input seed. We refer to these as the

“intra-program” and the “inter-program” datasets respectively.

For the intra-programdataset, wedownloaded 10, 000video/image sample files from theMPlayer

website at http://samples.mplayerhq.hu/. From these samples, we selected 100 files uniformly

at random and took them as our input seeds. The collected seeds include various audio and video

formats such as ASF, QuickTime, MPEG, FLAC, etc. We then used zzuf to fuzz FFMpeg with each

seed for 10 days.

For the inter-program dataset, we downloaded 100 different file conversion utilities in De-

bian. To select these 100 programs, we first enumerated all file conversion packages tagged as

“use::converting” in the Debian package tags interface (debtags). From this list of packages, we
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Figure 5.2: Distribution of bug overlaps across multiple seeds for the intra-program dataset.

manually identified 100 applications that take a file name as a command line argument. Then we

manually constructed a valid seed for each program and the actual command line to run it with

the seed. After choosing these 100 program-seed pairs, we fuzzed each for 10 days as well. In total,

we have spent 48,000 CPU hours fuzzing these 200 configurations.

To perform bug triage, we identified and re-ran every crashing input from the log under a

debugger to obtain stack traces for hashing. After triaging with the fuzzy stack hash algorithm,

we found 200 bugs from the intra-program dataset and 223 bugs from the inter-program dataset.

Table 5.1 summarizes the data collected from our experiments. The average fuzzing throughput

was 8 runs per second for the intra-program dataset and 63 runs per second for the inter-program

dataset. This difference is due to the higher complexity of FFMpegwhen compared to the programs

in the inter-program dataset.

5.9.3 Data Analysis

What does the collected fuzzing data look like? We studied our data from fuzzing and triage to

answer two questions: (1) How many bugs does a configuration trigger? (2) How many bugs are

triggered by multiple seeds in the intra-program dataset?

We first analyzed the distribution of the number of bugs in the two datasets. On average, the

intra- and the inter-program datasets yielded 8.2 and 2.4 bugs per configuration respectively. Fig-

ure 5.1 shows two histograms, each depicting the number of occurrences of bug counts. There

is a marked difference in the distributions from the two datasets: 64% of configurations in the

inter-program dataset produce no bugs, whereas the corresponding number in the intra-program

dataset is 15%. We study the bias of the bug count distribution in §5.9.4.
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Dataset Epoch MAB algorithm #bugs found for each belief
RPM EWT Density Rate RGR

Intra-Program

Fixed-Run

ε-Greedy 72 77 87 88 32
Weighted-Random 72 84 84 93 85
Uniform-Random 72
EXP3.S.1 58
Round-Robin 74

Fixed-Time

ε-Greedy 51 94 51 109 58
Weighted-Random 67 94 58 100 108
Uniform-Random 94
EXP3.S.1 95
Round-Robin 94

Inter-Program

Fixed-Run

ε-Greedy 90 119 89 89 41
Weighted-Random 90 131 92 135 94
Uniform-Random 89
EXP3.S.1 72
Round-Robin 90

Fixed-Time

ε-Greedy 126 158 111 164 117
Weighted-Random 152 157 100 167 165
Uniform-Random 158
EXP3.S.1 161
Round-Robin 158

Table 5.2: Comparison between scheduling algorithms.

Second, we measured how many bugs are shared across seeds in the intra-program dataset.

As an extreme case, we found a bug that was triggered by 46 seeds. The average number of seeds

leading to a given bug is 4. Out of the 200 bugs, 97 were discovered frommultiple seeds. Figure 5.2

illustrates the distribution of bug overlaps. Our results suggest that there is a small overlap in the

code exercised by different seed files even though they have been chosen to be of different types.

Although this shows that our bug disjointness assumption in the WCCP model does not always

hold in practice, the low average number of seeds leading to a given bug in our dataset means that

the performance of our algorithms should not have been severely affected.

5.9.4 Simulation

We now compare the 26 scheduling algorithms based on the 10-day fuzzing logs collected for the

intra- and inter-program datasets. To compare the performance of scheduling algorithms, we use

the total number of unique bugs reported by the bug triage process. Recall from §5.7.2 that these

algorithms vary across three dimensions: (1) epoch types, (2) belief metrics, and (3) MAB algo-

100



CHAPTER 5. PARAMETER SCHEDULING

40

60

80

100

fr.
e.

de
ns

ity

fr.
e.

ew
t

fr.
e.

ra
te

fr.
e.

rg
r

fr.
e.

rp
m

fr.
ro

un
d.

ro
bi
n

fr.
un

i.r
an

d

fr.
w
.d

en
si
ty

fr.
w
.e

w
t

fr.
w
.ra

te

fr.
w
.rg

r

fr.
w
.rp

m

ft.
e.

de
ns

ity

ft.
e.

ew
t

ft.
e.

ra
te

ft.
e.

rg
r

ft.
e.

rp
m

ft.
ro

un
d.

ro
bi
n

ft.
un

i.r
an

d

ft.
w
.d

en
si
ty

ft.
w
.e

w
t

ft.
w
.ra

te

ft.
w
.rg

r

ft.
w
.rp

m

#
b
u
g
s

(a) Intra-program.
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(b) Inter-program.

Figure 5.3: The average number of bugs over 100 runs for each scheduling algorithm with error
bars showing a 99% confidence interval. “ft” represents fixed-time epoch; “fr” represents fixed-run
epoch; “e” represents ε-Greedy; “w” represents Weighted-Random.

rithms. For each valid combination (see Table 5.2), we ran our simulator 100 times and averaged

the results to study the effect of randomness on each scheduling algorithm. In our experiments, we

allocated 10 seconds to each epoch for fixed-time campaigns and 200 runs for fixed-run campaigns.

For the ε-Greedy algorithm, we chose ε to be 0.1.

Table 5.2 summarizes our results. Each entry in the table represents the average number of bugs

found by 100 simulations of a 10-day campaign. We present ε-Greedy and Weighted-Random at

the top of each epoch-type row group, each showing five entries that correspond to the belief met-

ric used. For the other three MAB algorithms, we only show a single entry in the center because

these algorithms do not use our belief metrics. Figure 5.3 describes the variability of our data using

error bars showing a 99% confidence interval. Notice that 94% of our scheduling algorithms have

a confidence interval that is less than 2 (bugs). RGR gives the most volatile algorithms. This is

not surprising because RGR tends to under-explore by focusing too much on bug-yielding config-
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urations that it encounters early on in a campaign. In the remainder of this section, we highlight

several important aspects of our results.

Fixed-time algorithms prevail over fixed-run algorithms. In the majority of Table 5.2, except

for RPM and Density in the intra-program dataset, fixed-time algorithms always produced more

bugs than their fixed-run counterparts. Intuitively, different inputs to a programmay take different

amounts of time to execute, leading to different fuzzing throughputs. A fixed-time algorithm can

exploit this fact and pick configurations that give higher throughputs, ultimately testing a larger

fraction of the input space and potentially finding more bugs. To investigate the above exceptions,

we have also performed further analysis on the intra-program dataset. We found that the perfor-

mance of the fixed-time variants of RPM and Density greatly improves in longer simulations. In

particular, all fixed-time algorithms outperform their fixed-run counterparts after day 11.

Along the same line, we observe that fixed-time algorithms yield 1.6× more bugs on aver-

age when compared to their fixed-run counterparts in the inter-program dataset. In contrast, the

improvement is only 1.1× in the intra-program dataset. As we have explained above, fixed-time

algorithms tend to perform more fuzz runs and potentially finding more bugs by taking advan-

tage of faster configurations. Thus, if the runtime distribution of fuzz runs is more biased, as in

the case of the inter-program dataset, then fixed-time algorithms tend to gain over their fixed-run

counterparts.

Time-normalization outperforms runs-normalization. In our results, EWT always outperforms

RPM and Rate always outperforms Density. We believe that this is because EWT and Density do

not spend more time on slower programs and slower programs are not necessarily buggier. The

latter hypothesis seems highly plausible to us; if true, it would imply that time-normalized belief

metrics are more desirable than runs-normalized metrics.

Fixed-time Rate works best. In both datasets, the best-performing algorithms use fixed-time

epochs and Rate as belief (entries shown in boldface in Table 5.2). Since Rate can be seen as a

time-normalized variant of RGR, this gives further evidence of the superiority of time normaliza-

tion. In addition, it also supports the plausibility of the bug prior.

102



CHAPTER 5. PARAMETER SCHEDULING

5.9.5 Speed of Bug Finding

Besides the number of bugs found at the end of a fuzz campaign, the speed at which bugs are dis-

covered is also an important metric for evaluating scheduling algorithms. We address two ques-

tions in this section. First, is there a scheduling algorithm that prevails throughout an entire fuzz

campaign? Second, how effective are the algorithmswith respect to our offline algorithm in §5.7.2?

To answer the questions, we first show the speed of each algorithm in Figure 5.4 and Figure 5.5 by

computing the number of bugs found over time. For brevity and readability, we picked for each

belief metric the algorithm that produced the greatest average number of unique bugs at the end

of the 10-day simulations.

Speed. We observe that Rate and RGR are in the lead for the majority of the time during our

10-day simulations. In other words, not only do they find more unique bugs at the end of the

simulations, but they also outperformother algorithms at almost any given time. This lends further

credibility to the bug prior.

Effectiveness. We also compare the effectiveness of each algorithm by observing how it com-

pares against our offline algorithm. We have implemented the offline algorithm including the

post-processing step that discounts duplicated bugs and computed the solution for each dataset.

The numbers of bugs found by the offline algorithm for the intra- and the inter-program datasets

are 132 and 217 respectively. (Notice that due to bug overlaps and the discount heuristic, these

are lowerbounds on the offline optimal.) As a comparison, Rate found 83% and 77% of bugs in

the intra- and inter-program datasets, respectively. Based on these numbers, we conclude that

Rate-based algorithms are effective.

5.9.6 Comparison with CERT BFF

At present, the CERT Basic Fuzzing Framework (BFF) [86] is the closest system that makes use of

scheduling algorithms for fuzz campaigns. In this section, we evaluate the effectiveness of BFF’s

scheduling algorithm using our simulator.

Based on our study of the source code of BFF v2.6 (the latest version as of this writing), it

uses a fixed-run weighted-random algorithm with Density (#bugs
#runs ) as its belief metric. However,
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Figure 5.4: Bug finding speed of different belief-based algorithms for the intra-program dataset.

Density

RPM
RR
EWT
RGR
Rate

Offline

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

days

#
b
u
g
s

Figure 5.5: Bug finding speed of different belief-based algorithms for the inter-program dataset.
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a key feature of BFF prevented us from completely implementing its algorithm in our simulation

framework. In particular, while BFF focuses on fuzzing a single program, it considers not only

a collection of seeds but also a set of predetermined mutation ratios. In other words, instead of

choosing program-seed pairs as in our experiments, BFF chooses seed-ratio pairs with respect to a

single program. Since our simulator does not take mutation ratio into account, it can only emulate

BFF’s algorithm in configuration selection using a fixed mutation ratio. We note that adding the

capability to vary the mutation ratio is prohibitively expensive for us: FuzzSim is an offline simu-

lator, and therefore we need to collect ground-truth data for all possible configurations. Adding a

new dimension into our current system would directly multiply our data collection cost.

Going back to our evaluation, let us focus on the Weighted-Random rows in Table 5.2. Density

with fixed-run epochs (BFF) yields 84 and 92 bugs in the two datasets. The corresponding numbers

for Rate with fixed-time epochs (our recommendation) are 100 and 167, with respective improve-

ments of 1.19× and 1.82× (average 1.5×). Based on these numbers, we believe future versions of

BFF may benefit from switching over to Rate with fixed-time epochs.

5.10 Discussion

The proposed scheduling algorithms leverage the fact that the outcome of mutational fuzzing can

be considered as a bug arrival process with diminishing returns. We also confirmed in our exper-

iment that the speed of bug finding indeed slows down over time, e.g., see Figure 5.4 and 5.5.

However, we notice that if the bug arrival process does not follow a heavy-tailed distribution,

then our algorithm can be worse than round-robin. For example, suppose there is a hypothetical

configuration that does not return any bugs for 10 hours, and then suddenly returns hundreds of

bugs in the next 1 hour. In this case, our algorithm will work poorly because this configuration

will not be selected often.

The above scenario is less likely in practice because our model of mutational fuzzing selects

test cases from an input space uniformly at random. In order for the above scenario to happen, one

needs to select a specific subset of the input space that triggers hundreds of unique bugs only after

10 hours even though we sample the entire space uniformly at random.
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5.11 Summary

In this chapter we studied how to find the greatest number of unique bugs in a fuzz campaign. We

modeled mutational fuzzing (MBF) as a WCCP process with unknown weights and used the con-

dition in theNo Free Lunch theorem to guide us in designing better online algorithms for our prob-

lem. In our evaluation of the 26 algorithms presented in this chapter, we found that the fixed-time

weighted-random algorithm with the Rate belief metric shows an average of 1.5× improvement

over its fixed-run Density-based counterpart, which is currently used by the CERT Basic Fuzzing

Framework (BFF). Since our current project does not investigate the effect of varying the mutation

ratio, a natural follow-up work would be to investigate how to add this capability to our system in

an affordable manner.
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Post-Fuzzing Bug Prioritization

The superior man makes the difficulty to be overcome his

first interest; success only comes later.
—Confucius

An immediate research question that arises after developing several fuzzing strategies is how to

prioritize fixing bugs that we found given limited resources, i.e., out of thousands of bugs that we

found with fuzzing, which should be fixed first? We noted that not all bugs are equivalent. Some

bugs lead to critical security breaches, but some others are just aesthetic bugs that simply annoy

users. Thus, we developed a technique, called automatic exploit generation (AEG), to prioritize bugs

based on the security relevance [14–16, 38].

At a high level, AEG augments typical safety properties in symbolic execution with an ex-

ploitability property—which describes the position of attack code, and the value of overwritten

addresses, and so forth—and finds a program path where the exploitability property holds. Our

analysis is sound, thus, the exploitable test cases generated by AEG lead to a control-hijack attack.

Our results on 30 realistic applications on bothWindows and Linux showed that AEG is a promis-

ing technique for prioritizing software bugs. AEG has several immediate security implications.

First, practical AEG fundamentally changes the perceived capabilities of attackers. For example,

previously it has been believed that it is relatively difficult for untrained attackers to find novel

vulnerabilities and create zero-day exploits. Our research shows this assumption is unfounded.

Understanding the capabilities of attackers informs what defenses are appropriate. Second, prac-

tical AEG has applications to defense. For example, automated signature generation algorithms
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take as input a set of exploits, and output an IDS signature (a.k.a. an input filter) that recognizes

subsequent exploits and exploit variants [51, 52]. Automated exploit generation can be fed into

signature generation algorithms by defenders without requiring real-life attacks.

6.1 Exploiting Characteristics of Fuzzing Outcome

We observed that not all the bugs found from mutational fuzzing are exploitable. Some bugs are

exploitable, but othersmay not. Therefore, if we can check the exploitability of bugs found, thenwe

can prioritize fixing them: we fix exploitable bugs first because they are critical in security attacks.

Assumption. Our exploitability check does not consider any defense mechanisms such as ASLR

(Address Space Layout Randomization) and DEP (Data Execution Prevention). We assume that

turning a broken exploit that only works under no defense into a weaponized exploit is generally

possible with adequate manual effort.

6.2 Problem Statement

At its core, the automatic exploit generation (AEG) challenge is a problem of finding program

inputs that result in a desired exploited execution state. In this section, we show how the AEG

challenge can be phrased as a formal verification problem, as well as propose a new symbolic

execution technique that allows AEG to scale to larger programs than previous techniques. As

a result, this formulation: (1) enables formal verification techniques to produce exploits, and (2)

allows AEG to directly benefit from any advances in formal verification. We focus on generat-

ing a control flow hijack exploit input that intuitively accomplishes two things. First, the exploit

should violate safety property, e.g., cause the program to write to out-of-bound memory. Second,

the exploit must redirect control flow to the attacker’s logic, e.g., by executing injecting shellcode,

performing a return-to-libc attack, and others.

At a high level, our approach uses program verification techniques where we verify that the

program is exploitable (as opposed to traditional verification that verifies the program is safe).

The exploited state is characterized by two Boolean predicates: a buggy execution path formula

fbug and a control flow hijack exploit formula fexploit, specifying the control hijack and the code
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injection attack. The fbug formula is satisfied when a program violates the semantics of program

safety. However, simply violating safety is typically not enough. In addition, fexploit captures the

conditions needed to hijack control of the program.

An exploit in our approach is an input ε that satisfies the Boolean equation:

fbug(ε) ∧ fexploit(ε) = true (6.1)

Using this formulation, the mechanics of AEG is to check at each step of the execution whether

Equation 6.1 is satisfiable. Any satisfying answer is, by construction, a control flow hijack exploit.

We discuss these two predicates in more detail below.

The Unsafe Path Formula fbug. fbug represents the path formula of an execution that violates

the safety property π. In our implementation, we use popular well-known safety properties for C

programs, such as checking for out-of-bounds writes, unsafe format strings, etc. The unsafe path

formula fbug partitions the input space into inputs that satisfy the formula (unsafe), and inputs

that do not (safe). While path predicates are sufficient to describe bugs at the source-code level, in

AEG they are necessary but insufficient to describe the very specific actions we wish to take, e.g.,

execute shellcode.

The Exploit Formula fexploit. The exploit formula specifies the attacker’s logic that the attacker

wants to do after hijacking eip. For example, if the attacker only wants to crash the program, the

formula can be as simple as “set eip to an invalid address after we gain control”. In our experi-

ments, the attacker’s goal is to get a shell. Therefore, fexploit must specify that the shellcode is well-

formed in memory, and that eip will transfer control to it. The conjunction of the exploit formula

(fexploit) will induce constraints on the final solution. If the final constraints (from Equation 6.1) are

not met, we consider the bug as non-exploitable.

6.3 AEG: Automatic Exploit Generation

In this section we describe the overall algorithm of AEG. AEG finds exploitable paths with a two-

step approach: (1) find a buggy path with traditional symbolic execution, and (2) add additional
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exploit formula to check if we can exploit the bug.

Since its introduction in the 70s [26, 88, 94], symbolic execution has been a huge success in soft-

ware testing [25, 32, 34, 44]. Unlike black-box testing, symbolic execution systematically reasons

about programs,making it awhite-box testing technique. At a high level, symbolic execution runs a

programwith a symbolic value as an input, which represents all possible values. As it executes the

program under test, it builds symbolic expressions instead of evaluating concrete values. When-

ever it reaches a conditional branch instruction, it conceptually forks two symbolic interpreters,

one for the true branch and another for the false branch. For every path, a symbolic interpreter

builds up a path formula (a.k.a. path predicate) for every branch instruction it encountered dur-

ing an execution trace. A path formula is satisfiable if there is a concrete input that executes the

desired path. One can generate concrete inputs by querying an SMT solver [55] for a solution to a

path formula.

Let Symbolic-Execution be a symbolic execution algorithm that takes in a program p and a

safety property π, and returns a sequence of path formulas that violates π. Let Exploit-Gen be an

exploit generation algorithm that takes in a program and a path formula for a bug found fbug, and

outputs an exploitation formula fexploit. Finally, let Exploit-Verify be a verification function that

takes in an exploit formula fexploit and a program, and returns either a working exploit if there

is a satisfying answer, or ⊥ if otherwise. Then our AEG algorithm can be described as follows

(Algorithm 6.1).

Algorithm 6.1: AEG algorithm.
input : Program p, Safety property π
output: Working exploits E

1 E← ∅
2 for fbug in Symbolic-Execution (p, π) do
3 fbug ∧ fexploit← Exploit-Gen(fbug, p)
4 ε← Exploit-Verify(fbug ∧ fexploit,p)

5 if ε 6= ⊥ then
6 E← E ∪ ε
7 end
8 end
9 return E
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6.3.1 Exploit-Gen

Exploit-Gen takes in two inputs to produce an exploit: the unsafe program state containing the

path formulas (fbug) and a program under test p to obtain low-level runtime information such as

the vulnerable buffer’s address, the address of the vulnerable function’s return address, and the

runtime stack memory contents. If we use concolic testing [71, 137] for generating path formulas,

we can directly collect these information without re-running the program under test. Using the

information, Exploit-Gen generates exploit formulas (fbug ∧ fexploit) for four types of exploits: (1)

stack-overflow return-to-stack, (2) stack-overflow return-to-libc, (3) format-string return-to-stack,

(4) format-string return-to-libc. For brevity, wedonot present the full algorithm in this dissertation.

Interested readers should refer to our paper [14].

Our current implementation produces two types of exploits: return-to-stack [128] and return-

to-libc, both of which are the popular classic control hijack attack techniques. We currently do not

handle state-of-the-art protection schemes, but we discuss possible directions in §6.5. Additionally,

our return-to-libc attack is different from the classic one in that we do not need to know the address

of a “/bin/sh” string in the binary. This technique allows bypassing stack randomization (but not

libc randomization).

Return-to-stack Exploit. The return-to-stack exploit overwrites the return address of a function

so that the program counter points back to the injected input, e.g., user-provided shellcode. To

generate the exploit, AEG finds the address of the vulnerable buffer into which an input string can

be copied, and the address where the return address of a vulnerable function is located at. Using

the two addresses, AEG calculates the jump target address where the shellcode is located.

Return-to-libc Exploit. In the classic return-to-libc attack, an attacker usually changes the return

address to point to the execve function in libc. However, to spawn a shell, the attacker must know

the address of a “/bin/sh” string in the binary, which is not common in most programs. In our

return-to-libc attack, we create a symbolic link to /bin/sh and for the link namewe use an arbitrary

string which resides in libc. For example, a 5 byte string pattern e8..00....16
1 is very common in

libc, because it represents a call instruction on x86. Thus, we find a certain string pattern in libc,
1 A dot (.) represents a 4-bit string in hexadecimal notation.

111



CHAPTER 6. POST-FUZZING BUG PRIORITIZATION

and generates a symbolic link to /bin/sh in the same directory as the target program. The address

of the string is passed as the first argument of execve (the file to execute), and the address of a

null string 0000000016 is used for the second and third arguments. The attack is valid only for local

attack scenarios, but is more reliable since it bypasses stack address randomization.

Note that the above exploitation techniques (return-to-stack and return-to-libc) determine how

to spawn a shell for a control hijack attack, but not how to hijack the control flow. Thus, the above

techniques can be applied by different types of control hijack attacks, e.g., format string attacks

and stack overflows. For instance, a format string attack can use either of the above techniques to

spawn a shell. We currently handle all possible combinations of the above attack-exploit patterns.

6.3.2 Exploit-Verify

Exploit-Verify takes in as input the exploit constraints fbug ∧ fexploit and the target binary, and

outputs either a concrete working exploit, i.e., an exploit that spawns a shell, or ⊥, if we fail to

generate the exploit. Exploit-Verify first solves the exploit constraints to get a concrete exploit. We

use an SMT solver to check satisfiability of the formulas. If the solver finds a satisfying solution

then Exploit-Verify moves to the next verification step.

In the second step, Exploit-Verify re-run the target programwith the generated exploit to check

the exploitability. If the exploit is a local attack, it runs the executable with the exploit as the

input and checks if a shell has been spawned. If the exploit is a remote attack, we spawn three

processes. The first process runs the executable. The second process runs nc to send the exploit to

the executable. The third process checks that a remote shell has been spawned at port 31337.

6.3.3 Binary-Only AEG

Binary analysis is more difficult than source-based analysis because binary code lacks high-level

abstractions such as types, variables, and functions. Beyond this absence of semantic abstractions,

disassembling [96] the binary under test itself, a crucial first step in binary analysis, is challenging.

Therefore, binary-level symbolic execution is generally significantly harder than source-based.

However, binary analysis has some advantages over source-based analysis when it comes to

security testing, and especially for AEG. First, security analysis often does not require source code,
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because the analysis also targets commodity software, e.g., Internet Explorer. Second, binary anal-

ysis enables us to reason about the low-level details of the code executes: stack-frame layout, call-

ing conventions, etc. These low-level details are important for understanding bugs and crafting

exploits. For instance, a buffer overflow exploit requires an attacker to know the exact position of

a return address on the stack frame.

Therefore, we implement a binary-level symbolic executor, Mayhem [38], on top of Binary Anal-

ysis Platform (BAP) [28], and use it for automatic bug finding and exploit generation. The results

are promising. So far, we have tested 37,391 distinct binaries in Debian, generated 207,206,508

test cases, and found 13,875 unique crashes [16]. Our software testing strategies include not only

finding bugs but also prioritizing bugs. AEG enables security-based bug prioritization by soundly

identifying which bugs are exploitable and should be fixed first.

6.4 Evaluation

6.4.1 Experimental Setup

We evaluated our system on 2 virtual machines running on a desktopwith a 3.40GHz Intel(R) Core

i7-2600 CPU and 16GB of RAM. Each VMhad 4GB RAM andwas running Debian Linux (Squeeze)

VM and Windows XP SP3 respectively.

6.4.2 Exploitable Bug Detection

We downloaded 29 different vulnerable programs to check the effectiveness of Mayhem. Table 6.1

summarizes our results. Experiments were performed on stripped unmodified binaries on both

Linux and Windows. One of the Windows applications Mayhem exploited (Dizzy) was a packed

binary.

Column 3 shows the type of exploits that Mayhem detected as we described in §6.3.1. Column

4 shows the symbolic sources that we considered for each program. There are examples from

all the symbolic input sources that Mayhem supports, including command-line arguments (Arg.),

environment variables (Env. Vars), network packets (Network) and symbolic files (Files). Column

5 is the size of each symbolic input. Column 6 shows the advisory reports for all the demonstrated
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Program Exploit Type Input
Source

Symbolic
Input
Size

Advisory ID.
Exploit
Gen.
Time (s)

Existing
Tools

Li
nu

x

A2ps Stack Overflow Env. Vars 550 EDB-ID-816 189 X
Aeon Stack Overflow Env. Vars 1000 CVE-2005-1019 10 X
Aspell Stack Overflow Stdin 750 CVE-2004-0548 82 X

Atphttpd Stack Overflow Network 800 CVE-2000-1816 209 X
FreeRadius Stack Overflow Env. 9000 Zero-Day 133 X
GhostScript Stack Overflow Arg. 2000 CVE-2010-2055 18 X

Glftpd Stack Overflow Arg. 300 OSVDB-ID-16373 4 X
Gnugol Stack Overflow Env. 3200 Zero-Day 22 unknown
Htget Stack Overflow Env. vars 350 N/A 7 unknown

Htpasswd Stack Overflow Arg. 400 OSVDB-ID-10068 4 unknown
Iwconfig Stack Overflow Arg. 400 CVE-2003-0947 2 X
Mbse-bbs Stack Overflow Env. vars 4200 CVE-2007-0368 362 X
nCompress Stack Overflow Arg. 1400 CVE-2001-1413 11 X
OrzHttpd Format String Network 400 OSVDB-ID-60944 6 unknown
PSUtils Stack Overflow Arg. 300 EDB-ID-890 46 X
Rsync Stack Overflow Env. Vars 100 CVE-2004-2093 8 X

SharUtils Format String Arg. 300 OSVDB-ID-10255 17 maybe
Socat Format String Arg. 600 CVE-2004-1484 47 maybe

Squirrel Mail Stack Overflow Arg. 150 CVE-2004-0524 2 X
Tipxd Format String Arg. 250 OSVDB-ID-12346 10 X

xGalaga Stack Overflow Env. Vars 300 CVE-2003-0454 3 X
Xtokkaetama Stack Overflow Arg. 100 OSVDB-ID-2343 10 X

W
in
do

w
s

Coolplayer Stack Overflow Files 210 CVE-2008-3408 164 X
Destiny Stack Overflow Files 2100 OSVDB-ID-53249 963 X
Dizzy Stack Overflow (SEH) Arg. 519 EDB-ID-15566 13,260 unknown
GAlan Stack Overflow Files 1500 OSVDB-ID-60897 831 X

GSPlayer Stack Overflow Files 400 OSVDB-ID-69006 120 X
Muse Stack Overflow Files 250 OSVDB-ID-67277 481 X

Soritong Stack Overflow (SEH) Files 1000 CVE-2009-1643 845 unknown

Table 6.1: List of programs that Mayhem demonstrated as exploitable.

exploits. In fact, Mayhem found 2 zero-day exploits for two Linux applications, both of which we

reported to the developers.

Column 7 contains the exploit generation time for the programs that Mayhem analyzed. We

measured the exploit generation time as the time taken from the start of analysis until the creation

of the first working exploit. The time required varies greatly with the complexity of the application

and the size of symbolic inputs. The fastest program to exploit was the Linux wireless configura-

tion utility iwconfig in 1.90 seconds and the longest was theWindows program Dizzy, which took

about 4 hours.

The last column shows the comparison against two existing exploitability-testing tools: CERT

triage [65] for Linux applications and !exploitable [115] forWindows applications. We ran the tools

for both set of applications (Linux andWindows) by feeding crashing inputs found from Mayhem,
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and reported the results in Column 8. When the tool classifies a given crash as exploitable, we

denote the result by a check mark (X). Thus, in this case, there is no difference between Mayhem

and the exiting tools. When the tool returns “unknown”, which means the tools cannot determine

whether the crash is exploitable, we show “unknown” in the column. Finally, when the tool returns

“probably exploitable”, we represent the result as “maybe”. In our experiment, CERT triage and

!exploitable were unsuccessful in determining the exploitability of 8 crashes out of 29 total. They

classified the 8 crashes as either “unknown” or “maybe”. We conclude that Mayhem can prioritize

more number of security bugs than existing tools in our dataset.

6.5 Discussion

Completeness. Our technique is not complete. We do not claim that we can find all possible

exploits from a given exploitable bug. It is possible that our analysis misjudges an exploitable bug

as not exploitable. However, our analysis is sound. When we say a bug is exploitable, it is indeed

an exploitable bug.

Advanced Exploits. We currently focused on stack buffer overflows and format string vulnerabil-

ities. In order to extend Mayhem to handle heap-based overflows we would likely need to extend

the control flow reasoning to also consider heap management structures. Integer overflows are

more complicated however, as typically an integer overflow is not problematic by itself. Security-

critical problems usually appear when the overflowed integer is used to index or allocate mem-

ory. Another potential research direction is to support platform-independent exploitation [37].

We leave adding support for these types of vulnerabilities as future work.

Exploit Variants. Given an exploit formula generated from a bug found, there can be multiple

satisfying answers to it. That is, Mayhem can generate multiple exploits for the same vulnerabil-

ity: recall from Figure 2.1 that exploitable inputs form a subset of buggy inputs. In our previous

study [14] we showed that it is possible to generate hundreds of exploit variants within an hour for

a single bug. This result suggests that pattern matching is insufficient to detect malicious threats

although existing anti-malware systems still use pattern matching algorithms [36].
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Other Exploit Classes. While our definition includes themost popular bugs exploited today, e.g.,

input validation bugs, such as information disclosure, buffer overflows, heap overflows, and so on,

it does not capture all security-critical vulnerabilities. For example, our formulation leaves out-of-

scope timing attacks against crypto, which are not readily characterized as safety problems. We

leave extending Mayhem to these types of vulnerabilities as future work.

AEG as a Weapon. One may wonder what if AEG is used as a weapon for attackers. We em-

phasize that an attacker cannot naively use our framework for real attacks, since AEG does not

consider any defense mechanisms. We rather argue that AEG can help defenders in prioritizing

fixing bugs by realizing the importance of bugs found. Another potential follow-up question is:

could an attacker use the knowledge about AEG to find bugs that AEG would be unlikely to iden-

tify as exploitable? We believe that AEG can be used to filter out easy-to-exploit bugs. But, on the

other hand, this means the total number of exploitable bugs are reduced for both parties.

Other Bug Finding. In this dissertation, we view AEG as a post-fuzzing process for mutational

fuzzing. However, one may ask what if we use other bug finding techniques? Is it possible that

other techniques can findmore exploitable bugs thanmutational fuzzing? Indeed, there is convinc-

ing evidence that different bug finding techniques are complementary (see §7.1). In other words,

different bug finding may discover distinct sets of bugs for the same program. However, there is

no reason to believe that one bug finding technique prevails others in terms of finding exploitable

bugs. Furthermore, AEG can be applied in any bug finding technique as a post-fuzzing process.

More on Papers. In this dissertation, we mainly focus on the resource problems in security test-

ing. Therefore, we omit a variety of details and optimizations regarding our system such as pre-

conditioned symbolic execution [14] and symbolic memory optimization [38]. Please refer to our

papers for more details about our system.

6.6 Summary

In this chapter, we introduced a novel bug prioritization technique, called AEG. We implemented

our approach in a system called Mayhem and analyzed 29 programs across two different OSes. We
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successfully generated 29 control-flow hijack exploits, two of which were against previously un-

known vulnerabilities. Furthermore, we compared Mayhem over two state-of-the-art exploitability

checkers—!exploitable on Windows and CERT exploitable on Linux—and showed that Mayhem

can identify 38.1% more exploitable bugs than them.
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Related Work

The work in this dissertation builds upon a very broad base of software testing and verification.

Unlike previous works, our focus was on improving the efficiency of mutational fuzzing given

limited resources. In this chapter we summarise several related works.

7.1 Bug Finding, Test Case Generation

Since the 70s, researchers have proposed numerous automatedmethodologies for software testing

and test case generation including combinatorial testing [48, 97, 107, 140], constraint-based testing

[26, 74, 88, 94, 137], model-based testing [76], random testing [7, 11, 42, 81, 116, 129], and search-

based testing [95, 112]. We refer to the latest survey on test case generation for a more complete

summary [6], and for symbolic execution [35].

RandomTesting and Partition Testing (Subdomain Testing). Partition testing [148] seeks to im-

prove testing performance by dividing the input space of a program into disjoint subsets prior to

generating test cases. These subsets constitute equivalence classes of the input space. Then, since

all inputs in a subset are equivalent, we need just one test case per subset. Although theoretically

attractive, the effectiveness of partition testing largely depends on the quality of the partitioning

metrics used in practice. For example, partitioning input space based on code coverage is prob-

lematic as it does not produce equivalence classes [79]. Whenever this is the case, the effectiveness

of partition testing depends on the distribution of bugs in the input space. For clarity, we use the
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term “partition testing” for the case where partitions are disjoint subsets, and “subdomain testing”

for the case where partitions may ormay not be disjoint (as in [66]). Comparing the effectiveness of

subdomain testing with random testing has been an active research area since the late 80s. Hamlet

et al. [79] and Duran et al. [59] showed empirically that random testing can be as effective as subdo-

main testing in terms of finding bugs. Weyuker et al. [147] described analytically when subdomain

testing is more likely to find bugs than random testing. Chen et al. [40, 41] generalized this result

and defined conditions when subdomain testing outperforms than random testing. Follow-up re-

searches [11, 78, 126] also concluded that subdomain testing can always do better than random

testing in theory, although random testing performs comparably in practice. This underscores the

fact that there is no single best solution for software testing: there is convincing evidence that

multiple testing techniques are complementary in terms of finding bugs [106, 121].

Symbolic Execution. Since its introduction in the 70s [26, 88, 94], symbolic execution has been a

huge success in software testing [16, 25, 29, 32, 34, 44]. Unlike black-box testing, symbolic execution

systematically reasons about programs, making it a white-box testing technique. At a high level,

symbolic execution runs a programwith a symbolic value as an input, which represents all possible

values. As it executes the program under test, it builds symbolic expressions instead of evaluating

concrete values. Whenever it reaches a conditional branch instruction, it conceptually forks two

symbolic interpreters, one for the true branch and another for the false branch. For every path, a

symbolic interpreter builds up a path formula (a.k.a. path predicate) for every branch instruction

it encountered during an execution trace. A path formula is satisfiable if there is a concrete input

that executes the desired path. One can generate concrete inputs by querying an SMT solver [55]

for a solution to a path formula. Dynamic symbolic execution is a variant of traditional symbolic

execution, where both symbolic execution and concrete execution operate at the same time. The

idea is to use concrete program states to simplify symbolic constraints, e.g., concretizing system

calls. We often refer to dynamic symbolic execution as concolic testing (concrete + symbolic) [69,

137].

Fuzzing. Since its introduction in 1990 by Miller et al. [116], fuzzing in its various forms has be-

come the most widely-deployed technique for finding bugs. More recently, sophisticated tech-
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niques for dynamic test generation have been applied in fuzzing [43]. There are several attempts

to utilize evolutionary algorithms in fuzzing [57, 92, 136]. It is also a common practice to employ

several heuristics such as code coverage and the distance between instructions [33, 34, 71, 72, 100,

105, 108, 130, 151] to improve the effectiveness of fuzzing.

Combining Testing Techniques. There are several attempts in combining multiple testing tech-

niques. Hybrid concolic testing [106] is the first attempt in combining symbolic execution and

mutational fuzzing. It interleaves between mutational fuzzing and concolic testing when there is

nomore coverage increase with hope that it can discover novel execution paths. Yang et al. [153] at-

tempted to use symbolic execution to figure out which input vectors are related. Then they utilized

this information to perform combinatorial testing.

7.2 Exploit Generation

Modern AEG research dates back at least to Ganapathy et al. [68], who explicitly connected veri-

fication to exploit generation. They modeled how format string specifiers are parsed by variadic

functions such as printf, and used themodel to automatically generate exploits. They also demon-

strated automatically generating an exploit against a key integrity property for a cryptographic

co-processor. However, they only considered API-level exploits, which does not include running

shellcode nor the conditions necessary to reach a vulnerable API call site.

In 2007, Medeiros [114] and Grenier et al. [75] proposed techniques based on pattern matching

for AEG. In 2008, Brumley et al. [27] developed automatic patch-based exploit generation (APEG).

The APEG challenge is: given a buggy program P and a patched version P ′, generate an exploit for

the bug present in P but not present in P ′. The idea is that the difference between P and P ′ reflects

(1) where the original bug occurs, and (2) under what conditions it may be triggered. Attackers

have long known this, and routinely analyze patches to find non-public bugs. For example, attack-

ers often joke Microsoft’s “patch Tuesday” is followed by “exploit Wednesday”. Our techniques

automatically found the differences betweenP andP ′ and generated inputs that triggered the bugs

in P using symbolic execution. One main security implication is that attackers can potentially use

APEG to exploit bugs before patches can be distributed to a large number of users. We generated
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exploits for 5 Microsoft security patches, which included triggering an infinite loop in the TCP/IP

driver and stealing files on Microsoft web servers. One limitation was our work only proposed,

but did not implement, techniques for executing shellcode for memory safety bugs.

Heelan’s thesis work was the first to comprehensively describe and implement techniques for

automatically generating control flow hijack exploits that execute shellcode [83]. In Heelan’s prob-

lem setting, the attacker is given an input that executes an exploitable programpath, and the goal is

to output a working control flow hijack exploit. This setting is the same as in our running example

where we first fuzzed to find bugs, and then checked exploitability. Heelan proposed using sym-

bolic execution and taint analysis to derive the conditions necessary to transfer control to shellcode,

and demonstrated a tool that produced exploits for several synthetic and one real vulnerabilities.

His work also used a technique called return-to-register to improve exploit robustness. Heelan’s

thesis also presents a comprehensive history of AEG up through 2009.
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Conclusion

We showed several fuzzing strategies to improve the testing efficiency under constrained resources.

This chapter concludes by briefly summarizing our contributions, and then discussing open issues

and future work.

8.1 Summary

This dissertation began by formally defining the process of fuzzing that we call fuzz campaign.

A fuzz campaign consists of a sequence of fuzz runs that takes in a fuzz configuration—a set of

parameters—as input and outputs a stream of log entries that include buggy inputs, bug identi-

fiers and timestamps. The efficiency of fuzzing—the number of bugs found per time—can totally

change depending on fuzz configurations used. Therefore, one should carefully choose fuzz con-

figurations in order to maximize the fuzzing efficiency.

Unfortunately, the parameter space for fuzzing is typically too large to be examined exhaus-

tively, thus there are potentially infinite number of fuzz configurations that we can choose for

fuzzing. Since we do not have enough resources to test all possible fuzz configurations, we need

to reduce the parameter space to consider. In Chapter 3, we investigated several seed reduction

strategies that allow an analyst to focus on a small subset of seeds instead of considering poten-

tially infinite number of seeds. Our experimental results confirmed that collecting seedswith good

coverage helps improving fuzzing efficiency.

Next, in Chapter 4, we developed a way to infer a “good” mutation ratio for fuzzing directly
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from a program execution. Since mutation ratio is a continuous parameter, it can potentially be

infinite. We have formulated the failure rate of mutational fuzzing in terms of input-bit depen-

dences in an input. We then designed a new fuzzing framework called SymFuzz that leverages a

white-box analysis technique to compute the input-bit dependences in order to estimate a proba-

bilistically optimal mutation ratio for a given program execution.

Although the above techniques help in reducing the number of fuzz configurations to run, we

still need to find away to optimize the time allocation for each of the fuzz configurations. Therefore,

we addressed the fuzz configuration scheduling challenge in Chapter 5 that dynamically allocates

time for given fuzz configurations in order to maximize the fuzzing efficiency.

Finally, we addressed a post-fuzzing resource problem in Chapter 6. The problem states that

we cannot simply fix all the bugs found from fuzzing. To tackle the challenge, we introduced a bug

prioritization technique called AEG that identifies the exploitability of a software bug. With AEG,

we can prioritize fixing bugs based on the security relevance of them.

8.2 Future Work

Fuzzing. Recall from §2.4, there are many different classes of fuzzing. This dissertation mainly

focused on MBF, but MBF traditionally suffers from several issues. First, it is unlikely for MBF

to generate absolutely well-formed inputs, e.g., when inputs contain checksum fields. Of course,

MBF is still effective in finding security bugs because many security bugs can be triggered with

partially-structured inputs. However, considering checksum fields in a seed input would increase

the probability of finding buggy inputs. Second, our current model for MBF only generates fixed-

size inputs. However, exiting fuzzers can produce mutated test cases that have different size than

the seeds. Combining variable-length test case generation algorithms with our approaches may

benefit fuzzing, although it is not clear how to model those algorithms formally.

Exploit Generation. Our experiments show that Mayhem can generate exploits for standard vul-

nerabilities such as stack-based buffer overflows and format strings. An interesting future direction

is to extendMayhem to handlemore advanced exploitation techniques such as exploiting use-after-

free vulnerabilities and information disclosure attacks. At a high level, it should be possible to de-
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tect such attacks using safety properties similar to the ones Mayhem currently employs. However,

it is still an open question how the same techniques can scale and detect such exploits in bigger

programs.
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Appendix A

Proofs

A.1 Solving NLP

Recall from §4.4.2, we solve the NLP problem to optain an optimal mutation ratio for a given min-

imum buggy bitset.

Theorem 2 (Optimal Mutation Ratio). Given a minimum buggy bitset B′ and the corresponding ↑ps(B′)

for a program p and a seed s, let b = |B′| and d = |↑ps(B′)|. The optimal mutation ratio r for finding the

bug Triage(π, σp(µ(s,B′))) is

r =
b× (N + 1)

d×N
when N · r > b. (4.3)

Proof. The goal of the NLP is to maximize the following failure rate

θb =

(
N−d
N ·r−b

)(
N
N ·r
) .

For simplicity, we let u to denoteN · r− b, and v to denoteN −d. Then the failure rate is simplified

as follows. (
v
u

)(
N
u+b

) .
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By expanding the binomial coefficients, we have

(
v
u

)(
N
u+b

) =

v!
u!(v−u)!

N !
(b+u)!(N−u−b)!

=
v!(b+ u)!(N − b− u)!

u!(v − u)!N !
.

When u = 1, the failure rate is
v!(b+ 1)!(N − b− 1)!

1!(v − 1)!N !
.

When u = 2, the failure rate is
v!(b+ 2)!(N − b− 2)!

2!(v − 2)!N !
.

We note that, as we increase u by one, the failure rate increases by the factor of

(v − u+ 1)(b+ u)

u(N − b− u+ 1)
when u > 0.

Since the factor monotonically decreases in terms of u, the maximum failure rate can be achieved

when the factor becomes 1. This relaxation gives us the maximum failure rate when

(v − u+ 1)(b+ u)

u(N − b− u+ 1)
= 1 when u > 0.

Solving the equation with respect to u, we have

u =
b(v + 1)

N − v
when u > 0.

Since u = N ·r−b and v = N−d, we can further simplify the equationwith respect to themutation

ratio r:

r =
b× (N + 1)

d×N
when N · r > b.
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