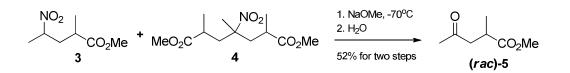

Edga	rd A. Ferreira ^{a,b} , Sindy V. A Rodezno ^a , Álvaro T. Omori ^a , Rodrigo L. O. R.	Cunha ^{a,} *
^a Cent ^b Esco	tro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo A la de Engenharia, Universidade Presbiteriana Mackenzie, São Paulo, Brasil	André, Bra
	Supporting Information	
S 1	Synthesis of diastereomeric methyl 2-methyl-4-nitropentanoate (3)	2
S2	Synthesis of racemic methyl 2-methyl-4-oxopentanoate (5)	3
S3	Gas chromatogram of diastereoisomers of nitroester 3 and 4	4
S4	Mass spectra of nitroester 3	4
S 5	Mass spectra of nitroester 4	5
S6	Gas Chromatogram of keto-ester 5	5
S7	¹ H NMR spectrum of keto-ester 5	6
S8	¹³ C NMR spectrum of keto-ester 5	6
S9	Mass spectrum of keto-ester 5	7
S10	¹ H NMR spectrum of keto acid (S)-6	7
S11	¹³ C NMR spectrum of keto acid (<i>S</i>)-6	8
S12	Mass spectra of keto acid (S)-6	8
S13	Gas chromatogram of keto-ester 5 and keto-acid 6 after 2 hours of reaction with PPL.	9
S14	Expansion of gas chromatogram at region of keto-ester 5 after 2 hours of reaction with PPL.	9
S15	Expansion of gas chromatogram at region of keto-acid 6 after 2 hours of reaction with PPL.	9
S16	Gas chromatogram of keto-ester 5 and keto-acid 6 after 2 hours of reaction with PPL.	9
S17	Expansion of gas chromatogram at region of keto-ester 5 after 2 hours of reaction with PPL.	10
S18	Expansion of gas chromatogram at region of keto-acid 6 after 2 hours of reaction with PPL.	10
S19	Gas chromatogram of keto-ester 5 and keto-acid 6 after 6 hours of reaction with PPL after recycle.	10
S20	Expansion of gas chromatogram region of keto-acid 6 after 6 hours of reaction with PPL after recycle.	10
S21	Screening of enzymes to enzymatic hydrolysis of (<i>rac</i>)-5.	11
S22	Effect of variation of value of pH in media reaction ^d	11
S23	Effect of addition of co-solvents (10%) (V/V) in the media reaction ^c	11
REFI	ERENCES	12

* Corresponding author. Tel.: +55-11-4996-8384; fax: +55-11-4996-0090; e-mail: rodrigo.cunha@ufabc.edu.br

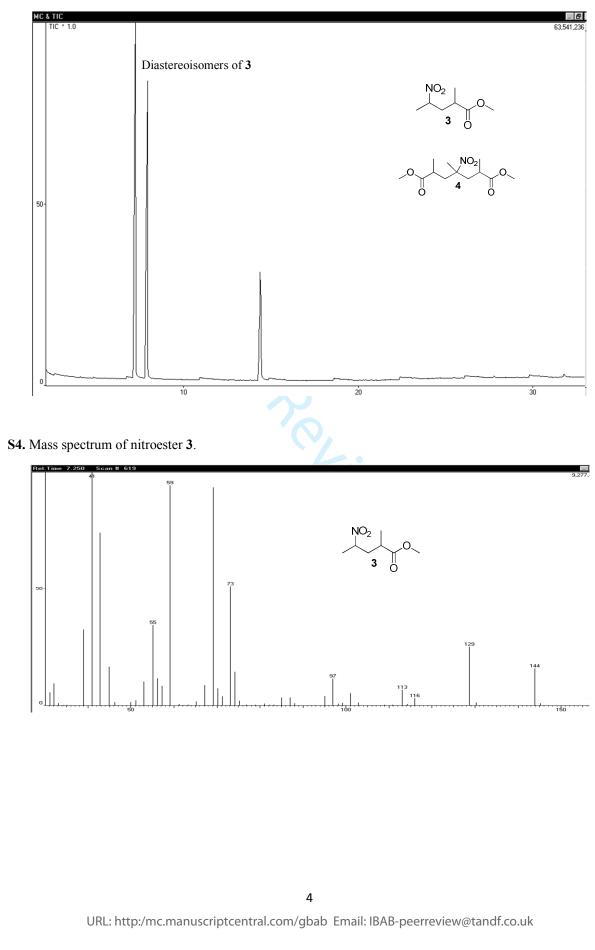
4-nitropentanoate (3)

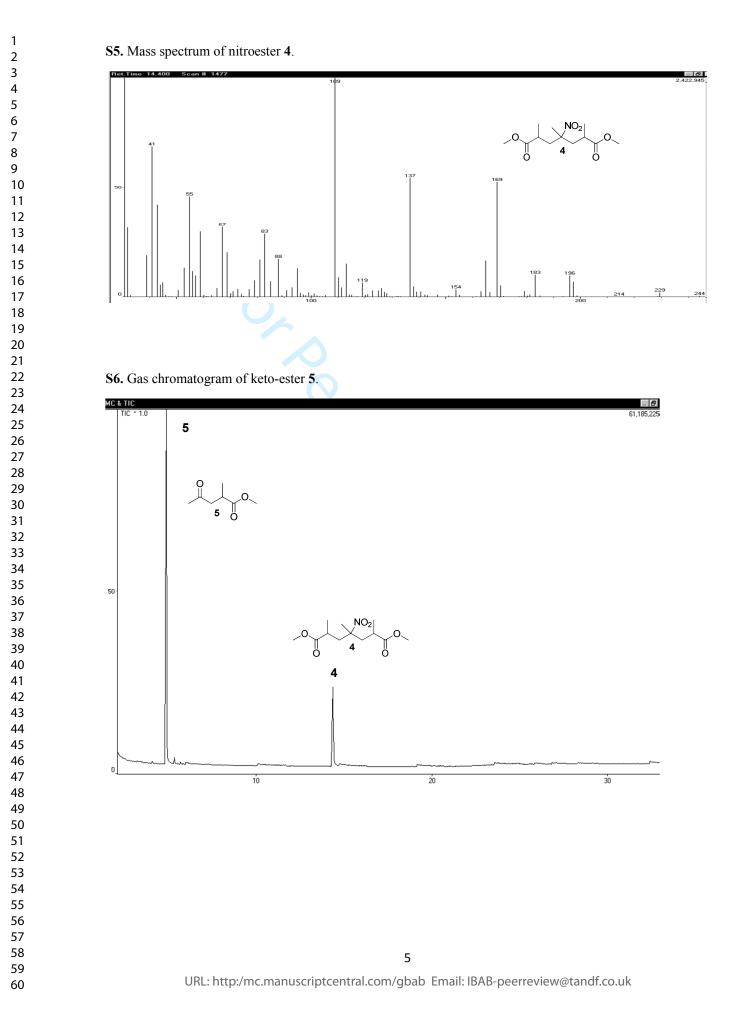


Compound (**3**) was synthesized according to a previous reported procedure with some modification as follows (Escalante and Díaz-Coutiño 2009). In a 100 mL, one neck round-bottomed flask equipped with magnetic stirring, a mixture of nitroethane (**1**) (50 mmol, 3.76 g, 3.56 mL), methyl methacrylate (**2**) (45 mmol, 4.50 g, 4.81 mL) and DBU (1.0 mmol, 0.142 g, 0.150 mL) was added. Then, a 15 cm vigreaux column was connected to the flask, and the mixture was submitted to microwave irradiation (50W, maximum temperature of 75°C) under stirring for 6 minutes. The reaction mixture was then cooled to room temperature and concentrated under reduced pressure leading to a yellow oil. The crude product was filtered in a short pad of silica-gel and washed with ethyl acetate (50%) to remove DBU. The solvent was removed under reduced pressure to afford a diastereomeric mixture of methyl 2-methyl-4-nitropentanoate (85.2%) (**3**) and dimethyl 2,4,6trimethyl-4-nitroheptanedioate (14.8%) (**4**) as a pale yellow oil.

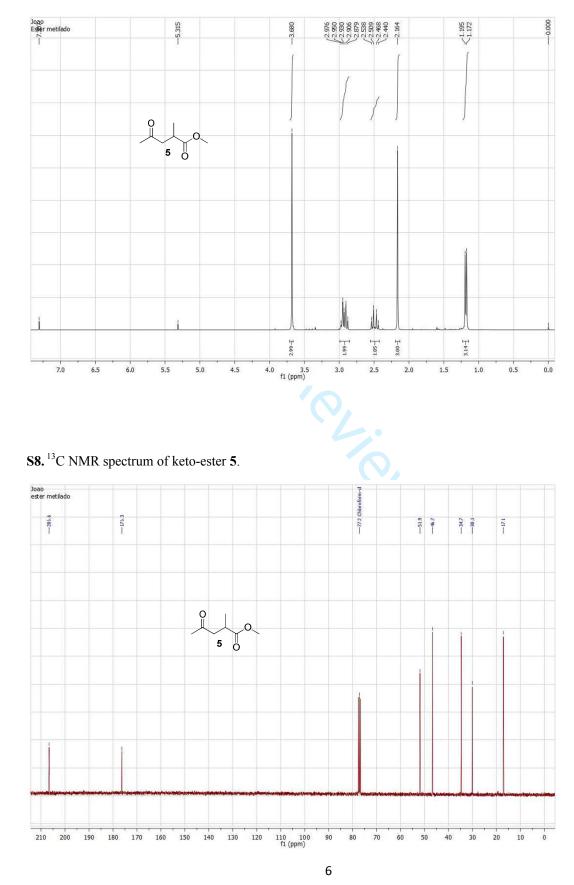
Compound (3): MS (70 eV, EI): m/z (%) 144 (16), 129 (25), 73 (51), 69 (93), 59 (94), 55 (35), 43 (74), 41(100), CG $t_{\rm R}$ = 7.25 min and 7.92 min (diastereoisomers), CP-Sil 5 CB capillary column (30 m×0.25 mm×0.25 µm), temperature gradient: 50 °C (5 min., iso), 10 °C/min to 250 °C. Compound (4): MS (70 eV, EI): m/z (%) 244 (0.4), 229 (2), 216 (0.1), 169 (52), 137 (54), 109 (100), 83 (29), 67 (32), 55 (46), 43 (42), 41 (69), CG $t_{\rm R}$ = 14.39 min, CP-Sil 5 CB capillary column (30 m×0.25 mm×0.25 µm), temperature gradient: 50 °C (5 min iso), 10 °C/min to 250 °C.

URL: http:/mc.manuscriptcentral.com/gbab Email: IBAB-peerreview@tandf.co.uk

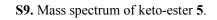

S2. Synthesis of racemic methyl 2-methyl-4-oxopentanoate (5)

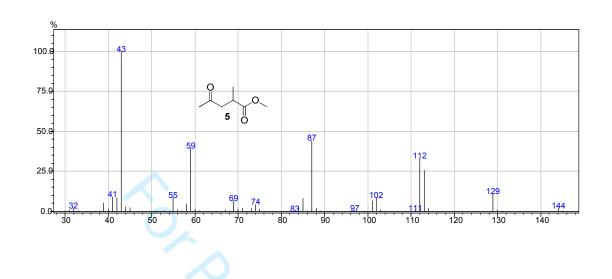


Preparation of compound (5) was made using the same methodology described previously with minor modifications (Ballini 1993). In a two-necked round bottomed flask, a methanolic sodium methoxide solution was prepared by addition of metallic sodium (47.21 mmol, 1.70 g) to an ice cooled dry methanol (110 mL) under N₂ atmosphere. After consumption of sodium, the crude mixture of nitro compounds **3** and **4** (7.39 g) was added under stirring, and the mixture was allowed to react for 15 minutes at room temperature. Next, this solution was transferred dropwise under N₂ atmosphere to a solution of H₂SO₄ (421.10 mmol, 22.5 mL) in methanol (110 mL) at 0°C for 30 minutes. This was then stirred for more than 10 minutes to yield a colorless solution. The work-up was done by addition of 70 mL of water, and the colorless solution became light blue. Methanol was removed under reduced pressure, and the aqueous phase was washed with CH₂Cl₂ (3x40 mL). The organic phases were combined and washed with 10% aqueous NaOH (40 mL), brine (40 mL) and dried with MgSO₄. The mixture was filtered and concentrated under reduced pressure to afford racemic methyl 2-methyl-4-oxopentanoate (**5**) as a pale yellow oil. Purification was done by Kugelrohr distillation at 160°C using a pressure of 12 mbar affording a colorless oil (3.42 g, 52% yield after two steps).

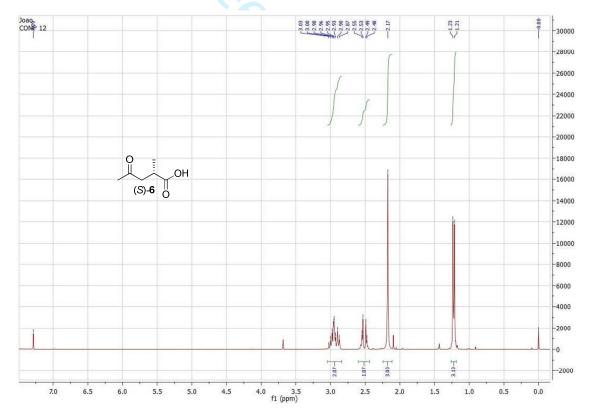

¹H NMR (300 MHz, CDCl₃) δ 3.68 (s, 3H), 2.98-2.88 (m, 2H), 2.54-2.44 (m, 1H), 2.16 (s, 3H), 1.18 (d, 3H, J = 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 206.6 (C=O), 176.3(C=O), 51.9 (CH₃), 46.7 (CH₂), 34.7 (CH), 30.1 (CH₃), 17.1 (CH₃); IR (neat) 1730, 1713, 1157 cm⁻¹; MS (70 eV, EI): m/z (%) 144 (0.8), 129 (4), 113 (11), 112 (15), 87 (23), 69 (5), 59 (33), 43 (100), 39 (11), *Rf* 0.48 (hexanes/EtOAc, 1:1), CG $t_{\rm R} = 4.90$ min, CP-Sil 5 CB capillary column (30 m×0.25 mm×0.25 µm), temperature gradient: 50 °C (5 min iso), 10 °C/min to 250 °C.

S3. Gas chromatogram of diastereoisomers of nitroester **3** and **4**.

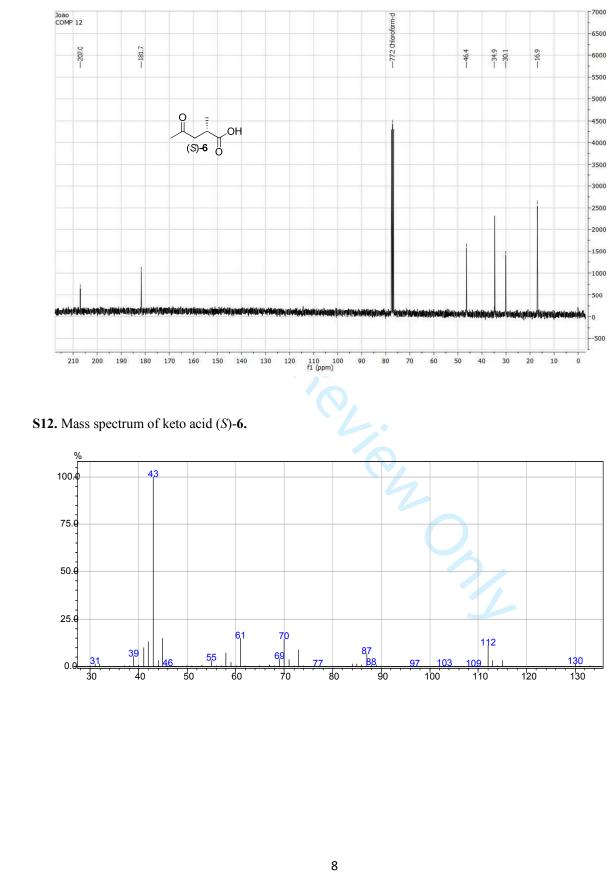


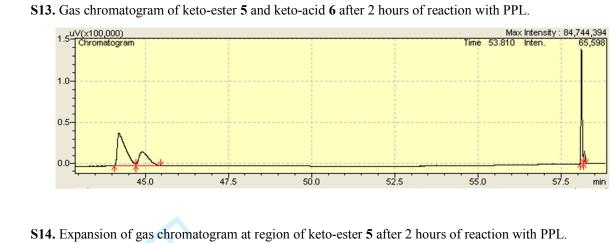


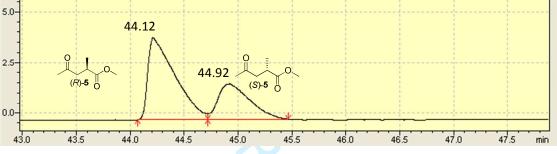
S7.¹H NMR spectrum of keto-ester **5**.

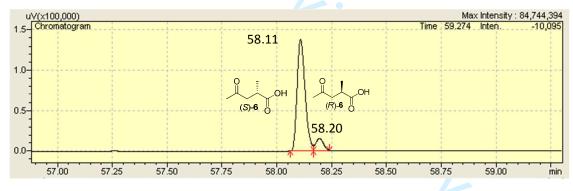


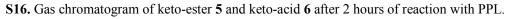
URL: http:/mc.manuscriptcentral.com/gbab Email: IBAB-peerreview@tandf.co.uk

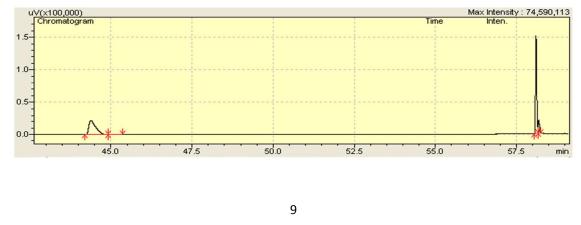



S10. ¹H NMR spectrum of keto acid (S)-6.

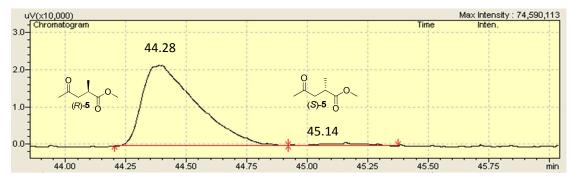

S11. ¹³C NMR spectrum of keto acid (S)-6.

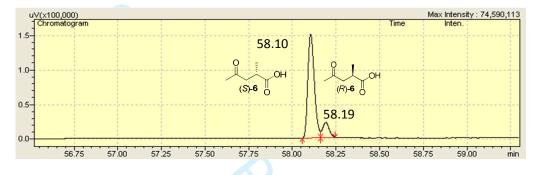




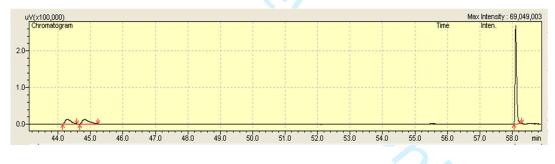

uV(x10,000) Max Intensity : 84,744,394
[Chromatogram 71me 46.098 Inten. 21,076
5.0-

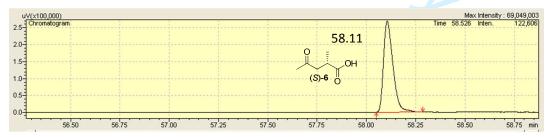
S15. Expansion of gas chromatogram at region of keto-acid 6 after 2 hours of reaction with PPL.





 ${\tt URL: http:/mc.manuscriptcentral.com/gbab\ Email: {\tt IBAB-peerreview@tandf.co.uk}}$


S17. Expansion of gas chromatogram at region of keto-ester 5 after 2 hours of reaction with PPL.


S18. Expansion of gas chromatogram at region of keto-acid 6 after 2 hours of reaction with PPL.

S19. Gas chromatogram of keto-ester 5 and keto-acid 6 after 6 hours of reaction with PPL after recycle.

S20. Expansion of gas chromatogram region of keto-acid 6 after 6 hours of reaction with PPL after recycle.

URL: http:/mc.manuscriptcentral.com/gbab Email: IBAB-peerreview@tandf.co.uk

1 n

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
19 20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
47 48	
40 49	
49 50	
50 51	
51 52	
52 52	
53	
54	
55	
56	
57	
58	
59	

60

S21. Screening of	enzymes to enzymatic	hydrolysis of (<i>rac</i>)-5.

Entry	Enzyme	ee _e (%)	ee _a (%)	Conv. (%)	E	Selectivity
1	CAL-B	1.2	28.2	2.2	1.8	(<i>R</i>)-6
2	Pseudomonacepacialipase	4.4	2.3	5.4	1.1	(<i>S</i>)-6
3	Porcine pancreas lipase	9.0	59.5	10.0	4.3	(<i>S</i>)-6
4	Amano PS	0.7	1.3	1.7	1.0	(<i>S</i>)-6
5	Candida rugosa lipase	1.5	9.4	2.5	1.2	(<i>S</i>)-6
6	Rhizopus niveus lipase	1.5	8.0	2.5	1.2	(<i>S</i>)-6
7	Esterase from Horse liver	45.2	30.9	46.2	2.8	(<i>S</i>)-6
8	Esterase from Candida lipolytica	5.0	44.2	6.0	2.7	(<i>S</i>)-6
9	Esterase from Rhyzopus oryzae	0.2	3.7	1.2	1.1	(<i>S</i>)-6
10	Esterase from Mucor miehei	2.9	22.5	3.9	1.6	(<i>S</i>)-6
11	Esterase from Sacharomyces cerevisiae	0.2	2.7	1.1	1.1	(<i>S</i>)-6

^bConditions: 0.1 mol L⁻¹ phosphate buffer (5.0 mL / pH 7.2), temperature = 25 °C, substrate= 25.0 mg, enzyme= 12.5 mg, reaction time= 2 hours. e_a = enantiomeric excess of carboxylic acid. e_e = enantiomeric excess of keto ester. E = enantiomeric ratio

S22. Effect of variation of value of pH in the reaction media^d

pН	2 hours					4 hours			
pm -	ee _e (%)	ee_a (%)	Conv. (%)	Е		$ee_e(\%)$	$ee_a(\%)$	Conv. (%)	Е
6.2	3.8	44.8	4.8	2.7		7.2	54.1	8.2	3.6
7.2	9.0	59.5	10.0	4.3		13.8	62.3	14.8	4.9
8.0	8.1	56.0	9.1	3.8		13.2	60.4	14.2	4.6

^dConditions: Phosphate buffer 0.1 M (5.0 mL, temperature=25°C, substrate= 50mg, enzyme= 25 mg. $ee_a = enantiomeric excess of carboxylic acid.$

 $ee_e = enantiometric excess of keto ester.$

S23. Effect of addition of co-solvents (10%)	(V/V)) in the reaction media
---	-------	-------------------------

$ee_e = enantiometric excess of keto ester.$ E = enantiometric ratio. S23. Effect of addition of co-solvents (10%) (V/V) in the reaction media ^c									
Co-solvent	2 hours					4 hours			
CO-Solvent	ee_{e} (%)	ee_a (%)	Conv. (%)	Е	$ee_e(\%)$	$ee_a(\%)$	Conv. (%)	Е	
THF	0.5	4.7	1.6	1.1	2.0	12.1	3.0	1.3	
MeOH	1.5	31.4	2.5	1.9	3.9	42.2	4.9	2.6	
Acetonitrile	0.4	6.4	1.4	1.1	1.7	17.0	2.7	1.4	
AcOEt	1.2	11.2	2.2	1.3	3.0	16.8	4.0	1.4	
Acetone	0.8	23.5	1.7	1.6	*	*	*	*	
Diethyl ether	3.3	39.4	4.3	2.4	*	*	*	*	

^cConditions: Phosphate buffer 0.1 M (4.5 mL / pH=7.2), co-solvent= 0.5 mL,

temperature=25°C, substrate= 50mg, enzyme= 25 mg.

 $ee_a = enantiomeric$ excess of carboxylic acid.

 $ee_e = enantiomeric excess of keto ester.$

E = enantiomeric ratio.

* Data not available.

REFERENCES

Ballini R. 1993. 5-nitro-1-pentene as a precursor for the synthesis of allylrethrone. Synthesis. 7: 687-688.

Escalante J, Díaz-Coutiño FD.2009. Synthesis of y-Nitro Aliphatic Methyl Esters Via Michael