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Abstract

This thesis aims to improve the robustness of state estimation (SE) methods currently used by the electric

power industry. The main objective of today’s SE is to estimate system state using redundant measurements

in the presence of bad data and constantly varying network topology. The hoped-for of this thesis con-

tributions concerns the use of embedding techniques to overcome problems related to non-linearities and

uncertainties.

First, in order to improve static SE when reliable historical data is unavailable, we reformulate the least-

squares non-convex static SE currently used as a convex optimization problem by using an embedding

and convex relaxation techniques. We demonstrate a significant improvement in accuracy, particularly in

reactive power/voltage estimates. We propose that the added computational complexity caused by this em-

bedding can be managed by implementing the method as a distributed algorithm developed on the basis of

an underlying power system graph.

On the other hand, when reliable historical data is available, this thesis proposes utilizing them by using

both static and dynamic data-driven state estimation methods. The static estimator uses the an embedding

of the current measurements and learns the state estimator using similar measurement-state pairs in the his-

torical records. Several speedup techniques from machine learning are proposed for overcoming the initial

computational complexity of the proposed method and making it potentially useful for online application-

s. A dynamic data-driven state estimator requires a much faster sampling of the historical data to capture

dynamics. An expectation maximization algorithm for SE is proposed for learning in embedded state space.

Finally, the uncertainties in SE caused by a massive number of distributed energy resources motivate a

fully distributed probabilistic state estimation method. This thesis provides a Bayesian Network solution to

the SE problem in that setting. The proposed method employs a probabilistic graphical model and embeds

it in a ceratin probability space, which allow the use of a variational belief propagation method that is both

scalable and exact for tree networks in distribution systems.

To assess the improved performance achieved by applying the proposed methods in this thesis, we com-

pare them with currently used methods in various simulation scenarios. Using the results, a flow chart is

presented to determine which methods to apply in different scenarios.
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Chapter 1

Introduction

1.1 Power System State Estimation: some Background

A modern society without an electricity supply is unimaginable. Electric power grids have undergone con-

tinuous developments since late 1881 when the world’s first public electricity supply was provided in the

United Kingdom. As one of the most significant infrastructures in human society, the electric power grid

not only provides electricity as a form of flexible, convenient energy for industrial and individual uses, but

also provides it in a clean and relatively easy way to transmit. The current U.S. electric power grid consists

of generation and distribution systems, and is designed with interconnections to power lines of different

voltage levels to improve its transmission efficiency.

Despite 130-plus years of development and engineering, electric power systems are still under intense

pressure to achieve stability against outages and blackouts. A blackout can raise serious issues in the opera-

tion of power systems regardless of its scale of the system; these issues include physical hardware damage,

unexpected network interruption, and subsequent economic loss. After the 1965 blackout, the electric pow-

er industry started to realize that an in-depth understanding of power grid behavior would be necessary in

order to better control grid operations. Accordingly, various funding is provided by government agencies to

support grid-related research. First-generation computers were introduced to the monitoring system; these

enabled power grid operators to supervise and manage operations by simply watching the telemetered data

showing on the computer screens and deciding whether the systems were functioning normally. With the

assistance of computers, power system monitoring and control evolved into what is now called a Superviso-
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ry Control and Data Acquisition (SCADA) system. Such a computer-aided monitoring centralized system is

useful in many respects since it replaces manual measurements with automatic measurements that run online

simultaneously and sound the alarm when the data gathered exceeds setting limits. However, operators have

found that computer-aided monitoring is unable to track the status of the power system as a whole and has

difficulty predicting a system’s stability. In addition, SCADA could not deal with suspicious, delayed, or

missing data arisen from measurements.

Schweppe, a pioneer in power system security analysis, first pointed out to the power system society the

possibility of using computer assistance to estimate the “states” of the power system. His comments led to

a revolutionary concept - State Estimation (SE). He described in his introductory papers [1] two parts of the

SE process, namely, power system modeling and subsequent state analysis. In the modeling, all generators,

transformers, and loads are represented by network buses that are interconnected via branches. Branches

represent electric transmission lines. In the analysis, SE is designed to extract hidden state information from

redundant measurements and use such state information to calculate real time load flow, etc. Fig.1.1 displays

the major role played by SE in power system operation.

Figure 1.1: State Estimation in power system operation.
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The introduction of SE into the power grid was a breakthrough that led to significant benefits. Turning

to the multifold characteristics of SE, as displayed in Fig.1.2, we find the first benefit comes from allowing

operators to visualize the operating point of a power grid so that proper control can be applied accordingly.

The second benefit comes from SE’s complete system representation, which operators can input into various

security and economic analysis programs. Finally, the most beneficial characteristic is SE’s ability to provide

estimated measurements for real time power flow analysis when actual measurements are not available or

bad. Specifically, SE can recover by estimation the specialized data necessary to analyze real time flow

when such data cannot be obtained through actual measurements, such as real power and reactive power

(PQ) values from all load buses, or real power and voltage magnitude (PV) values from all generator buses.

Without the recovery of needed data, the power system will not be able to function in an economic, efficient

manner as desired by both users and operators. SE’s characteristics of completeness attract a large number

of electric system engineers, who believe SCADA and SE can actually complement each other, i.e., SCADA

is very fast in displaying various measured data without mathematical computation, while SE computes

many unmeasured data based on available measurements. Together they form the basis for the Energy

Management System (EMS), which is basically a database with various security analysis programs.

Figure 1.2: Benefits from State Estimation.

Inspired and encouraged by SE’s potential benefits, power system engineers have been delving into SE

application for the past few decades, with the following systematic steps achieved: (1) Measurements are

read into sensors and communicated to the SCADA Data Center; (2) A data verification process is run

to filter out obvious inconsistent data; (3) Bus breaker status data are loaded to form a bus-branch level

topology; (4) Based on the topology, the grid is divided into a core grid and islands with a bus number

assigned to each of them; (5) Observability analysis is performed with observable and unobservable areas

marked by different colors on the screen; (6) In the observable areas, SE is conducted; (7) The SE result

is fed into a bad data program to check for possible gross errors. If there are gross errors, they are filtered
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out, and the program goes back to step (5); (8) Topology error is checked based on the SE results and

analog power flow measurements in the substation. If an incorrect topology is detected and identified, the

program goes back to step (4); (9) The SE results and measurements are marked on the monitors. Critical

measurements are drawn with colors; (10) The SE result is outputted to the other security analysis programs;

and (11) The SE result is used for AC Optimal Power Flow calculation.

SE is currently referred to as the static SE described above, which is conducted at a two-minute rate.

However, when a topology change is detected or upon the operator’s request, a new SE process will start

based on the most current information. In the case of unexpected data loss, pseudo measurements performed

prior to the loss will be used to create an estimate that is better than the operator’s own guess and certainly

better than the absence of necessary data. However, pseudo measurements also lead to in inaccuracy when

solving the missing data problem since it becomes more difficult to retrieve the lost data when time passes

and possible status change can occur within the unobservable areas. In general, though, the systematic

SE steps described above are useful in achieving stability and an economic operation of the power system

despite the potential problems they raise.

1.2 Challenges in AC Electric Power System State Estimation

1.2.1 Non-convexity

A major challenge in power system control is obtaining accurate and computationally efficient state esti-

mation (SE). Many widely used algorithms solve the SE problem by using a Weighted Least Square (WL-

S) [2–6] estimation form with Newton’s method (i.e. [7]). However, these approaches have local optimum

issues due to their problem formulation. For instance, although the WLS approach is known to give closed

form solution and a global optimum result for linear Least Square problems with Gaussian noise, the ap-

proach loses both properties when dealing with an AC power system SE problem. This is caused by the

inherent nonlinear power system equations, which turns the SE problem into a nonlinear Least Square

problem. Mathematically, different than the unconstrained convex quadratic programming (QP) problem

generated by the linear least square problem, the SE problem is formulated with a non-convex objective

with polynomials of order four. For a non-convex optimization, Newton’s method cannot guarantee a global

optimum, even if it is useful in obtaining a local optimum by successively finding a better approximation.
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The key observation from above is that: trying to deal with noise and nonlinearity in one-shot is difficult

for state estimation. If Newton’s method hits the global optimum by luck, the two problems are solved

perfectly and simultaneously. However, there is no guarantees over it. If Newton’s method hits a local

optimum, neither the nonlinearity nor the noise problem is solved. Beside this troublesome property, there

is also no way to check whether the solution is a global optimum or a local optimum, making the sub-optimal

result undetectable. Therefore, there are two big challenges for the static state estimation approach. One is

how to deal with noise and nonlinearity separately from the search for optimal result. The other lies in how

to evaluate the optimality of the SE results.

Remark One method to solve the nonlinearity is to rely on Phasor Measurement Unit (PMU) measurements

[8] alone. For instance, the ongoing industry pilot experiments plan to have PMU measurements installed at

all major 230 KV substations and all large generators. However, because the deploying process is gradual,

there will be limited PMU measurements [9] for a long time. Further, current experience shows that PMU

measurements are imperfect and their accuracy depends on the manufacturing qualities and various sources

of uncertainty (GPS synchronization, instrument transformers, A/D converters, etc.). Even if all buses

are equipped with PMUs, we still need redundancy from other measurement types for robustness [10].

Therefore, we need a general SE method that deals with combined SCADA and PMU data.

1.2.2 Unused Historical Data

On the other side, the static SE above and Power Flow computation both aim at providing better system op-

eration (BSO) with optimality and feasibility. However, a proper definition of BSO is needed. Furthermore,

questions like “how much accuracy is needed?” and “what resources are available for a better BSO?” remain

to be answered. For example, in one of our preliminary works on static SE, we showed how to solve the

WLS SE problem exactly under no noise assumption. We concluded that when the noise is small in the mea-

surement, the true state is also close to the state estimate of the new approach under no noise assumption.

This is true under the smoothness condition of power equations. However, what if the noise is large–i.e.

due to bad data and topology errors, or a compromised data set? Although there are have been heuris-

tical methods to deal with them statically in the past, recent advances in new devices and corresponding

investments such as advanced meter infrastructures (AMIs) and synchrophasors have led to unprecedented

measurements and data in the electric power industry and opened the door for smart learning to deal with
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large uncertainties. High-performance computers that are becoming available in SCADA centers can further

assist such a data-driven approach to create a more efficient modeling process.

1.2.3 Scalable Monitoring in a Smart Grids

In addition to historical data and high performance computers at the SCADA center, decentralized compu-

tational resources are also becoming available in the smart grid. How to use these small but smart devices

in a distributed manner to conduct robust monitoring raises another big question about reliable power grid

operation. This is particularly important now that distributed renewable generators are built in the distribu-

tion system. A large-scale implementation of this type of generator can lead to strong power fluctuations

in the power grid. The voltage, for example, will no longer be imposed by the large, centralized power

stations, and voltage stability of the system becomes an issue. Traditionally, the distribution network is a

passive network that depends totally on the transmission network for energy delivery, frequency control, and

voltage regulation. In a future horizontally-operated power system, the power is not only consumed by, but

also generated in, the distribution network. Therefore, both the transmission and distribution networks need

to change into active, distributed, and intelligent networks.

In addition to a distributed monitoring for robustness, scalability will also be important for future large-

scale smart grids. The industrial method for SE is non-scalable and computationally complex [11], and

is typically used for Extra High Voltage (EHV) and High Voltage (HV), and is only occasionally used for

Medium Voltage (MV) representation of complex multi-voltage level power grids. Such a non-scalable

method makes it difficult to estimate the status and states of new diverse resources and users connected to

Low Voltage (LV) level distribution systems. Generally, the power system operators of traditional power

grids have faced inherent difficulties in managing the effects of small-scale generations and loads, includ-

ing but not limited to renewable energy generators, responsive small electricity users, and electricity users

capable of storage, such as electric cars. While these new components are more environmentally friendly,

and capable of increasing fuel diversity and bringing in economic benefits, they also raise serious concerns

regarding the secure and reliable operation of the backbone EHV/HV power grids. Therefore, their state

needs to be estimated in order to account for their effects on the state of the backbone power grid. This

need to estimate the on-line state in the entire electric power grid makes it even more difficult than before to

manage all data in a centralized way.
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For future electric energy systems, a multi-layered, distributed implementation of SE will be the preferred

approach. This application requires a systematic design of distributed algorithms whose performance does

not fall short of the centralized methods.

1.3 Our Contributions

Our major contribution lies in re-modeling state estimation by utilizing new optimization tools, historical

data, high performance computers, and distributed intelligence aided by relevant mathematical embeddings

of the problem. These new modeling approaches can be extended to bad data detection and the topology

identification process.

1.3.1 Convex Relaxation-Based Approach

To deal with noise and nonlinearity separately for static SE, and to evaluate the optimality of the obtained SE

results, our first contribution is to propose a Semidefinite Programming (SDP)-based approach first. Specif-

ically, to deal with the noise, such an approach first relaxes the nonlinear non-convex optimization problem

into a convex optimization problem [12, 13] by embedding the state space into a higher dimensional space,

which can be solved exactly. Second, eigenvalue decomposition is used to deal with the nonlinearity by

choosing the most likely state, which helps eliminate local optimum issue in current SE. Third, an universal

lower bound unavailable in the past is derived, which can be used to evaluate the optimality of arbitrary state

estimation result.

Using simulations on several IEEE Test Systems of up to 118 buses, the centralized convex relaxation

approach results in significantly higher accuracy than the currently used WLS SE. These accuracy improve-

ments are evidently shown in the reactive power residuals. Such fact offers the major promise for accurate

voltage-reactive power estimation. Unfortunately, the simulation results also show that the SDP-based ap-

proach has an undesirable computational burden which grows as a polynomial in the number of buses in the

grid.

Therefore, a graph-based decomposition is subsequently conducted to decompose the positive semidefi-

nite constraint, and the Lagrangian dual method is applied to decompose the objective to design a distributed

SE algorithm, so that the computational complexity raised by centralized positive semidefinite programming

7



can be reduced. Further simulation results show that such a distributed SDP approach can further advance

the centralized relaxation approach by obtaining the same accuracy with significantly less computation time.

Figure 1.3: Logic among the three contributions.

Further, although the SDP-based approach above is an approximation approach, we can show that a

similar approach guarantees the global optimum when there is no noise. Although this is a special case, we

can show an approximate global optimum SE result via the statement of “Small change in the noise causes

small change in the state” under the continuity assumption.

Finally, numerical results shows that our proposed SDP approach can improve upon the industrial ap-

proach by 30% on average in accuracy.

1.3.2 Data-Driven Approach

The second contribution of this thesis is demonstrating the potential to enhance current static SE with data

mining over previously unused historical data.

For data-driven static SE, this thesis proposes a Bayesian approach based on a discriminative model.

The proposed method is based on the idea that two similar system measurement sets usually indicate two

similar operation conditions (system states). In particular, it first computes the distance between the current

measurement set and the historical measurement set to identify a measurement set similar to the current

one. Then, the identified set is fed into the discriminative model, obtained by embedding the measurement
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space into a higher dimensional feature space. Then, parameters of the discriminative model were obtained

via kernel ridge regression [14] in a supervised learning. Under the same framework, we further extend

the kernel ridge regression from continuous variables to the kernel logistic regression for discrete variables.

Under the same framework of Nearest Neighbors search, a historical data-driven topology identification

approach is introduced.

For data-driven dynamic SE, this thesis aims at learning the parameters of a linear dynamic model based

on historical data. Different from other works [15,16], the parameters in the proposed model are obtained via

supervised learning over historical data with an Expectation-Maximization (EM) algorithm. This approach

outperforms traditional static SE methods and dynamic SE with a linearized state space model [15,16]. The

advantage is provided by its purely data-constructed modeling, where data can be flexibly organized for

learning in accordance with the cyclic tendency of power system operation. To solve the inherent system

nonlinearity, a polynomial kernel function inspired by the proposed SDP approach is employed for feature

space embedding.

Our simulations show that the proposed data-driven approach is particularly useful when reliable histor-

ical data is available. The improvement could be as high as 90% in the state domain.

1.3.3 Graphical Model Approach

Besides historical data, the increasing computational resource in various part of the power network gives the

grid many powerful local computational abilities. Our third contribution lies in the graphical modeling

of uncertainties in the smart grid, which utilizes these local computational abilities and historical data for a

probabilistic and distributed state estimation. Such a graph representation is motivated by an abstract model

of ‘large-scale physical networks’ that are represented as a graph. The vertices of the graph represent state

variables, which have a concrete physical interpretation as voltage. Other auxiliary variables of interest rep-

resent physical quantities, quantities that obey known physical laws (such as Kirchoff’s laws) that determine

the interaction of these state variables. In the graph, these interactions are represented by the edges of the

graph. Based on the graphical model, this thesis conducts a computationally-tractable distributed inference

called Variational Belief Propagation (VBP) [17], whose basic form of “Belief Propagation” has recently

had significant success in application to areas such as expert reasoning, information theory, communica-

tions, and image processing. VBP embeds the probability model into a larger probability space, so that the
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estimation problem can be solved approximately.

Our numerical results show that when distributed intelligences are available and the historical data reflect

good priori on the state, the accuracy improvement is 80% on average. The improvement in computation

time is even higher; only 1
10 time of the current industrial approach is needed.

1.4 Notion of Embedding

An embedding process is described by a mathematical structure, where one structure is included in another

one. Such a structure can be a topological object, manifold, graph, field, etc. Mathematically, f : A ↪→ B

is used to indicate that A is embedded in B in such a way that its connectivity or algebraic properties are

preserved [18].

Figure 1.4: Embedding process.

Embedding techniques are used in different methods to handel non-linearity and design approximate SE

algorithms.

• In Chapter 3, we embed system state in the space of positive semidefinite matrices to allow the use of

a convex optimization relaxation;
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• In Chapter 4, we embed the measurement space into a high-dimensional “feature space”, to allow the

sue of discriminative regression of the state.

• In Chapter 5, we embed the probabilistic graphical model related to the power grid in a larger prob-

ability space, so that Bayes estimation can be approximated using tree-based estimation for which

exact solution exists.

1.5 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 presents various models for AC state estimation that will be employed in the thesis. For static

SE, we review the classical estimation model and propose a Bayesian estimation model and supervised

learning model. For dynamic SE, we employ dynamic state space representation.

Chapter 3 introduces a convex relaxation-based semidefinite programming approach to deal with non-

linearity and noise in static state estimation model. To evaluate its performance, a new metric called “con-

fidence” is derived. To reduce the computational complexity, a distributed semidefinite programming ap-

proach is introduced. Finally, we obtain an exact solution for a special case, where no noise exists.

To utilize unused historical data, Chapter 4 designs a supervised learning framework to improve state

estimation. Kernel ridge regression is proposed in a Bayesian framework based on robust Nearest Neighbors

search. To enable online data-driven SE, techniques such as dimension reduction and k-dimensional tree

indexing are employed with a 1000 time speedup in the simulations. As an extension, topology identification

is demonstrated with the Nearest Neighbors approach but with kernel logistic regression.

Chapter 5 proposes a probabilistic graphical model to account for new uncertainties in the power grid-

s. Subsequently, a single (joint) most likely state(s) is efficiently located via local sum-product (or max-

product) computation in a distributed belief propagation manner achieved by the increasingly available

cyber (i.e., computational and communication) intelligence. To improve the algorithm, a sequential tree

re-weighted message passing algorithm is proposed to guarantee optimality, deal with convergence issues,

and reduce required computer memory.

Chapter 6 carries out numerical simulations of the proposed methods under different scenarios using

the IEEE standard test-bed systems. The simulation results illustrate the tradeoffs among various proposed
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approaches, which are compactly represented in a flow chart.

Chapter 7 provides a summary of this thesis and points out future research directions.

12



Chapter 2

Problem Formulation

While somewhat under-appreciated, modeling that captures the phenomena of interest is the basis for anal-

ysis and control approaches that address the temporal and spatial complexities of large-scale electric power

systems. In recent years, new sensing and communication technologies have been deployed to enable the

identifications of parameters in the various models. At the same time, since the electrical power industry is

being deregulated, open access has been provided to competitive independent entities. In this chapter, we

introduce models needed for analysis and control design in future electric power grids. Various static and

dynamic modelings of the state estimation (SE) problem are presented. The goal is to capture the impacts of

new entities on system-level response, so that the local behavior of these entities and the interactions among

them can be derived.

In Section 2.1, we introduce several static SE models. In particular, in subsection 2.1.1, we introduce

the widely used WLS model with AC system measurement equations. In subsection 2.1.2, a Bayesian SE

model is introduced by additional compact priori information. In sub-section 2.1.3, a supervised learning

model is introduced by using historical information. All of the above can be regarded as static approaches,

and we define a dynamic state space model in Section 2.2. In Section 2.3, the inherent relationship among

these models is summarized.
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2.1 Static AC State Estimation

2.1.1 Classical Estimation Model

For static AC power system state estimation, the measurement model is typically expressed as

zi = hi(v) + ui, (2.1)

where the vector v = (|v1|ejδ1 , |v2|ejδ2 , · · · , |vn|ejδn)T represents the power system states (the complex

voltages of all the buses) in Fig.2.1. ui is the ith additive measurement noise, assumed to be an independent

Gaussian random variable with zero mean, i.e., u ∼ N (0,Σ), where Σ is a diagonal matrix, with the ith

diagonal element σ2
i . zi is the ith telemetered measurement, such as power flow and voltage magnitude.

hi(·) is the nonlinear function associated with the ith measurement.

Figure 2.1: IEEE 14 bus system.

The power system state estimator aims to find an estimate (v̂) of the true state (v) that best fits the

measurement set z according to the measurement model in (2.1), which is usually achieved by minimizing

the following criterion

min
v

Jp(v) =
m∑
i=1

∣∣∣∣zi − hi(v)

σi

∣∣∣∣p, (2.2)

where the parameter p (p ≥ 0) is chosen to achieve the desired performance. For example, for p = 1,

the above problem reduces to the WLAV estimation [7] known to be robust against bad data. For p = 2,
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the above problem corresponds to the conventional WLS estimation. The WLS or WLAV estimations are to

solve (2.2), subjecting to (2.1). However, the optimization problem in (2.2) is highly nonconvex and difficult

to solve optimally. Therefore, in practice, such a nonconvex estimation problem is conventionally solved by

applying Newton’s method, a local search algorithm highly sensitive to the initial guess.

Extension One can also extend the formulation to include substation topology identification by adding

Mif into the measurement model (2.1), where the vector f is used to model the vector of power flows

through the circuit breakers of suspect substations [7], and Mi represents the circuit breaker incidence

matrix. Therefore, the extended power system state estimators aim to find an estimate (v̂, f̂ ) of the true state

(v, f ) that best fits the measurement set z according to the measurement model in (2.1).

min
v,f

Jp(v, f) =
m∑
i=1

∣∣∣∣zi − hi(v)−Mif

σi

∣∣∣∣p, (2.3)

Topology identification can be achieved with the formula above using a two-step method in [7]. In step

one, we let p = 2, and f = 0.

min
v

J2(v) =
m∑
i=1

(
zi − hi(v)

σi

)2

. (2.4)

Then, the estimated v̂ is used to calculated the estimated measurement residual:
(

zi−hi(v)
σi

)2

. After-

wards, the bus with the largest residual is extended into the sub-station model. In the second step, (2.3)

with p = 2 and f ̸= 0 is used to identify the circuit breaker status based on estimated sub-station flow

information f .

min
v,f

J2(v, f) =

m∑
i=1

(
zi − hi(v)−Mif

σi

)2

. (2.5)

Once the analog f is obtained, the analog estimate is used to predict the discrete status of the bus breakers

in the substation for topology identification.
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2.1.2 Bayesian Estimation Model

When prior information or a Bayesian inference is preferred, the following model can be used. Later, we

can show that as a generalization of the classic estimation model, Bayesian model is a natural extension of

WLS approach for scalability with probabilistic estimates, which are desirable in the future smart grid.

The probabilistic measurement model of static AC power system state estimation is expressed the same

as (2.1), but with v representing the probabilistic power system states, instead of the conventionally used

deterministic states. In this new method, a power grid is defined as a physical graph G(V,E) with vertices V

representing the buses (slack, generator, load buses) and edges E representing their interconnection (trans-

mission lines, etc.). It can be visualized as the physical layer in Fig.2.2. The probabilistic power system state

Figure 2.2: Physical network and cyber network (14 bus system).

estimator aims to find an estimate (v̂) of the true state (v) that achieves the maximum a posteriori probability

(MAP), given the measurement set z and the priori information on state v according to the measurement

model in (2.1). It is mathematically expressed as

max
v

p(v|z) = p(v)p(z|v)
p(z)

, (2.6)

where p(·) represents the probability density function. Such a process is achieved via the cyber network

layer as in Fig.2.2. In this thesis, the cyber network topology is the same as the physical network topology.
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2.1.3 Discriminative Estimation Model

Discriminative models are a class of models that models the dependence between unobserved variables and

observed variables. Different from Generative model, which relies joint distribution between unobserved

variables and observed variables, Discriminative model does not require such information. It is usually

designed to directly learn the posterior probabilities under a supervised learning framework [19].

Mathematically, we assume that the conditional distribution of state set x given the measurement set z

follows a probability distribution.

x|z ∼ p(x|z) (2.7)

The goal is to use historical data below to learn the parameters that describe the conditional probability.

• a sequence of historical state estimates column vectors: x1,x2, · · · ,xk, · · · ,xQ;

• a sequence of historical measurement function sets: h1,h2, · · · ,hk, · · · ,hQ.

2.2 Dynamic AC State Estimation

2.2.1 State Space Model

If fast measurements, i.e. PMU, are available, one can utilize the physical dynamics in addition to the

historical data.

To introduce historical data-driven SE into power systems, we consider a sequence of historical SCADA

measurements obtained every 2 seconds or less. These measurements are represented as a discrete time

sequence {z1, z2, · · · , zk, · · · ,zQ}. The corresponding states are {x1,x2, · · · ,xk, · · ·xQ}. The measure-

ment equations (i.e. power flow equations) relate the measurements and states as

xk = f(xk−1) +wk, (2.8a)

zk = h(xk) + uk, (2.8b)

where the state vector xk = (|vk,1|ejδk,1 , |vk,2|ejδk,2 , · · · , |vk,n|ejδk,n)T represents the power system states

(n-bus system) at time slot k ≥ 0. f : Rn → Rn represents the state transition function that maps the
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state from time slot k − 1 to k, and h : Rn → Rm represents the measurement function taken at time slot

k. wk and uk are additive processing noise and measurement noise vectors, both of which are assumed to

be independent Gaussian random variables with zero mean and a diagonal covariance matrix, i.e., wk ∼

N (0,Γ), uk ∼N (0,Σ). zk is a telemetered measurement column vector at time slot k, such as power flow

and voltage magnitude. Notice that ui and uk represent two different but related terms. ui is used in a static

fashion, where the subscript i represents the measurement noise index in the measurement set in the current

time slot. Elsewhere, the uk represents a noise vector in the measurement set with an assigned historical

time slot index k.

Power system dynamic state estimation aims to find a sequence of estimates {x̂k} of the true state

sequence {xk} that fits the measurement set sequence {zk} best according to the dynamic model in (2.8)

with a minimized mean-square error (MMSE). Due to the difficulty in dealing with nonlinearity seen in

(2.8), the following linear dynamic system is adopted in practice,

xk = Axk−1 +wk, (2.9a)

zk = Cxk + uk, (2.9b)

where matrices A and C are the state transition matrix and the measurement matrix respectively.

2.3 Chapter Summary

While facing many challenges, the fast evolving power grid also incorporates various information compo-

nents, such as high performance computers, large set of historical data, and distributed computation. How

to model these new components and try one’s best to eliminate problems, such as local optimum and the

inability to detect a large number of topology errors, is extremely meaningful work for both the academic

and engineering fields. Furthermore, since the Electric Power Network is an example of case for more gen-

eral concepts such as cyber-physical systems, such a modeling process with its strong logic will help the

modeling processes for other CPS, such as watering systems.

In the next three chapters, we will utilize the models introduced in this chapter in different scenarios.

Then several state estimators are proposed. Performance guarantees are obtained in some cases.
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Chapter 3

Semidefinite Programming for Convexifying

Static State Estimation

While a decoupled-real-power-voltage state estimator that uses a linear (DC) power flow formulation is

a convex weighted least square optimization problem, a fully coupled power-voltage AC state estimation

problem is generally a very nonlinear, nonconvex problem [1,20–26]. For example, the currently used static

AC State Estimation (SE) has both a nonconvex performance objective (2.2) and nonlinear measurement

model (2.1). This causes numerical problems in state estimators (2.2)-(2.5), which rely on Newton’s method.

Newton’s method is known as a local search algorithm that is highly sensitive to the initial guess. Due to its

non-convexity, current SE has a local optimum issue that leads to inaccurate estimation results. A further

issue is the lack of an analytical tool to assess the performance of the current static state estimator. Therefore,

conventional approaches in today’s SE are prone to sub-optimal solutions, which creates an unacceptable

gap between the true and estimated voltages.

The proposed approach in this chapter is necessitated by open questions concerning the ability to compute

the SE global optimum. Specifically, we propose a convex relaxation approach that convexifies the SE

problem for a global optimum estimate by looking into the structure of static SE formulation. To lay the

foundation for our analysis, we introduce briefly Semidefinite Programming (SDP) in Section 3.1. Then

we review the current state-of-the-art SDP method for power system analysis in Section 3.2. We introduce

in Section 3.3 a centralized SDP-based SE approach to solve the non-convexity problem for the current

sub-optimal SE problem by using the embedding techniques introduced in Section 1.4. We then explain
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the specific structure of the problem before reaching an efficient algorithm for finding the global optimum,

namely, the most accurate estimate of the state. To evaluate the performance of our proposed SE, we derive

a lower bound, which can also be used for arbitrary static state estimator in the measurement domain. We

show that our estimate is close to the global optimum even when measurement noise is present, while

the current SE only finds a local optimum. Unfortunately, the proposed centralized method requires a

large computational overhead. To solve this problem, we introduce in Section 3.4 a distributed version to

facilitate the practical applications of the proposed SDP-based SE. Finally, in Section 3.5, we derive another

SDP-based approach capable of solving the static SE precisely in a no-noise setting. Numerical results are

illustrated in each section, and Section 3.6 summarizes the entire chapter.

We briefly introduce SDP formulation in below. Interested readers may refer to the book Convex Opti-

mization [27].

3.1 Introduction to Semidefinite Programming

Generally speaking, Semidefinite programming (SDP) is an optimization problem that aims to minimize

(maximize) a linear objective function over a region described by a positive semidefinite cone. Although a

recent theory, SDP has become increasingly popular, and has drawn increased research interest over the past

few decades. Researchers may have different opinions, but one direct cause is the positive-semidefiniteness

constraint’s natural appearance for many practical problems in operations research, combinatorial optimiza-

tion, and control theory. Examining its relationship to other optimization classes, we observe that many

existing and well-known convex optimization problems, such as linear programming and (convex) quadrat-

ically constrained quadratic programming, can be reformulated in an SDP context, offering a unified way

to study the properties and derive algorithms for a wide variety of convex optimization problems. Most

importantly, SDP can be solved very efficiently both in theory and in practice in a polynomial time frame

due to its convex characteristics.

Mathematically, SDP optimization [28] is defined as a problem to minimize a linear function J of a

variable x ∈ Rn, subjecting to a linear matrix inequality.

min
x

J(x) = cTx

subject to F (x) 4 0,

(3.1)
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where the coefficient vector c ∈ Rn and F (x) , F0 +
∑n

i=1 xiFi, with matrices F0, · · · , Fn ∈ Rn×n

symmetric. The inequality sign in F (x) 4 0 means that F (x) is positive-semidefinite, i.e., cTF (x)c ≥ 0

for all c ∈ Rn.

In semidefinite programming, the convexity property of positive semidefinite constraints plays a key role.

For example, let F (x) be a matrix based on variable x, and use F (x) < 0 to indicate that the matrix F (x)

is positive semidefinite. Then if F (x) < 0 and F (y) < 0, we can show that the convex combination of the

x and y inputs to the function F equals the convex combination of F (x) and F (y).

F (λx+ (1− λy)) = λF (x) + (1− λ) < 0 (3.2)

where λ, 0 ≤ λ ≤ 1.

We will now use an example to explain how semidefinite programming works and we will form a

semidefinite programming for power system analysis later in the chapter [28]. Consider the minimization of
(cTx)2

dTx
, where x is the optimization variable, and c, d are known vectors,

minimize
x

(cTx)2

dTx
. (3.3)

To convert (3.3) into a convex form, we rewrite its equivalent formulation as follows:

min
t

t

s.t.

 t cTx

cTx dTx

 4 0.
(3.4)

The optimization above has a linear objective, which is convex. It also features a positive semidefinte

constraint, which is convex as shown in (3.2). (3.4) is a standard form for positive semidefinite programming.

Notably, the quadratic form in (3.3) is similar to the square in the sum square error of WLS. This is one of

the keys as to why Semidefinte Programming is suitable for SE.
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3.2 Current State-of-the-Art of Semidefinite Programming (SDP) for Power

System Analysis

Similar to State Estimation (SE), Optimal Power Flow (OPF) has played an important role in power system

analysis ever since its introduction in 1962 [29]. Due to the non-convexity of OPF formulation, conventional

iterative algorithms can only guarantee local optimal solutions. An interesting feature of the OPF problem

is that power flow equations can be formulated as a quadratic form of complex voltages in a Semidefinite

matrix. By writing the power flow equations with this semidefinite matrix, the original nonconvex OPF

problem can be re-written into a convex Semidefnite Programming form. Therefore, the formulation can

convexify partial OPF optimization. Once a convex relaxation techniques are applied, the convexified OPF

problem can be solved with a global optimum result within polynomial time.

Following this observation, [30] conducted initial analysis in convexifying Optimal Power Flow (OPF)

problems.Recently, [12,13] studied AC OPF problems and showed that the SDP-based approach is a promis-

ing method for overcoming the nonlinearity problem by working in the more structured and embedded space

induced by SDP formulation. Their SDP-based approach applies convex relaxation techniques to transform

the nonlinear, non-convex optimization problem into a convex optimization. But a rank-one constraint in-

volved may hinder the reformulation process, because it can not be easily removed. The study reached its

conclusion by assuming that such a non-convexity constraint does not affect the final optimization results.

However, practical evaluation shows the opposite. While practical OPF problems where the SDP method

generates zero duality gaps [31, 32] do exist, there are also many cases where the duality gap is strictly

nonzero.

For example, some current ongoing research is uncovering the conditions that could bring about for

zero duality gap. These conditions include highly limiting requirements on power injection and voltage

magnitude limits. They also impose either constraints on the radial networks or an unrealistically extensive

placement of controllable phase shifting transformers [12]. [32] shows that non-convexities in association

with small subsections of the network are responsible for non-zero duality gap solutions in larger networks.

While providing many promising results, the SDP approach was also observed to be computationally

expensive [33], because the optimization variable expands from a vector variable to a more complex matrix

variable. To remove such limit, [34] utilizes graph theory results to conduct a parallel computation of OPF

that leads to a faster computation time for the SDP approach.
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Motivated by the ongoing success in solving OPF problems with an SDP-based approach, [33,35] applied

similar ideas to AC state estimation, which also has a major challenge of non-convexity. The application

focuses on improving SE accuracy by convexifying the SE problem. In particular, our prior work [33]

successfully achieved complex voltage re-construction by utilizing the dependency among the intermediate

states with the more structured and embedded space induced by SDP. Here, we refer to this method as the

SDP-based convex relaxation method for state estimation.

A recent work [36] also tries to embed state space in order to solve the nonlinear SE problem non-

iteratively. By treating a pair-wise, voltage-product as a new state, a linear set of equations is obtained.

Subsequently, the state of a non-linear AC power system can be solved directly in a non-iterative manner by

applying the “re-linearization” technique promoted by the study. This solution is direct because it utilizes

neither the traditional Least-Squares objective function nor its derivatives.

3.3 Semidefinite Programming-Based State Estimation

It has been observed that solving nonlinearity and noise together at one time is difficult. One can try to use

a DC approximation to resolve the nonlinearity problem first, and focus on the noise in the optimization.

Although such a method creates large estimation error, it eliminates the local optimum problem, and has a

close form solution with global optimum properties. Similarly, to solve them separately, we seek to explore

the special structure of AC SE in this section and propose an SDP-based approach.

Such an SDP-based approach is motivated by the very recent research about convexifying AC Optimal

Power Flow (AC OPF) using an SDP approach [12] as described in Section 3.2. This thesis attempts to

convexify the AC SE problem given in [7] by posing the SE problem formulation as an SDP problem.

This idea is based on the recognition that AC OPF and AC SE have similar structures. Notably, AC SE

problem formulation (2.1) - (2.2) is distinctive from AC OPF problem formulation in that it does not impose

explicit inequality constraints on system input (generation, demand), system output (line flows, reactive

power of generators), nor on system states v. As such, it does not have the related feasibility problems of

AC OPF [13].

Specifically, we perform an algebraic transformation of the direct SE problem formulation by embedding

the state space in a feature space of positive semidefinite matrices. As a result, the original non-convex

problem is relaxed into an equivalent but convex semidefinite programming (SDP) problem. Notably, the
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nonlinearity problem temporarily disappears in the relaxed problem, and a global optimum can be reached.

Then, we recover an estimate of the work in the original state space by using an eigenvalue decomposition.

In the following, we will illustrate the know-how to convexify the static SE problem with generalization to

bad data detection and topology error identification. We will also provide a new metric called SE confidence

to measure the performance of various estimators.

3.3.1 Embedding of State

Much the same as in the recent SDP formulation of AC OPF, one can reformulate a conventional SE problem

as an SDP problem. This is done with the intent to arrive at a good convex approximation to the non-convex

SE problem. To start with, instead of using complex voltage v as the optimizing variable, we use W , xxT

1 in state estimation where x , (Re(v)T , Im(v)T )T has been embedded as a rank-one matrix W ; the

coupled AC power flow equations can be expressed in a quadratic form in x but linear in W . For instance,

if the ith measurement zi is on the kth active power injection, then we enforce f = 0 in (2.3) and let

hi(v) = Pk, which can be reformulated as:

Pk = Re{vHk ik} = Re{vHeke
T
k Y v} , Re{vHYkv} (3.5)

= xT Ỹkx = tr(Ỹkxx
T ) = tr(ỸkW ), (3.6)

where matrix Yk = eke
T
k Y , ek is the kth standard basis vector. Y is the bus admittance matrix defining

i = Y v. (3.5) comes from the definition of active power and (3.6) comes from the definition of Ỹk below

Ỹk = −1

2

 Im(Yk + Y T
k ) Re(Yk − Y T

k )

Re(Y T
k − Yk) Im(Y T

k + Yk)

 . (3.7)

As a result, the nonlinear measurement model (2.1) expressed in terms of voltages becomes a linear

model in terms of the matrix W in lifted state space of positive semidefinite matrices as zi = tr(ỸkW )+ui.

This simpler mathematical formulation requires the W matrix to be both positive semidefinite and rank-

one; this is necessary to map uniquely a solution for W to the voltage state space. Unfortunately, rank-

one condition is a non-convex constraint. To preserve the convex SDP-based SE formulation it becomes
1A recent study [36] also tries to extend state space in order to solve the nonlinear problem non-iteratively. By treating a pair-

wise, voltage-product as a new state, a linear set of equations is obtained. Subsequently, the state of a non-linear AC power system

can be solved directly in a non-iterative manner by applying the “re-linearization” technique promoted by the study. This solution

is direct because it utilizes neither the traditional Least-Squares objective function nor its derivatives. Interestingly, this method

does not need an initial guess.
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necessary to relax this rank-one condition on matrix W ; this relaxed solution is expected to be a good

approximation of the full SDP-based nonlinear problem. In this thesis, we further extend the SDP-based

SE to include topology identification explicitly where we no longer assume f = 0; instead, zi = tr(Ỹk) +

Mif+ui. In such a case, although the states are extended, convexity holds because of the linear combination

with no additional constraints. L1 norm is also added for robustness. This is derived next in some detail.

3.3.2 Alternative SDP-Based SE Formulations

Based on the discussion above, the nonconvex optimization that is equivalent to (2.3) is

min
W,f

Jp(W,f) =

m∑
i=1

∣∣∣∣zi − tr(AiW )−Mif

σi

∣∣∣∣p
subject to W ≽ 0, rank(W ) = 1,

(3.8)

where Ai is similar to Ỹk in (3.6) depending on the measurement type. Its specific form can be found in

Table 3.1 with the formulation below the table.

Table 3.1: The expression of Ai in (3.8)

Measurement type for zi Corresponding Ai

The kth active (reactive) power injection Ỹk (Ŷk)

The kth active (reactive) power flow ‘from’ Ỹfk (Ŷfk)

The kth active (reactive) power flow ‘to’ Ỹtk (Ŷtk)

The kth voltage magnitude (phase angle) Vk (∆)

• Active power flow at the from (to) side Pfk(Ptk) of the kth branch can be computed similar to Pk.

Instead of using Yk, use Yfk = eg(k)e
T
k Yf , where g(k) is a function that maps the branch index k

into its ‘from’ side bus index g(k). Yf is the branch admittance matrix relating the bus voltages to the

branch current vector if , at the ‘from’ end of all branches, respectively. Ytk is defined similarly with

the replacement of f with t.

• Reactive power injection formulation: Qk = tr(ŶkW ),

Ŷk = −1

2

 Im(Yk + Y T
k ) Re(Yk − Y T

k )

Re(Y T
k − Yk) Im(Y T

k + Yk)

 , (3.9)
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where Yk = eke
T
k Y .

• Reactive power flow at the from (to) side Qfk(Qtk) of the kth branch can be computed similar to Qk.

Instead of using Yk, use Yfk and Ytk.

• Voltage magnitude formulation: Since the direct use of voltage magnitude |vk| with the SDP form is

hard, an alternative form |vk|2 is provided as |vk|2 = tr(SkW ), where

Vk =

 eke
T
k 0

0 eke
T
k

 . (3.10)

Remark Here, it is supposed that |vk|′ = |vk| + uvk , where uvk is the kth voltage magnitude mea-

surement noise, defined as a Gaussian random variable with zero mean and variance σ2
vk

. By approx-

imation, |vk|′ 2 = (|vk| + uvk)
2 = |vk|2 + 2|vk|uvk + u2vk ≈ |vk|

2 + 2|vk|ek, can be regarded as

a random variable with mean |vk|2 and variance 4|vk|2σ2
vk
≈ 4σ2

vk
, because the voltage magnitude

|vk| is close to 1. Note that, |vk|2 does not have a zero mean and causes biases in this approximation.

However, this bias issue does not occur when the voltage measurements are not very noisy. This is

especially true when a PMU is used to generate the voltage magnitude Measurements. The bias issue

is a question open for future investigation.

• Voltage phase angle formulation: Again, since the direct use of voltage phase angle |δk| with the SDP

form is hard, an alternative form of sin2 δk is used. Since the bus phase angles are usually small

with respect to the reference bus, we employ the common approximation as follows: sin2(δ′k) =

sin2(δk + uδk) ≈ (δk + uδk)
2 ≈ δ2k + 2δkuδk + u2δk . Therefore we can model it as a random variable

with mean δ2k and variance 2δkuδk + u2δk . Finally, in SDP form

∆k =

 eke
T
k 0

0 0

 . (3.11)

Remark Notice that one of the differences between the OPF problem and the SE problem lies in the voltage

magnitude measurements and phase angle measurements of SE, when we conduct an approximation using

SDP-Based SE. They do not appear in the OPF framework.

Lemma 3.3.1. Problems (2.2) and (3.8) are equivalent.
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Proof. We have already shown that hi(v) = tr(AiW ) for the bus branch level in (3.5) - (3.6) where Mif

is omitted. Mif can be added to the measurement model owing to its linear nature. Therefore we just need

to illustrate the one-to-one mapping between the state vector v and the state matrix W as follows. First,

by the definition of x and W , there is only one constructed W for every v. Reversely, since W is positive

semidefinite, symmetric and rank-one, W has one unique pair of eigenvalue λ1 and eigenvector g1 owing

to the spectrum decomposition theorem. Therefore, there is only one x =
√
λ1g1 for every W such that

xxT = W .

Problem (3.8) can be written in an equivalent SDP form with various norms. In particular, if p = 1, we

obtain

min
α

m∑
i=1

αi

s.t.

 zi − ti − αiσi 0

0 −zi + ti − αiσi

 4 0,

ti = tr(AiW ) +Mif , W < 0, rank(W ) = 1.

(3.12)

where α = (α1, α2, · · · , αm)T . If p = 2, we obtain

min
α

m∑
i=1

αi

s.t.

 z2i − 2tizi − αiσ
2
i ti

ti −1

 4 0,

ti = tr(AiW ) +Mif , W < 0, rank(W ) = 1.

(3.13)

Lemma 3.3.2. Problems (3.8) and (3.12) are equivalent for p = 1; Problems (3.8) and (3.13) are equivalent

for p = 2.

Proof. When p = 2, following the definition of negative semidefinite constraint in (3.13), we have y1

y2

T  z2i − 2tizi − αiσ
2
i ti

ti −1

 y1

y2

 ≤ 0 (3.14)

for all y1 and y2 with ti , tr(AiW ) +Mif . In rewritten form,

y22 −
(
2y1ti

)
y2 −

(
z2i − 2ti − αiσ

2
i

)
y21 ≥ 0 (3.15)
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By choosing y1 = 1 and y2 = ti, we see that condition
(
zi − ti

)2 ≤ αiσ
2
i must hold for (3.8). Proof of

“(3.8) and (3.12) are equivalent when p = 1.” is similar and thus omitted.

3.3.3 Convex Relaxation of the SDP-Based SE

Again, due to the nonconvex rank-one constraint in (3.12), the problem is hard to solve. Since most of the

optimization component is convexified, we consider its relaxed form by dropping the rank-one constraint,

which results in the new approximate problem stated below. (When p = 2, the formulation is the same as

(3.13), but with the rank-one constraint over W dropped.)

min
α

Ĵ =

m∑
i=1

αi

s.t.

 zi − ti − αiσi 0

0 −zi + ti − αiσi

 4 0,

ti = tr(AiW ) +Mif , W < 0.

(3.16)

Now, since the optimization in (3.16) is with a linear objective function over the intersection of a cone of

positive semidefinite matrices in an affine space, we successfully constitute a convex semidefinite program-

ming problem according to [27]. As a subfield of convex optimization, such a problem can be efficiently

solved with software. Later, we will illustrate that the solution here is close to the global optimal solution of

(3.8), leading to an efficient estimate.

Reconstructing Estimated States

Although there is a one-to-one mapping between the state matrix W and the state vector v by Lemma 3.3.1,

we lose such a unique mapping due to the removal of the rank-one constraint in (3.16) for convexification

purposes. Since the Ŵ from (3.16) is now only approximately rank-one, we will use the largest eigenvalue

to recover first the intermediate vector variable x, and then the state vector v. Specifically, with a matrix W

having rank r ≥ 1, we can use the eigenvalue decomposition for state recovery: Ŵ =
∑r

i=1 λigig
T
i , where

λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0 are the eigenvalues and g1, g2, · · · , gr are the corresponding eigenvectors. Since

λ1g1g
T
1 is the optimal rank-one approximation for W , we define x̂ ,

√
λ1g1 ∈ R2n×1 as the estimate for

x, which can be uniquely mapped into v̂ = x̂1:n+ j · x̂n+1:2n, with j as the imaginary unit. Notably, further

enhancement can be readily conducted by feeding v̂ into the initial guess for the classical Newton’s method.
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Another advantage of such an initial guess is that it is based on the current measurements rather than the

commonly used previous state estimation, making the SDP method suitable for a system emergency restart.

3.3.4 Computational Cost and Extensions

A major disadvantage of the proposed SDP method arises when one looks at the increasing optimization

variables number, which increases from O(n) in the pure WLS method to O(n2). As a result, the SDP

approach is much more computationally expensive than the WLS approach, which suggests the need for a

high end computer for a large system. Later in this chapter, we will propose a distributed algorithm approach

to avoid the need for such large computing power.

3.3.5 New Metric for Optimality Evaluation

The drawback of WLS that uses Newton’s method as a solver is not only its inability to find the global

optimum, but also its inability to evaluate the goodness of a local optimum. While the first problem was

solved with an SDP-based approximation, the second part will be solved in this subsection by giving a

tight lower bound. Specifically, after obtaining the state matrix Ŵ (may not be rank-one), one can directly

compute the cost function in (3.16). Problem (3.16) has a global minimum smaller than or equal to the global

minimum in (3.8); this provides a lower bound to the original problem given in (2.2), which is illustrated in

the flow chart of the new approach in Fig.3.1.

The lower bound helps us understand how close we are to the best possible solution to the problem. The

gap tells us the maximum possible savings we could hope to achieve by improving our algorithm. Notably,

such a lower bound holds under broad conditions for different state estimations, bad data detections, and

topology identification with the same types of measurements. For instance, in state estimation, the system

operator can simultaneously run several estimation methods (i.e., WLS with Newton’s method or the SDP-

based method) as in Fig.3.2a. In each time slot of Fig.3.2b, different estimators may give different results.

For example, Method 1 is the best at the first interval near time slot zero, and method 2 is the best in the

second time interval. Then one can compute the lower bound derived from our SDP method, and calculate

the distance between the two sum square errors as in Fig.3.2b. This gap (the distance in between) is called

“confidence” in this thesis by using the current best estimator. Therefore, the increasing computational

ability in the power grid not only enables the system operator to have the current best estimate, but also
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Figure 3.1: Flow chart of the proposed algorithm.

to obtain a new metric to visualize the confidence of the current best estimate. Similarly, system operator

can use such a metric to obtain a confidence for different estimators in bad data detection and topology

identification as shown in Fig.3.3.

3.3.6 Simulation Results

In this section, we simulate and verify the significantly improved performance of the convex relaxation

method for the various estimators (State Estimator, Bad Data Detector, and Topology Estimator) and the

usage of the new metric of confidence. No historical data is used.

Simulation Set-Up

The simulations are implemented on the IEEE standard test systems for IEEE 14, 30, 39, 57, 118 buses.

Similar performance improvements were observed. The 14 bus and 30 bus simulation results are presented.

The data has been preprocessed by the MATLAB Power System Simulation Package (MATPOWER) [37,

38]. To obtain the measurements, a power flow is first run to generate the true states of the power system,
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(a) The system operator runs several algorithm simultaneously. (b) Best current estimator and its confidence.

Figure 3.2: A new metric and its application.

after which Gaussian noise is added to the corresponding measurements. The measurements include the

following: (1) the power injection on each bus; (2) the transmission line power flow ‘from’ or ‘to’ each

bus that it connects; (3) the direct voltage magnitude of each bus and (4) the voltage phase angle of each

bus. The measurements are randomly chosen assuming guaranteed system observability. The measurement

number is usually chosen to be around three times the bus number.

Numerical Results

State Estimation First, the performance of the SDP approach is demonstrated in the conventional state

estimation scenario, where measurements are corrupted only by Gaussian noise. Besides, the tolerance

Figure 3.3: SCADA.
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Figure 3.4: IEEE 14 bus (Gaussian noise).

(stopping criteria) is the same as what is defined in Matpower (10−5), no matter whether Newton’s method

is initialized with a flat start or an SDP start. The simulation results in this section are checked to satisfy

the first-order necessary condition (HTΣ−1[z− h(x)] = 0, where H is the measurement Jacobian matrix).

The noise is generated according to standard deviations: (1) 1.5% for power injection measurements, (2)

2% for power flow measurements, and (3) 1% for the other measurements. Second, the SDP is solved by

the “SEDUMI” package [39]. After obtaining the state matrix Ŵ in (3.16), low rank matrix recovery from

subsection 3.3.3 is used to obtain the estimate v̂. For comparison purposes, this estimate is used as an initial

guess for Newton’s method to obtain a locally optimal estimate.

When using the Matpower SE simulation package in the IEEE 14 bus case, we observed a large residual

in the reactive power measurements. For instance, one can run the “test se 14bus.m” file in the Matpower

path “matpower4.0\extras\se” to see the large residuals for the WLS with a flat start. In Fig.3.4a we plot

the histogram of the averaged active (reactive) power measurement residual ratio of the SDP method over

Newton’s method for a flat start in the 14 bus system over the course of 100 simulations. The red bars are

for the active power measurement residual ratio and the blue bars are for the reactive power measurement

residual ratio. No numerical problem appears in the simulation. It can be observed that the two methods do

not differ much (the ratios are close to 1.) in active power measurement performance but show significant

differences (the ratios are much smaller than 1.) in reactive power measurement performance. The proposed

SDP method successfully reduces the reactive power residuals, which has been a well known problem in
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traditional state estimation. The ability of our approach to deal with large reactive power residuals can be

attributed to the convexification process. By solving the convexification problem, we greatly reduce the

large residual due to more accurate state estimation.

To display the near optimum estimation and the new metric of confidence, Fig.3.4b displays Weighted

Residual Sum of Squares (WRSS) error for all measurement types, which is defined as

WRSS =
m∑
i=1

((
zi − tr(AiW)

)
/σi

)2
. (3.17)

The x coordinate is the test number for the simulation. The y coordinate is for the metric WRSS. Through

observation, we see that Newton’s method with an SDP initial guess can significantly reduce the error of

WLS (by at least 20%) compared to Newton’s method with a flat start. At some points, such as simulation

number 6, 14 and 28, more than 50% improvement is achieved. In addition, the small distance (the new

confidence metric) existing between the SDP initial guess method and the lower bound informs that the

proposed SDP initial guess method is close to the global optimum. Such facts lead to a natural interpretation

of the proposed SE procedure: the possibility for Newton’s method to hit the global optimum is greatly

increased since the SDP method finds a closer initial state than the flat start method does.

Bad Data In this subsection, we consider both Gaussian noise and bad data and a measurement set is

randomly generated by choosing an observable set. To make the estimation robust against bad data, the

cost function (2.3) with p = 1 (WLAV approach) in this simulation is chosen so that the WLAV problem is

solved with a bus-branch model. Similar results can be obtained to those in the state estimation in Fig.3.5.

Fig.3.5a and Fig.3.5b show the improvements in the state domain in one simulation. From the figure, we

can see that the blue start (SDP approach) is close to the red rectangle (true state). But the purple circle (Flat

start) is much further away from the red rectangle.

Topological Estimation Topological estimation deals with the occasionally unreported removal of cus-

tomer nodes, sensor failures, and manually updated breakers. Without accurate topological estimation,

SCADA systems will provide the wrong topology to the subsequent state estimation, resulting in erroneous

consumer power cut-offs or even a blackout throughout the grid.

The well-known method [7, 40, 41] for topological estimation has two steps: the first step is to use the

bus branch model with WLS and the Chi-square test to locate the suspected substation (abnormal mea-
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(b) Voltage phase angles

Figure 3.5: IEEE 14 bus (Gaussian noise plus bad data).

surements); in the second step, the buses associated with the suspected measurements are extended with

a substation model to include the circuit breaker power flows as supplemented states for further topology

analysis. Since the breaker status can be regarded as bad data, the WLAV method is usually employed [42]

to enhance robustness.

In this subsection, simulations are conducted on the IEEE 30-Bus test system (Fig.3.6a) with one ran-

domly chosen topology error. Similar performance improvements are observed. The closed branch 12− 15

is recorded to be open in this simulation.

In stage 1, the WLS problem is solved by the SDP approach in (3.13) on a bus-branch level in Fig.3.6a to

search suspicious buses. Demonstrated in Table 3.4, with the new method, the residual increases significant-

ly in measurements related to the wrong topology, and vice versa. For example, the residual for the wrong

measurement PF12−16 (active power flow on branch 12 − 16 at the ‘from’ end) increases from 0.0044 to

0.012, with increasing suspicions about bus 12 as a consequence.

In stage 2, the bus-branch model is extended to include the detailed substation model [40,41] in Fig.3.6b.

The SDP estimate with (3.12) is used. Finally, the estimated power flow states are used to determine the

correct topology. In Table 3.5, the estimated power flow (SDP method) decreases significantly for the

actually open circuit breaker, compared to Newton’s method with a flat start.
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Table 3.2: Stage 1: Measurement normalized residuals

Measurement Relative to the wrong topology? |rN |SDP |rN |Flat

PF 12-16 Yes 0.0120 0.0044

QT 15-23 Yes 0.0271 0.0068

PF 2-6 No 0.0064 0.0312

Table 3.3: Stage 2: Estimated status of circuit breakers

Circuit breaker Power flow (SDP) Power flow Actual state

PF 12-32 0.0389 0.0380 Closed

QT 31-36 0.0042 0.0166 Open

PF 37-38 0.0106 0.0317 Open

Computational Cost

Fig.3.7 shows a comparison of the computational time used by the regular WLS method and the SDP

method. The computational time of the SDP method exceeds that of the regular WLS method, in both

the length of time used and its growing rate. Notably, the IEEE 300 bus runs out of time due to the compu-

tational burden for centralized SDP-Based SE. From the linear relationship of log(time) in the y coordinate

with respect to the bus number in the x coordinate, a prediction of 108seconds equal to 3.17 year can be ob-

tained for 300 buses. As a result, one can observe a tradeoff between accuracy and complexity. By obtaining

better accuracy, the price to be paid for robustness is computational complexity, which can be deduced from

the sophisticated mathematical approach proposed in this thesis.

To deal with the computational complexity, we will address in the next section how to employ a distribut-

ed algorithm to implement parallel computing for such a computational problem.
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(a) Bus branch model (b) Substation model

Figure 3.6: IEEE 30 bus.

3.4 Distributed Implementation for Semidefinite Programming-Based State

Estimation

The SDP-based generalized State Estimator approach in the last section is shown to significantly reduce

large residuals seen in conventional SE [7, 11] for large-scale electric power systems by convexifying the

inherently nonlinear AC power flow problem embedded in the SE formulation; it is, therefore, near-globally

0 4 14 30 39 57 118
10

−1

10
0

10
1

10
2

10
3

10
4

Bus Number

C
om

pu
ta

tio
n 

T
im

e 
(in

 s
ec

on
ds

)

 

 

WLS
SDP

Figure 3.7: Computational time
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optimal.

However, previous analysis also shows that a centralized implementation of the SDP-based SE is com-

putationally prohibitive because it is fundamentally based on lifting the original state variables (complex-

valued voltages) to a much higher-order state space defined by the matrix W . We have illustrated that

even the IEEE test system comprising 300 network nodes is no longer computationally feasible using the

SDP-based SE centralized method, implying that this method cannot be used for the typical electric power

grids representing EHV/HV/MV utilities, which have nodes that number in the thousands; using this cen-

tralized algorithm for SE in the interconnected EHV/HV/MV/LV electric power grids is completely out of

the question. Moreover, the SDP-based centralized SE approach also requires full information gathering

and is generally non-robust with respect to partial network communication failures. This section attempts

to overcome such disadvantages by proposing a distributed SDP-based SE algorithm that reformulates the

centralized SDP computation into distributed SDP problems with no loss of accuracy.

Such algorithms are likely to form the basis for “smart” grids by enabling even many small system users

to participate in enhancing system operation in predictable ways. For example, the state (power consumed,

voltage) of smart meters would not have to be estimated by the operator of the backbone system based

on the measurements provided by a particular location. Instead, the state of a small user gets estimated

in a distributed, message-passing manner with neighboring system users which have smart meters. The

aggregated information is then communicated in a bottom-up way to the backbone system operator.

For this multi-layered distributed data processing and SE vision to be implemented in a rigorous way,

many questions must be answered. They concern the number of measurements necessary within each group

of system users passing information multi-laterally, the type of information exchange necessary within the

smaller groups of system users, and the information exchange necessary between the group of users and the

rest of the system. Notably, the observability requirements and the ability to manage bad data and topological

changes may become qualitatively different for distributed approaches than they are for today’s centralized

approaches. In what follows we describe how a combined use of the Lagrangian dual decomposition method

and a graph-theoretic approach to creating subnetworks (“cliques”) on chordal graphs supports a distributed

implementation of an SDP-based SE method. We describe how such an algorithm could begin to answer the

difficult questions above.

This reformulation is achieved by using the dual Lagrangian decomposition [43] method to repose this
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problem first in a form that can be decomposed. Next, the decomposition of the system-level positive-

semidefinite constraint on the W matrix is done by using the notion of induced chordal graphs and their

decomposition, similar to the distributed implementation of the SDP-based AC OPF method [34, 44, 45].

However, we do not set limits on state, input variables, or output variables. This is because the perfor-

mance objectives for state estimators are qualitatively different from the performance objective used for an

AC OPF; instead of setting limits on operating ranges, as proposed in [34], approximate formula for some

measurements (voltages and phase angles, in particular) are proposed. Different from [35], no topology

assumption in control areas is required here. This section also extends the objective to deal with topology

error. In addition, we add the L1 norm over the extension to deal with bad data. A proof of equivalence

between the centralized algorithm and the distributed algorithm is added. To enable fully distributed estima-

tion, coordinate descent approaches are proposed as an alternative to parallel computing for robustness [46].

To characterize the performance of local estimators, lower bounds are further derived to generate a metric

called local confidence for the system operators.

As a result, by using message exchange on coupling nodes between neighboring local networks, the

original centralized SDP problem can be characterized in a distributed manner by performing local SDP SE

computation. Obviously, a direct consequence of this – if parallel processors are used – is computational

time reduction. Notably, the proposed algorithm can also be implemented in a fully distributed way via

coordinate decent. Each local network computes its local SDP-based estimator and passes the message to

the neighbor nodes, which is robust to local network failure. A significant reduction in computational time

and a fast rate of convergence, both critical for power system analysis, are illustrated through simulations.

3.4.1 Alternative Form for a Distributed Algorithm

The optimization problem in (2.2) is highly non-convex and difficult to solve optimally. In practice, the

state estimation problem is conventionally solved by applying Newton’s method, a local search algorithm

that is extremely sensitive to the initial guess. To convexify this, in Section 3.3, we proposed to state the SE

problem as a convex relaxation-based SDP problem [33, 35]. Necessary approximations are described that

help transform the centralized SE problem into a convex relaxation-based SDP problem. This formulation

is summarized here for completeness, although we use a slightly different formulation that lends itself better

to introducing the distributed implementation in the next section. Specifically, if we define a new complex

matrix W = vvH , where vH represents the Hermitian of the vector v, the complex-valued power flow
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constraints without considering the substation topology can be expressed as follows:

sinj = diag{v}iH = diag{vvHY H} = diag{WY H}. (3.18)

Further, by defining T act = 1
2(Y

H +Y ) and T rea = 1
2(Y

H−Y ), we obtain real and reactive power balance

equations

pinj = diag{W (Y H + Y )} = diag{T actW}

qinj = diag{W (Y H − Y )} = diag{T reaW}

with the ith real power injection pinj,i =
∑n

k=1M
act
ik Wki, and the ith reactive power injection qinj,i =∑n

k=1M
rea
ik Wki. As an example, if one were to use the real and/or reactive power measurements to estimate

system state, the performance objective would become

minimize
W, f

n∑
i=1

[
(

n∑
k=1

T act
ik Wki − zacti −Mif)

2

+ (

n∑
k=1

T rea
ik Wki − zreai −Mif)

2
]

subject to W ≽ 0.

(3.19)

Examples of using other measurements are described in the Appendix. For illustrative purposes, we formu-

late next the distributed SE algorithm when power injection measurements are given.

3.4.2 Problem Decomposition

Objective Decomposition

In this section, we describe how one could use the Lagrangian dual decomposition [43] method to estimate

states using real and reactive power injection measurements.

To decompose the objective in a quadratic form, we use the Lagrangian dual method. To conduct such a
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technique, auxiliary vector variables yact (rea) are defined to make the optimization in (3.19) equivalent to

minimize
W, f

n∑
i=1

(yacti )2 +
n∑

i=1

(yreai )2

subject to W ≽ 0,

yacti =
n∑

k=1

T act
ik Wki − zacti −Mact

i f ,

yreai =
n∑

k=1

T rea
ik Wki − zreai −M rea

i f .

The associated Lagrangian is

L(W,f ,λact,λrea,yact,yrea) (3.20)

=

n∑
i=1

[
(yacti )2 + λact

i (yacti −
n∑

k=1

T act
ik Wki + zacti +Mact

i f)
]

+

n∑
i=1

[
(yreai )2 + λrea

i (yreai −
n∑

k=1

T rea
ik Wki + zreai +M rea

i f)
]
.

Its dual problem is formed by

max
λ

min
W,f ,y

L(W,f ,λact,λrea,yact,yrea)

subject to W ≽ 0,

which can be reorganized into

max
λ

min
W,f ,y

n∑
i=1

[
(yacti )2 + (yreai )2 + λact

i (yacti + zacti +

Mact
i f) + λrea

i (yreai + zreai +M rea
i f)

]
−

n∑
i=1

n∑
k=1

NikWki

subject to W ≽ 0,

(3.21)

with Nik , λact
i T act

ik + λrea
i T rea

ik .

Since the objective has a piecewise quadratic form over yacti and yreai respectively, the optimal yact(rea)i =
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−λ
act(rea)
i

2 , which simplifies (3.21) into

max
λ

min
W,f

n∑
i=1

[
λact
i (zacti − λact

i

4
) +Mact

i f

+λrea
i (zreai − λrea

i

4
) +M rea

i f
]
−

n∑
i=1

n∑
k=1

NikWki

subject to W ≽ 0.

(3.22)

As a result, unlike the initial quadratic objective, we successfully convert the optimization into a linear

objective with respect to the element of matrix W and f . This gain is obtained by performing an extra

optimization step over the dual decoupled variables λis.

L1 norm

If robustness is desired, L1 norm with the following reformulation can be used.

minimize
W, f

n∑
i=1

|yacti |+
n∑

i=1

|yreai |

subject to W ≽ 0,

yacti =

n∑
k=1

T act
ik Wki − zacti −Mact

i f ,

yreai =

n∑
k=1

T rea
ik Wki − zreai −M rea

i f ,

which can be reformed into

max
λ

min
W,f ,y

n∑
i=1

[
|yacti |+ |yreai |+ λact

i (yacti + zacti +Mact
i f)

+ λrea
i (yreai + zreai +M rea

i f)
]
−

n∑
i=1

n∑
k=1

NikWki

subject to W ≽ 0.

The only difference between the expression above and (3.22) is that we need to calculate y numerically,

instead of obtaining closed-form solutions as we did in (3.22). In the next section, we will introduce the

positive semidefinite (PSD) constraint decomposition method for (3.19). Naturally, elements of W in the

objective can be grouped in the same way for distributed computation.
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Remark The problem of an incomplete measurement set arises when measurements are not available on

all buses, due to initial power grid planning, missing data, communication errors, etc. To deal with these

problems, we can assume any unavailable zi to be the same as the estimated measurement in each iteration

for an iterative algorithm. As a result, the associated term in our problem formulation disappears. One may

also employ pseudo-measurements if they are available.

Constraint Decomposition

In this section, we decompose the PSD constraint over W of (3.19) into equivalent submatrices PSD con-

straints, according to [34, 47–49]. We also introduce some graph-theoretic concepts necessary for subse-

quent discussion. Particular emphasis is on using chordal graphs.

Graph Basics

An undirected graph is denoted by G(V,E) with V indicating the set of its vertex, and E ∈ V × V the set

of edges. In this paper, we assume no self-loops within a graph, or (v, v) /∈ E for any v ∈ V . Two vertices

u, v ∈ V are defined to be adjacent if (u, v) ∈ E. A graph is considered a complete graph if every pair of

vertices is adjacent. For a subset V ′ ⊆ V , an induced subgraph G(V ′, E′) has edge set E′ = E∩ (V ′×V ′).

A clique of a graph is an induced subgraph that is complete. Formally, a clique is a set of pairwise adjacent

vertices and a clique is maximal if its vertices do not constitute a proper subset of another clique. In our

succeeding discussions, we call C ⊆ V a clique of G(V,E) whenever it induces a clique of G(V,E).

Further, a chord in a cycle is an edge connecting two non-consecutive vertices of the cycle. Therefore, a

graph G(V,E) is said to be chordal, or equivalently triangulated, if every cycle of length exceeding four has

a chord.

PSD decomposition

In order to understand Proposition 3.4.1 below from another research area, we introduce here a graph-based

mathematical problem called matrix completion, which is defined as the process of adding entries to a matrix

with some unknown or missing values. If there are no underlying assumptions about the matrix, the unknown

elements can be arbitrarily chosen, making matrix completion theoretically impossible. However, given a

few assumptions about the matrix characteristics, such as positive semidefinite constraints, some algorithms
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allow a complete reconstruction of the matrix. Mathematically, define a partially specified symmetric matrix

W based on the graph G(V, F ) for some edge set F ∈ E. Its element wij is defined if and only if edge

{i, j} ∈ F , so only parts of the matrix entries are specified. The completion process for such a partial

symmetric matrix W aims to find a fully specified positive semidefinite matrix based on W . Denote by

{Cr ⊆ V : r = 1, 2, · · · , l} the family of all maximal cliques of G(V, F ). An obvious necessary condition

for W to have a PSD matrix completion is that each WCrCr is PSD (r = 1, 2, · · · , l), with all submatrices

WCrCr being completely specified. We refer to the above results as the clique-PSD condition.

Proposition 3.4.1. (Grone et al. [47]) Any partial symmetric matrix W with specified entries (i, j) ∈ F

representing a chordal graph, has a positive semidefinite matrix completion, if and only if all submatrices

WCr,Cr(r = 1, 2, · · · , l) are PSD.

Generate Chordal Graph

Unfortunately, the underlying graphs of typical power grids are non-chordal, so a power system engineer

may ask the feasibility of such decomposition for power system state estimation problems. Luckily, some

research, such as [48], illustrate how to apply chordal graph results to a non-chordal graph. The key idea

is about fill-in; i.e. the triangulation of a graph G by adding virtual edges. In other words, one would like

to fill in the unknown matrix terms with respect to the graph so that cliques are generated. So, how do we

determine a chordal extension which has the smallest number possible since this number directly affects the

algorithmic performance? Admittedly, the problem of finding a fill-in ordering that minimizes the total fill-

in number isNP complete [48] without a polynomial time algorithm. Hence, it seems reasonable at least in

practice to employ some existing heuristic methods to obtain an ordering that might possibly produce lesser

fill-in [48].

One method is to employ Cholesky decomposition. Because W is positive semidefinite, Cholesky factor-

ization can be performed over it, creating W = LLH (under the genericized assumption that no numerical

cancellations occur in the elimination process). If we further define a graph G(V, F ) based on L, we will

have F ⊇ E, since the sparsity pattern of L is determined by that of the matrix W . The added edges,

belonging to F\E, correspond to the fill-ins, making graph G(V, F ) a chordal extension of the underlying

power grid graph G(V,E).

Upon generating the chordal graph for a power grid, one needs to search all maximal cliques within it
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via the efficient tool of perfect elimination ordering [50] in linear time with respect to the vertex and edge

numbers in the graph. Here an elimination ordering is simply a numbering of the vertices with integers

from 1 to n. So, based on the maximal cliques, we finally reach decomposition of the positive semidefinite

constraint of W into many smaller semidefinite constraints of its submatrices.

Remark So far, the discussion of constraint decomposition is solely based on the structure of W , which is

unknown in our problem formulation. Nevertheless, since W lies in the objective with an inner product by

the system structure matrix N , one can extract the structure of W via N [48]. More details are given in the

toy example.

3.4.3 Distributed Algorithm for Parallel Estimation of State

Next, we summarize the distributed SDP SE computing steps with the following theorem.

Proposition 3.4.2. Optimization of (3.19) is the same as the following distributed algorithm:

• Step 1: Fix λact(rea) and the coupling variables in W . For each clique, compute its local SDP SE for

the independent variables in W (and f , if a substation model is used in topology identification).

• Step 2: Fix λact(rea) and the independent variables in W . Compute the SDP SE for the coupling

variables in W .

• Step 3: Fix W . Distributively update λ with respect to the cliques.

• Step 4: If the algorithm does not converge, go to Step 1.

Proof. In the ‘dual Lagrangian decomposition method’, each iteration aims at maximizing the primal vari-

able (matrix W ) while fixing the Lagrangian multiplier λ. In our proposed parallel approach, this step is

replaced by two maximization steps alternating between the independent variables and the coupling vari-

ables in W . This is because we can regard the optimization over W to be another primal decomposition

problem according to [43]. The ith subproblem is:

min
Wi

fi(Wi,Wc), (3.23)
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where Wi represents the local variables in the ith area, and Wc is the set of coupling (boundary) variables

in W . With a fixed Wc, the ith subproblem is assumed to have optimal value ϕi(Wc). Then the original

problem is equivalent to the master problem:

min
Wc

∑
i

ϕi(Wc) (3.24)

with variable set Wc. This problem is called primal decomposition since the master problem manipulates the

primal (complicating) variables. Since the original problem is convex, so is the master problem. Therefore,

the two-step optimization is equivalent to a one-step optimization over W , thus leading to a legitimate

decomposition.

Fully Distributed Algorithm for Robustness

The parallel algorithm in Theorem 3.4.2 needs coupling variables to be computed together, which limits the

ability to deploy the algorithm in a fully distributed way. To enable the distributed computing of coupling

variables, we introduce the coordinate descent method, which is based on the idea that the minimization of a

convex multivariate function F (W ) can be realized by minimizing it along one direction (one area) at a time

[46]. Since the objective is convex, one can achieve the global optimum by fixing the descent direction at the

outset, instead of varying the descent direction according to gradient. The key to this result is the separability

of the objective function. For instance, one chooses some basis for the search directions: W1,W2, · · · ,Wn,

where Wi includes the independent and coupling variables in the ith clique. One cyclically iterates through

each direction, one at a time, minimizing the objective function with respect to that coordinate direction. It

follows that, if xk is given, the ith coordinate of xk+1 is given by

Ŵ k+1
i = arg min

Wk+1
i

f(Ŵ k+1
1 , · · · , Ŵ k+1

i−1 ,W k+1
i ,W k

i+1, · · · ,W k
n ), i ∈ {1, 2, · · · , n}. (3.25)

Therefore, a fully distributed SDP SE can be achieved by locally updating the clique matrix {W i}, the

dual variable λ associated with the clique, and then optimization of (3.19) is the same as the following

distributed algorithm:

• Step 1: Each clique receives the W matrix from a neighbor clique.

• Step 2: Update λ in the clique according to W .
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• Step 3: Fix λ in the clique, and update the local and coupling variables in the clique.

• Step 4: Pass the updated W matrix to the neighbor cliques.

• Step 5: If the algorithm does not converge, go to Step 1.

3.4.4 New Metric for Local Optimality Evaluation.

Note that, after obtaining the local state matrix Ŵc (may not be rank-one), one can directly compute its local

cost function, which has a global minimum smaller than or equal to the global minimum in using xc; this

provides a lower bound for local state estimation, bad data detection, and topology identification problems.

Such an idea can be seen in Fig.3.8. Therefore, the system operator can use this lower bound for arbitrary

estimators to evaluate their optimality, leading to a new metric of local estimation confidence for each area.

Figure 3.8: Local confidence in the SCADA room.

3.4.5 Simulation Results

In this section, simulations are implemented on the IEEE 4-Bus, 14-Bus, 30-Bus, 39-Bus, 57-Bus and 118-

Bus test systems. Data generation is similar to the simulations for the centralized approach in Section 3.3.6.

Centralized Parallel Computing

Computational time speed up As an illustration, the extended chordal graph decomposition of the 14-

bus case is shown in Fig. 3.9. Fig. 3.10 shows the a comparison of the computational time for centralized
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Figure 3.9: Extended chordal graph decomposition of IEEE 14 bus system.

SDP SE, parallel SDP SE, and traditional WLS SE over the IEEE 14-bus system. Great acceleration can

be observed on the proposed distributed algorithm for parallel computing especially for large systems. For

these systems, thanks to the fast rate of convergence, the distributed method saves much more time than the

extra time required to compute the dual variable λ with respect to centralized SDP SE. As a result, although

the distributed SDP SE is consistently more time-consuming than the traditional WLS method, one can see

it dramatically reduces the time (in comparison to centralized SDP) by flattening the curve in Fig. 3.10.
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Figure 3.10: Computational time comparison.

Admittedly, for a small system, such as a 4 bus system, the parallel computing method requires more
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time than the distributed one. This is because, for a small system, dividing the network into multiple sub-

networks cannot substantially lower the optimization variable number. Instead, the computation of the dual

variables may lay heavy burdens on the algorithm. Therefore, Fig. 3.10 suggests distributed computation

for large systems and centralized computation for small systems.

Same accuracy To evaluate performance, we compare the weighted residual sum of squares error (WRSS)

among the centralized SDP, decentralized SDP and traditional Newton’s method, where WRSS =
∑m

i=1

((
zi−

tr(TiW)−Mif
)
/σi

)2, m is the total measurement number. Here, we conduct the comparison multiple times

with the IEEE 14-bus system. Fig.3.11 illustrates the simulation results after 30 times, where the x coor-

dinate represents the test index number and the y coordinate represents the WRSS metric defined above.

Evidently our proposed distributed algorithm essentially provides the same performance improvement as

does the centralized SDP method in [33]. The slightly bigger error for the distributed algorithm may result

from the convergence conditions.
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Figure 3.11: Accuracy comparison.

Topological estimation improvement One of the major contributions of this chapter is its generalization

of SDP with respect to topology estimation, which deals with occasionally unreported removal of customer

nodes, sensor failures, and manually updated breakers. Without accurate topological estimation, SCADA

systems will provide the wrong topology for subsequent state estimation, resulting in erroneous consumer

power cut-offs or even a blackout throughout the grid.
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In this subsection, in order to compare our distributed algorithm with centralized algorithms in terms of

accuracy and time, multiple simulations are conducted on the IEEE 30-Bus test system (Fig.3.6a) with one

randomly chosen topology error. Similar performance improvements are observed.

In stage 1 [7, 40, 41], the WLS problem is solved by the SDP approach (f = 0) and Newton’s method

on a bus-branch level in Fig.3.6a. The goal is to search suspicious nodes. Table 3.4 refers to one simulation

result obtained with the assumption that the actually closed branch 12 − 15 is open. We see in Table

3.4 that, similarly to centralized SDP SE, the residual of the distributed SDP SE increases significantly

in measurements related to the wrong topology, and vice versa. For example, the residual for the wrong

measurement PF12−16 (the active power flow on branch 12 − 16 at the ‘from’ end) increases from 0.0044

to 0.0102, with increasing suspicions on bus 12 as a consequence.

In stage 2 [7], the bus-branch model is extended to include the detailed substation model (Fig.3.6b) (f is

no longer 0) of buses with the maximum number of suspect measurements from which an SDP estimate is

obtained. An SDP estimate is obtained by efficiently solving the convex relaxation form of the centralized

SDP SE optimization problem. Finally, the estimated power flow states are used to determine the correct

topology. In table 3.5, we see that the estimated power flow (SDP method) decreases significantly for the

actually open circuit breaker, compared to Newton’s method with a flat start. For instance, in an actually

open state, the calculated flow estimate of QT31−36 (the reactive power flow on the circuit breaker ‘31−36’

at the ‘to’ end.) for an SDP initial guess (0.0067) is much smaller than the calculated flow estimate for a flat

start one (0.0166), which prevents a mis-correction of the topology error. Therefore, the distributed SDP

method also increases significantly robustness against topology errors. We use the 300-bus case to illustrate

Table 3.4: Stage 1: Measurement normalized residuals for distributed SDP

Measurement Relative to the wrong topology? |rN |SDP |rN |Flat

PF 12-16 Yes 0.0102 0.0044

QT 15-23 Yes 0.0253 0.0068

PF 2-6 No 0.0066 0.0312

larger systems. In this case, we randomly disconnect one branch, but without telling the system about the

topology change. Then the residual near the topology changes are computed based on (1) the WLS estimate

with a flat start, and (2) the distributed SDP-based method. The following table shows the simulation results.
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Table 3.5: Stage 2: Estimated status of circuit breakers for distributed SDP

Circuit Breaker Power Flow (SDP) Power Flow (Flat) Actual State

PF 12-32 0.0387 0.0380 Closed

QT 31-36 0.0082 0.0166 Open

PF 37-38 0.0144 0.0317 Open

Table 3.6: IEEE 300 bus simulation results

Simulation Times Residual Improvement Identification Improvement

200 49.7% 17%

3.5 A Special Case for Achieving a Global Optimum

Since solving the problems of nonlinearity and noise together is hard, we proposed an SDP-based approach

in the previous sections to deal with them separately. Although we are able to achieve a global optimum,

the SDP-based approach is an approximation method. In this section, we analyze a special case where

there is no noise. Although not realistic, it does give us an insight into why SDP-based approach can

handle nonlinearity. In Fig.3.12 we illustrate the four scenarios when considering the noise problem and

the nonlinear problem. The current SE result lets us have closed-form solution in linear cases regardless

of whether there is noise. And this closed-form solution is globally optimal. When there is a nonlinearity

problem, we can still try to separate it into two cases, where noise appears and where noise does not appear.

It is well known from the previous sections that trying to resolve nonlinearity and noise together is hard.

However, there is a special cases where the noise is extremely small or does not exist. By solving this special

case, one can obtain insight into how to deal with nonlinearity, which may eventually help us understand

how to solve nonlinearity and noise together in a perfect and less difficult way.

In this subsection, we seek to explore the special structure of the SE performance metrics more deeply.

Specifically, we perform an algebraic transformation of the direct SE problem formulation. As a result, the

original non-convex problem is converted into an equivalent, but convex semidefinite programming (SDP)

problem formulation; this formulation is different from other SDP-based methods in Sections 3.3 and 3.4.

The advantages of the proposed formulation are: 1) the convex formulation is free from local minima
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Figure 3.12: Four Scenarios of SE problems.

and there exist mature theories/technologies for algorithm initialization and step size choice. This makes the

proposed convex optimization approach to SE robust; and 2) highly efficient algorithms are available for its

solution. As a result, the simulation results in this paper indicate that our convex approach performs better

than the standard approaches.

3.5.1 The New SDP-Based Approach

The SDP approach in Sections 3.3 and 3.4 optimizes over the extended space in matrix W , instead of v,

to offer more linearity. The drawback of this approach is the rank-one condition, which has neither a nice

interpretation nor helps to obtain the global optimum. Recent publications show that the SDP-based OPF

is generally hard because of its constraints, such as lower bounds on neighboring buses [13]. Interestingly,

the proposed SE formulation does not have these constraints. The SE problem, when constructed as an

unconstrained optimization problem, should be easier to solve.

In this subsection, we revisit the WLS formulation, look into the structure of the objective, and represent

it in the real space

min
x

f(x) =
m∑
i=1

∣∣∣∣zi − xT Ỹix

σi

∣∣∣∣2. (3.26)

By writing it in this form without the rank-one constraint, the objective becomes a quartic polynomial.

We recognize that this performance objective can be regarded as a composition of quadratic forms. The

following lemma states the state-of-the-art [51] in the convexity of polynomials.
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Lemma 3.5.1. The question of deciding convexity is trivial for odd degree polynomials. Indeed, it is easy

to check that linear polynomials (d = 1) are always convex and that polynomials of odd degree d ≥ 3 can

never be convex. Deciding convexity of degree for four polynomials is strongly NP-hard. This is true even

when the polynomials are restricted so as to be homogeneous.

Since the convexity is hard to check, we look into its equivalent problems. The above problem in (3.26)

can be recast as
max
α

α

subject to f(x)− α ≥ 0 ∀x,
(3.27)

where f(x) = xT Ỹix.

In this conversion, dummy variable α represents the horizontal hyperplane that lies beneath f(x) for

every value of x. By maximizing its value with the upper bound f(x), it achieves the global minimum of

f(x). After this transformation, both the objective and the constraints are linear with respect to variable α,

leading to a convex optimization problem (3.27). Unfortunately, the constraint number is infinite because

for each x ∈R2n there is an inequality constraint.

In order to explore the fourth-order polynomial structures of the objectives in (3.26), we define the convex

cone A of real-valued fourth-order polynomials of x [52]

A =
{
q |q(x) is a real-valued fourth-order polynomial of x and q(x) ≥ 0, ∀x

}
,

which is the convex cone of nonnegative real-valued polynomials of degree 4.

Lemma 3.5.2. Optimization in (3.26) is equivalent to the following optimization with respect to A

max
α

α

subject to f(x)− α ∈ A.
(3.28)

Further, to explore the composition of quadratic forms of the objectives in (3.26), we define another

convex cone of real-valued polynomials of x:

B =
{
q|q(x) =

∑
i

qi(x)
2, with each qi(x) being a real-valued second-order polynomial of x

}
,

which is the convex cone of all fourth-order polynomials that can be represented as the sum of squares of

some real-valued quadratic polynomials.
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Notice that B is a subset of A. We further define the following optimization problem to compare with

(3.28)

max
α

α

subject to f(x)− α ∈ B.
(3.29)

We show later that (3.29) is a convex semidefinite-programming problem. Here, although (3.29) is not

equivalent to (3.28) in general, it is equivalent to (3.28) for the important case of when there is no noise

in the system. In such a case, since αopt ≥ 0 (due to the non-negativity of the objective in (3.27)) and

αopt ≤ 0 (due to no noise), αA
opt = 0. Interestingly, αB

opt = 0 as well because αB
opt ≤ αA

opt (due to (3.29)’s

restricted set size when compared to (3.28)) and αB
opt ≥ 0 (due to the non-negativity of the objective in

(3.27)). Subsequently, αB
opt = αA

opt. Thus, we can use (3.29) to solve exactly the non-convex problem in

(3.26).

Proposition 3.5.3. If the globally optimal solution of (3.28) is αA
opt = 0, αB

opt = 0 is also the global optimal

solution from (3.29) [52].

Proposition 3.5.3 shows that, in the noise-free case when (3.28) achieves the global optimum, (3.29)

can be used instead and achieve the same result. Since (3.29) is convex and with a smaller feasible set

than (3.28), its global optimum solution, or the state estimate is the same as (3.28), which is equivalent to

the WLS problem in (3.26). When the noise-free assumption is violated, (3.29) is still preferable, since

it is convex and can be solved with highly efficient software solvers, i.e., the interior point method, and it

features convergence properties to the true state as the signal to noise ratio (SNR) grows.

To show that (3.29) can be converted into an equivalent convex semidefinite programming problem, the

following lemma [53] is used.

Lemma 3.5.4. Given any fourth-order polynomial q(x), the following relation holds: q(x) ∈ D ⇔

q(x) = x̄TGx̄ for some Hermitian matrix G ≽ 0, where x̄ = (wT
(2),w

T
(0))

T with w(2) being a vector

whose components are the products {xixj , 1 ≤ i ≤ j ≤ 2n} and w(0) = 1.

For example, if x = [x1, x2, x3]
T , x̄ = [x21, x1x2, x1x3, x

2
2, x2x3, x

2
3, 1]

T . Further, to obtain the linear

constraint for G, one needs to compare the coefficient in q(x) and the coefficient in x̄HGx̄. For instance, if
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(b) Test Cases with Gaussian Noise

Figure 3.13: IEEE 14-bus test-bed.

we consider the following partial objective [xT Ỹ1x− z1]
2 without the scaling factor σ1

(xT Ỹ1x− z1)
2 (3.30)

=(
∑
i

∑
j

Ỹ1,ijxixj − z1)
2 (3.31)

=
∑
i

∑
j

Ỹ 2
1,ijx

2
ix

2
j + 2

∑
i

∑
j

∑
k

∑
l

Ỹ1,ij Ỹ1,klxixjxkxl + z21 − 2z1
∑
i

∑
j

Ỹ1,ijxixj , (3.32)

then the coefficient Ỹ 2
1,ij should be associated with x2ix

2
j for matrix G. Detailed algorithms can be found in

[52] and are denoted by linear constraints as G(Ỹ ), where Ỹ represents the set of matrices {Ỹi}, i ∈ [1,m].

Subsequently, we obtain the convex semidefinite programming formulation, which has a linear objective

function, linear equality constraints over variables α and G, and a linear matrix inequality constraint G ≽ 0.

max
α

α

subject to G satisfying linear equations in G(Ỹ ),

G ≽ 0.

(3.33)

State Recovery

Note that the solution above is for Gopt and αopt. In order to obtain physical meaningful states, or the

complex voltages, we need to compute x̄opt, xopt and ultimately vopt. Following Proposition 3.5.3, global
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optimum is achieved in the noiseless case with

q(x̄opt) = x̄H
optGoptx̄opt = 0. (3.34)

Therefore, x̄opt lies in the null space of the positive semidefinite matrix Gopt. If the null space of Gopt

from (3.33) has dimension 1, x̄opt can be uniquely calculated. In the presence of sensor noise, which may

leads to anN (Gopt) with dimension greater than 1, the eigenspaceN (Gopt) can be used for the almost zero

eigenvalues of Gopt. This is because when noiseless measurement is perturbed with a small noise, a small

perturbation in the optimal solution can also been seen.

3.5.2 Simulation Results

The simulations are implemented on the IEEE standard 14, 30, and 39 bus test systems. Similar performance

improvements are observed. Only the 14-bus simulation results are presented here. The simulation set-up is

similar to that in subsection 3.3.6 but with small noise added to the measurements.

Numerical Results

The SDP is solved by the “SEDUMI” package [39]. After obtaining the state matrix Gopt in (3.33), x̄ is

obtained from the null space of Gopt, from which voltage estimate v̂ in the complex domain is extracted.

To display the optimal estimation, Fig.3.13a shows us the noise-free case. The Weighted Residual Sum

of Squares (WRSS) error for all measurement types is defined as

WRSS =

m∑
i=1

(zi − tr(AiW)

σi

)2
. (3.35)

The x axis is the test number of each simulation. The y axis is for the metric WRSS. The proposed

method in red dot achieves global optimum, and constantly reduces the estimated error to zero during all test

cases. However, Newton’s method in the blue rectangle with a flat start occasionally converges to the local

optimum. This can be seen in test case 3, 5, 12, 17, 21, 26, and 28. One can see the sensitivity of Newton’s

method in all these cases, where significant improvement can be realized via the new approach. These

facts lead to the natural conclusion that since the new approach converts the WLS into equivalent convex

semidefinite programming in the noiseless case, it achieves the global optimum for the WLS problem.
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In the presence of Gaussian noise, the significant improvement achieved by the proposed approach is

also observed by the WRSS (30 simulations) in Fig.3.13b. Expectedly, since the measurement vector is

perturbed, a perturbation of the optimal solution is seen in the red dot line with non-zero WRSS. However,

the line is close to zero. For Newton’s method with a flat start (the blue rectangle), the WRSS objective

occasionally jumps far away from the zero line, indicating a local optimal solution. This can best be seen in

test case 7, 17, 25, and 29, which illustrates the converging property of our proposed method in contrast to

the local optimal solutoin.

3.6 Chapter Summary

This chapter shows the possibility of achieving better SE accuracy with the WLS formulation. In particular,

we introduce a general framework for solving various AC power system estimation problems that have to do

with nonconvexity in EMS/SCADA. We first formulate a Semidefinite Programming problem that relaxes

the WLS or WLAV estimation problems into rectangular state variable forms. Such a form is motivated

by a technique called embedding. Since the estimation problem becomes convex after being relaxed, a

global optimal state estimate can be efficiently located with low rank matrix recovery. We demonstrate

by simulation that the proposed estimation process can significantly reduce the error therein and achieve a

much more accurate estimate than when one applies conventional methods initialized with a flat start. These

improvement take place despite the chance of bad data occurrence and regardless of whether the problem is

cast as a state estimation problem or a topology estimation problem. Finally, we provide a new confidence

metric to highlight the approximate global optimum achieved by our proposed method.

Due to the computational complexity of the proposed methods, we utilize achievements in graph theory

and Lagrangian dual method to compute the proposed method in a distributed way. As a result, with message

exchanges on coupling nodes between neighboring local networks, the original centralized SDP approach

can be characterized in a distributed manner via local SDP SE computation. Obviously, using parallel

processors directly reduces the computational time needed for the SE process. We support this conclusion

with numerical results that also ensure a fast rate of convergence and robustness to local bad data, both of

which are critical for power system analysis.

Finally, we propose for the first time a global optimum solver for the electric power grid state estima-

tion problem in the noise-free case. In this approach, we start by formulating an equivalent convex linear

56



programming problem, followed by restricted convex semidefinite programming (SDP). A global optimum

can be efficiently located in an SDP problem. It is shown that the convex SDP formulation is equivalent

to the non-convex WLS formulation in the noise-free case. When noise appears, the proposed method can

still be used to obtain an estimate, because a small disturbance in the measurement usually causes a small

disturbance in the state. The simulation results show that the proposed approach is capable of preventing

local optimum, making it suitable for robust state estimation. In the subsequent chapter, we will discuss

various methods for conducting historical data-driven state estimation.
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Chapter 4

Data-Driven State Estimation

In the last chapter, we proposed convex relaxation-based methods to improve static state estimation (SE)

results. Although they are able to achieve global or near-globally optimal results in the measurement domain,

further improvement can be accomplished by using historical data to enhance estimation accuracy in the

state domain. This historical data-based approach has previously been used for power system analysis.

For example, field engineers have used historical data in the past when conducting topology identification

by noticing that some groups of circuit breakers were more suspicious than others. As such, when they

performed analysis, historical data were taken into account by conducting priority checks on these buses

after a topology error was detected. Another example lies in the static state estimation itself. To be more

concrete, a previous state estimate, which is a piece of recent historical information, is usually used as

a heuristic initial guess for SE in the WLS approach with Newton’s method with the assumption that no

significant change appears in a short time.

However, a more systematic data-driven approach is needed for smart power grid. This is because, in a

smart grid, intermittent generations (i.e. wind and solar farms), consumptions (i.e. plug-in hybrid-electric

vehicles), and frequent topological changes can lead to significant state shifts in power system operations.

In such cases, a previous state estimate computed around 2 minutes before [54] may not truly reflect the

operating point of the current power system and, accordingly that previous estimate generates suboptimal

results. Although not suitable for smart grids, utilizing previous state estimate as prior knowledge for current

SE does reflect an important idea in power systems analysis: using historical data in a smart way can enhance

real time analysis against uncertainties in operation.
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Therefore, this chapter aims to utilize valuable historical data resources to improve SE accuracy against

the ever-changing and hard-to-predict uncertainties that will exist in future smart power grids. Instead of

using a single data point (the last state estimate), the key idea presented in this paper is to use more histor-

ical data (i.e. state, topology, and measurement) for the robustness of SE with the embedding techniques

introduced in Section 1.4. In Section 4.1, we review the state-of-the-art data-driven approaches currently

used in power system analysis. In Section 4.2, we propose static robust data-driven SE approaches. To cure

the time-consumption issue of the proposed data-mining approach, we introduce methods in Section 4.3 to

speedup the data-driven approach. In Section 4.4, we introduce a static data-driven approach for topolo-

gy identification to extend the application of the method proposed in Section 4.2; this extension shows an

improvement in results when compared with the traditional chi-square test-based topology detection and

identification method. Finally, inspired by machine learning, a dynamic data-driven approach, in which

the sensors have a very fast sampling rate to capture dynamics, is proposed in Section 4.5. Section 4.6

summarizes the entire chapter.

4.1 Current State-of-the-Art Power System Analysis with Historical Data

Initiated by the U.S. government, the rapidly expanding smart grid aims to evolve into an efficient, reliable

and sustainable modern grid by adopting, integrating, and advancing the communication and computing

technologies that already exist. To achieve such an ambitious goal, namely the “smartness” of the power

grid, a large amount of investment is devoted to sensor purchase and data storage devices. This has resulted

in recent advances in communications, sensing, computing and control, as well as in targeted investments

toward the deployment of advanced meter infrastructures (AMIs) and synchrophasors, which have become

drivers and sources of data previously unavailable in the electric power industry. Such a database is expected

to exhibit exponential growth. With vast amounts of data being generated in the power grids, researchers

and engineers need to address questions, such as what patterns and trends to extract and how to use them to

improve power system reliability, security, sustainability, efficiency and flexibility.

As such, data-driven power system analysis has become popular in recent years. In the following we

summarize its various applications.

• Fault Detection: [55] presents data-driven fault detection in nuclear power plants to distinguish the

effects of sensor degradation from those of actual system faults. [56] and [57] propose data-driven
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approaches for fault diagnosis in wind energy conversion systems to deal with nonlinearity, unknown

disturbances, and significant measurement noise in wind turbines.

• Model Identification: [58] presents a practical approach for identifying a global model of a wind

turbine from operational data, while the turbine operates in a turbulent wind field with a varying mean

wind speed and under closed-loop control.

• Estimation: [59] proposes a data-driven multi-scale extended Kalman filtering based on parameter and

state estimation approach to the batteries in electric vehicles. [60] presents a domain driven data min-

ing approach for estimating the risk of systems’ unavailability based on their component equipments

historical data, within one of the biggest Brazilian electric sector companies.

• Prediction: [61] discusses short-horizon prediction of wind speed and power using wind turbine data

collected at 10s intervals. A time-series model approach to examine wind behavior is studied. Both

exponential smoothing and data-driven models are developed for wind prediction. In 2011, a data-

driven model is presented in [62] to predict the ice load on transmission lines so that icing disasters

can be anticipated. In 2012, [63] proposes a data-driven predictive functional control of power kites

for high altitude wind energy generation.

• Visualization: [64] proposes a data-driven approach to interactive visualization of power systems.

In the rest of this chapter, we will propose both static and dynamic data-driven approaches to state estimation.

(a) Data center. (b) Periodic pattern.

Figure 4.1: Power grid.
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(a) Periodicity of loads in power grids.
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(b) Replace this with high performance computers.

Figure 4.2: Simulation results for speed up

4.2 Static Data-Driven Approach to State Estimation

In the static data-driven approach, we aim to find a static state estimate based on the current measurement set

and the historical data. This is to be compared to the dynamic data driven approach introduced in Section 4.5.

One possible advantage of such an approach for outperform traditional static state estimation method may

come from the cyclic tendency of power system operation, with strong daily, weekly and seasonal cycles

(e.g., very high loads on weekday afternoons during the summer, and much lower loads on weekend nights

in the spring and fall). Hence, similar to an experienced system operator who may readily detect patterns

that seem abnormal, a data-based state estimator may be enhanced by looking back to similar patterns in the

past.

Problem Definition

Recall the formal definition in Section 2.1.3 from Chapter 2:

• Problem: Obtain a data-driven state estimator

• Given:

– a sequence of historical measurement column vectors: z1, z2, · · · , zk, · · · zQ, where k is the

time index, and Q is the total number of data points in the database;
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– a sequence of historical state estimate column vectors: x1,x2, · · · ,xk, · · · ,xQ;

– a sequence of historical measurement function sets: h1,h2, · · · ,hk, · · · ,hQ;

– the current measurement column vector: zcurrent;

– the current measurement function set: hcurrent.

• Find: x̂current = g(z), where estimator g(·) is estimate using historical data. This avoid solving (2.2)

directly.

Figure 4.3: Flow chart

Mathematically, our proposed Robust Data-Driven SE algorithm can be decomposed into two parts:

• A minimization problem to obtain a group of likely historical data;

• A kernel ridge regression problem to obtain an “optimal” state estimate from the group.

We will detail the idea behind such a method in the next two subsections.

4.2.1 The Nearest Neighbors Approach

Intuitively, with the same topology, close-by states usually produce similar measurements. Therefore, a

smaller distance between the current measurement set zcurrent and a historical measurement set zk at time k

implies a strong probability that the associated historical state vector xk stays closer to the current true state

vector xtrue. Knowing this, we proposed a historical data search method. To make the estimation unbiased

62



toward any single data point, a group of nearest neighbors is obtained instead of a single historical data

point.

Such a method, as shown in Fig.4.3, is called the K-Nearest Neighbors (K-NNs) 1 approach in Statistics,

which is a nonparametric method requiring no model to fit. Specifically, given a query point zcurrent, we

find K training points (zk) closest in distance to the query point. Despite mild structural assumptions and

algorithmic simplicity, K-NNs’ predictions are often accurate, leading to its successes in a large number of

classification problems, including handwritten digits, satellite image scenes, and EKG patterns.

4.2.2 Bayesian Inference: Kernel Ridge Regression

Since the major goal is to conduct inference for the hidden parameters (states) based on the labeled data (his-

torical measurements-state pairs), one employs Discriminative model rather than Generative model, which

requires the joint distribution between unobserved variables and observed variables. Such a Discriminative

model is only for inference tasks.

Kernel Ridge Regression

• Ridge regression

We first consider a Normal model below, which is a popular discriminative model with unknown hyper-

parameters q and Σd:

x|z : N(qTz,Σd). (4.1)

To identify such a discriminative model for our inference, a regularized (ridge regression) estimator is

commonly used:

q̂ = argmin
q

K∑
i=1

(xi − qTzi)
2 + 2γ||q||2, (4.2)

where
∑K

i=1(xi − qTzi)
2 is used to minimize the sum square error, and the regularization term 2γ||q||2 is

used to improve the estimator performance against ill-conditioned problems.

1The tuning parameter K can be chosen by cross-validation [14].
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For the Normal model, with the historical data stored in Zmat and Xmat as follows,

Zmat = (z1, z2, · · · , zK),

XT
mat = (x1,x2, · · · ,xK), (4.3)

we can obtain a closed-form solution:

q̂ = (ZmatZ
T
mat + 2γI)−1ZmatXmat, (4.4)

where the unknown hyper-parameter Σd has been absorbed into the penalty constant γ. Notice that due to

the ridge regularization (since γ > 0), ZmatZ
T
mat+2γI ≽ 2γI ≻ 0. Therefore, the matrix ZmatZ

T
mat+2γI

is always invertible. Thus, the regularized estimator in (4.4) always exists. In other words, with a choice of

quadratic penalty, the ridge regression solution is again a linear function of the labels (states) in Xmat. The

solution adds a positive constant to the diagonal of ZmatZ
T
mat before the inversion. This makes the problem

nonsingular, even if ZmatZ
T
mat is not of full rank, and was the main motivation for ridge regression when it

was first introduced in statistics.

Once the hyper-parameter q̂ is estimated in (4.4), it can be used for Bayesian inference to generate the

current state estimate x̂B , as follows:

x̂B
current = q̂Tzcurrent (4.5)

= XT
matZ

T
mat(ZmatZ

T
mat + 2γI)−1zcurrent (4.6)

= XT
matT (4.7)

Notice that such a form is based on ZmatZ
T
mat. One can also conduct the following derivation to obtain

an alternative form based on ZT
matZmat. By employing the Matrix Inversion Lemma (A + BDC)−1 =

A−1 − A−1B(D−1 + CA−1B)CA−1 to expand the inversion above, an alternative form of T can be

obtained that may further simplify the computational need:

T =ZT
mat(ZmatZ

T
mat + 2γI)−1zcurrent (4.8)

=
1

2γ
(ZT

matzcurrent −ZT
matZmat(Z

T
matZmat + 2γI)−1ZT

matzcurrent) (4.9)

=
1

2γ
(Zmatz

T
current − (ZmatZ

T
mat + 2γI − 2γI) · (ZmatZ

T
mat + 2γI)−1ZT

matzcurrent) (4.10)

=(ZT
matZmat + 2γI)−1ZT

matzcurrent, (4.11)
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where

ZT
matZmat = (z1, z2, · · · , zn)T (z1,z2, · · · , zn) =


zT
1 z1 . . . zT

1 zn
...

. . .
...

zT
n z1 . . . zT

n zn

 , (4.12)

ZT
matzcurrent = (z1, z2, · · · , zn)Tzcurrent =


zT
1 zcurrent

...

zT
n zcurrent

 . (4.13)

Because the matrix ZT
matZmat appears in the calculation (4.11), as opposed to the original calculation

(4.8) involving ZmatZ
T
mat, the pairwise inner product in ZT

matZmat creates the potential to improve estima-

tion performance in the nonlinear kernel space. This is because the power system’s measurement functions

are usually nonlinear. Direct use of (4.1) and (4.5) implicitly assumes a linear model, leading to a relatively

poor state estimate.

• The Kernel trick for the Normal Discriminative model

Kernels are important building blocks in high-dimensional learning techniques. There is a trick called

kernelization for improving a computationally simple classifier/regressor [14]. The idea is to embed the

covariate zj into a higher dimensional space and apply the regression in the embedding space. This can

yield a more flexible estimator while retaining computational simplicity. The point is that to get a richer set

of regression models we do not need to give up the convenience of linear regression model. We simply map

the covariates to a higher-dimensional space. This is akin to making linear regression more flexible by using

polynomials.

Now for every so-called kernel K(·, ·) [65], there exists a high-dimensional mapping ui = w(zi), from

which the inner product uT
i uj = (w(zi))

Tw(zj) can be calculated by the kernel K(·, ·), as below,

uT
i uj = K(zi, zj). (4.14)

Therefore, the kernel calculation uses only (low-dimensional) z’s, rather than the high-dimensional u’s.

Therefore, the computational complexity of calculating the inner products in (4.12) and (4.13) is low, even
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though dim(u) itself may be very large. This idea of using a cost-effective kernel calculation to implement a

high-dimensional Normal model is called ‘the kernel trick’. In this section, we employ the following kernel

forms as candidates. This process is called kernel model assessment and selection.

- Homogeneous polynomial: K(ui,uj) = (uT
i uj)

d.

- Inhomogeneous polynomial: K(ui,uj) = (1 + uT
i uj)

d.

- Gaussian (Radial Basis function): K(ui,uj) = exp(−µ||uT
i uj ||2), µ > 0.

4.2.3 Model Selection

In order to choose the best model, we need to assess the performance of various models based on different

γs in (4.2) and the kernels above.

If we are in a data-rich situation, the best approach for both problems is to randomly divide the data-set

into three parts: a training set, a validation set, and a test set. The training set is used to fit the models; the

validation set is used to estimate the prediction error in model selection; and the test set is used to assess

the generalization error of the final chosen model. Ideally, the test set should be kept in a “vault”, and be

brought out only at the end of the data analysis. In Section 4.3.3, we use the inconsecutive data between

validation and testing phases for this purpose.

Therefore, we divide the data into three phases.

• In the training phase, one applies part of the historical data to different kernel functions and γ pairs to

calculate different T s.

• In the validating phase, another part of the historical data is used to choose the best kernel function

and γ.

• Finally, the chosen x̂B , computed from the validated T , is used in (5.2) for the testing phase of state

estimation.

4.2.4 Robust Data-Driven State Estimation

Although showing promising results in smart grids, the proposed data-driven SE [66] implicitly places strong

assumptions on the historical data it uses. For instance, it assumes that the historical data are without: 1)

66



topology changes [7], 2) bad data [10, 67], and 3) malicious attack [68]. Unfortunately, such assumptions

are frequently violated in practice [7, 10].

Specifically, the naive NNs comparison in the measurement space did not include scenarios concerning

topology changes, bad data, and malicious attack:

1. The method above is non-robust to topology changes. If topology change occurs, a small distance

between measurements may result in an undesired large distance between states.

2. Data points with relatively large errors in the historical measurement may diminish the quality of

the collected data points. Different levels of bad data may harm the overall quality of the estimation

result.

3. If unobserved malicious bad data injection appears in static SE, it should not be collected in the robust

K-NNs due to its false information.

To make the algorithm robust, we generalize the system learning process. Instead of using only one

step, we propose three steps to systematically locate good and robust nearest neighbor points. We first

utilize historical state and system topology information to deal with topology changes. Second, historical

measurements are used to refine the data set against bad data. Third, we conduct a maximum agreement

algorithm for the collected states in order to identify malicious attack. Then the resulting information is

used in a supervised learning process with Kernel Ridge Regression of Section 4.2.2, leading to a robust

data-driven state estimate.

Topology Changes

To capture the topology changes in the smart grids, historical pseudo-measurements, instead of historical

measurements, are used for comparison.

ẑk = hcurrent(xk), (4.15)

where hcurrent is the measurement function associated with the current topology. Mathematically, the K-

NNs results that are robust to the topology changes can be expressed as the following optimization.

ŝ = arg min
|s|=K

d(s) =
∑
k∈s
||zcurrent − ẑk||22, k ≤ Q, (4.16)
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Figure 4.4: Diagram for robust nearest neighbors search

i.e., minimizing the sum distance function d(s). Here Q is the number of total data points in the database.

k represents a particular index for a data point. As a result, zk indicates the measurement set within the

kth time slot. Finally, K indicates the cardinality of the set s. Essentially, during the searching step, the

algorithm looks for an index set s with K elements that represents a set of pseudo-measurement vectors

that have nearest distance to the current measurement zcurrent. Such a process is illustrated on the left side

of Fig.4.4. Notice that, such a search process is time consuming, due to the high dimensionality of the

measurement vectors and a large volume of data points over a long time. Section 4.3 is devoted to this

problem.

Dealing with unfiltered bad data

Bad data occurs due to equipment failure, finite accuracy, infrequent instrument calibration and measurement

scaling procedure at the control center. Telecommunication errors and incorrect topology information may

also cause bad data. Traditional static bad data detection and filtering are based on the Chi-square test [7].

After choosing a threshold over the probability of error, e.g. 5%, the weighted sum square error is evaluated

in Chi-square distribution under the rules of the Chi-square test. Unfortunately, the threshold is usually

subjective and can not guarantee the absence of relatively large amounts of bad data. Luckily, when many

data points are used in a data-driven framework, one obtains the opportunity to improve the SE result even

more by selecting relative better data points. In this subsection, instead of using the hard decision process,

we propose comparing the sum square errors in different time slots by utilizing the extra degree of freedom
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over time. In this paper, as illustrated in the center of Fig. 4.4, we proposed to remove data points with

relatively large sum square errors, i.e. data points with 10% or more will be deleted.

Dealing with malicious bad data

[68] presents a new class of bad data, namely the false data injection, in the process of state estimation.

By exploiting the measurement function (the topology information) of a power system, an attacker can

successfully introduce arbitrary errors into certain state variables while bypassing existing techniques for

bad measurement detection.

Such an attack, due to its unobservability, is hard for static SE to detect. However, with long historical

data, one can compare different data points across the time domain. For this reason, we can compare all

the collected states and filter out the outliers. In other words, instead of looking for false data injection

among different measurements in a single time slot, we propose to examine the state vectors in multiple

time slots to filter out data points that are inconsistent with others according to some metric, such as the

definition of relative outliers [69–71]. Fig.4.5 illustrates the idea over a two bus system via synthetic data.

The x coordinate represents the voltage magnitude of the first bus. The y coordinate represents the voltage

magnitude of the second bus. Since power system data are highly clustered, as shown in Section 4.3, points

o1 and o2 become suspected data points to be filtered out.

Figure 4.5: Visualization of voltage magnitude pairs in a two bus system

Overall, the robust K-NNs method discussed in this subsection (Fig.4.4) aims to filter out unnecessary
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(a) Singular values (b) Measurement data clustering

Figure 4.6: Dimension reduction

data information in order to shrink the amount of data. Afterwards, we will “average” this historically similar

information by conducting the kernel regression problem in subsection 4.2.2. Together, such a two-stage

process is called Robust K-Nearest Neighbors Regression [72].

4.3 Speed Up for Static Data-Driven State Estimation

In the proposed data-driven approach described in the last section, the nearest neighbors search requires an

exhaustive exploration of all data points and is slow in large network with huge amount of historical data.

We analyze below the historical data structure of a power system and propose three steps to speed up the

data search process but preserve the accuracy.

4.3.1 Dimension Reduction

In order to reduce the NN search time, we start by exploring the data structure. Since electrical power

systems exhibit periodicity, one would expect the measurement data to be highly clustered, creating the

possibility for a great dimension reduction in measurement data. As an illustration, singular value decom-

position (SVD) is conducted over the historical data of 300-bus systems [73]. 1073 measurements per time

slot over one year are used to form historical measurement matrix Z = [z1, z2, · · · ,zQ]. Mathematically,

the SVD decomposition is represented as

Z = U × S × V ′, (4.17)
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where the diagonal entries of S are known as the singular values. U and V are unitary matrices [73]. By

plotting the magnitude of singular values in Z with a log− log scale, only 8 significant singular values

show up in Fig.4.6a. Besides, in Fig.4.6b, we show the result of mapping the historical data onto some

two-dimensional features (two left-singular vectors of U ) associated with significant singular values. Since

the data in the figure are highly clustered and far away from each other, dimension reduction is possible with

historical electric power system data, and we can remove redundancy from the NN search.

In this section, we propose using random projection for this highly clustered historical measurement data

set. This is because other dimension reduction techniques such as SVD tend to be very time consuming,

making them unsuited for the online state estimation process [74]. Besides, the dimension reduction of other

techniques is typically a one-time operation, which means that the entire process has to be done from scratch

every time new power system data come up. This makes them non-adaptive to new incoming data, which is

important in real-time power system analysis.

On the contrary, random projection is fast and adaptive. Mathematically, the original m-dimensional

measurement data is simply projected onto a m′-dimensional (m′ ≪ m) subspace using a random m′ ×m

matrix R,

ym′×1 = Rm′×mzm×1. (4.18)

The elements rij of the random matrix R are often chosen to be normally independent and identically

distributed with zero means, and the columns of R are normalized with unit lengths.

The key idea of such a random mapping arises from the Johnson-Lindenstrauss Lemma [75]: if points

in a vector space are projected onto a randomly selected subspace of suitably high dimensions, then the

distance between the points is approximately preserved.

4.3.2 K-dimensional (k-d) Tree for Indexing

Since the historical data is highly clustered, we propose to use a tree to index the data after dimension

reduction. The basic idea of the proposed k-d tree approach comes from the binary-tree as illustrated on the

left of Fig.4.7. In the binary-tree, all nodes after the left pointer have smaller values than the current root

value, and all nodes after the right pointer have bigger values. If one wants to search for a number in this

seven-node tree, the maximum searching time changes from 7 (by exhaustive search) to 3 by using the tree

structure.
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Figure 4.7: Binary tree and k-d tree

To extend the one dimensional data to high dimensional data such as the power system measurement

vectors, we substitute for the binary-tree with a k-d tree as illustrated on the right of Fig.4.7. The k-d tree

alternates over different measurements as a discriminator on every level of the tree. Because of the efficient

‘pruning’ of the search space, the k-d tree has an average nearest neighbor search time of O(log(Q)), where

Q is the total number of historical data points.

Figure 4.8: K-d tree for clustered data set
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As an illustration, Fig.4.8 shows a case where the k-d tree is conducted over a two-dimensional data set.

By properly using the clustering properties of the spatial data points, the k-d tree achieves good performance

since the search within it can omit a large portion of the clustered points in the space.

Adaptation to the Robust K-NNs Approach

The speed-up method introduced in this section is based on historical measurements. However, our robust

K-NNs approach in Section 4.2.4 is based on the pseudo-measurements in (4.15). To adapt the algorithm, we

first choose 10×K Nearest Neighbors based on the historical measurements. Then we reduce the neighbor

numbers via the robust K-NNs approach discussed in Section 4.3.

4.3.3 Simulation Results

In this section, we simulate and verify the performance of the proposed robust K-NNs regression approach,

and compare it in a standard IEEE 300 test case to the industrially used Newton’s method.

Data Preparation The simulations are completed in MATLAB environment in accordance with the MAT-

LAB Power System Simulation Package (MATPOWER) [37, 38]. In addition, to simulate power system

behavior in a more practical pattern, the online load profile from New York ISO [76] is adopted in the sub-

sequent simulation. Specifically, it has online load profiles from the New York ISO area recorded every five

minutes. The load data used is between February 2005 and December 2013 with a consistent data format.

Therefore, we use the load data between February 2005 and May 2013 in training and validation sessions.

The load profiles between July 2013 and December 2013 are used in the testing session.

To generate data for SE, we first fit the normalized load data into the case file. Subsequently, an AC power

flow is run to generate the true states of the power system, followed by creating true measurement sets with

Gaussian noises (standard deviations in Table 4.1). Hereby, we assume that the measurement set includes 1)

power injection; 2) line power flows; 3) voltage magnitudes; and 4) some phase angle measurements.

Data Adjustment Since we propose a data-driven SE that we claim to be robust to topology changes, bad

data, and malicious attack, we adjust the generated data above for simulation with respect to each of them.
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Table 4.1: Standard deviation of measurement noise

Measurement type Standard deviation

Active (Reactive) power injection 0.015

Active (Reactive) power flow (from)(to) 0.02

Voltage magnitude 0.01

Phase angle 0.002

• Topology Changes: In this case, before running the power flow to generate the measurements, sev-

eral randomly chosen topology connections are changed with a 20% probability of imitating certain

features of the smart grid.

• Bad Data: In addition to the topology changes, we randomly generate bad data and insert them into

the measurements.

• Malicious Attack: In addition to topology changes and bad data, we intentionally inject several ma-

licious data into the pre-May 2013 historical database, which is unobservable by the Chi-square

test [68].

Training, Validation, and Testing

• Training Phase: By randomly selecting one measurement between July 2013 and December 2013 as

a test case, a group of robust nearest neighbor measurements in (4.16) between Feb. 2005 and Dec.

2012 is selected via Fig.4.4 in Sec.4.2.1. Then matrix T in (4.11) is computed for different choices of

γ and kernel function.

• Validation Phase: Matrix T is validated for the data between January 2013 and May 2013 to obtain

the best choices for γ and the kernel pair.

• Testing Phase: We use the matrix T chosen in the validating phase to calculate the Bayesian state

estimate xB via (4.7) for the data between July 2013 and December 2013. For comparison purposes,

the industrial approach of Newton’s method initialized via the last state estimate is also applied to the

same testing data.
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Improved Accuracy In the testing phase, filtering out bad data and malicious data reduces the measure-

ment number. Therefore, instead of Sum Square Error, we will employ Mean Squared Error (MSE) defined

as

MSE =
1

m

m∑
i=1

(
zi − hi(x̂current)

σi

)2

. (4.19)

Simulation: Robustness to Topology Changes

In this part, we assume there is no bad data and malicious attack in the historical data to emphasize the ro-

bustness feature of the proposed method. We employ the first building block only (the left block) of (Fig.4.4)

to conduct the R-KNNs search. Then, the gathered data is outputted to the kernel ridge regression method

discussed in Section 4.2.2 for an estimate. The Training, Validation and Testing procedures, discussed in

Section 4.4.4, are subsequently used in this estimation process. For fairness, the testing is conducted 400

times. Each time, we obtain an MSE, voltage magnitude estimates, and voltage phase angle estimates. For

comparison purposes, we also compute the corresponding results with Newton’s method initialized by a

previous state estimate.

To show the improved accuracy over the 400 testing cases, we define the relative error in the ith testing

case as

γi =
MSERobustK−NearestNeighborsMethod

MSENewton′sMethodwithPre.Est.Start
. (4.20)

Subsequently, Fig.4.9a shows a histogram of the 400 simulation results. By looking at the x coordinate,

we observe that the Robust K-Nearest Neighbors (R-KNNs) approach has greatly reduced estimation errors

by an average ratio of 10−2.5. From this fact, we can reasonably conclude that the proposed R-KNNs method

is able to handle topology changes.

As for the comparison in the MSE domain, Fig.4.9b and Fig.4.9c provide state domain plots. The x co-

ordinate represents the bus number. The y coordinate represents the voltage magnitude ratio ( |VR−KNNs|
|VTrue| and

|VPre.Est.|
|VTrue| ) in Fig.4.9b and the voltage phase angle ratio (∠VR−KNNs

∠VTrue
and ∠VPre.Est.

∠VTrue
) in Fig.4.9c, respectively.

It can be observed that the R-KNNs method has a voltage ratio in red of close to 1, and its lesser variance (in

red) indicates its ability to track the true system states while Newton’s method with a previous estimate start

has a ratio (in blue) far away from 1 with a large variance. Such a poor result is caused by the local-search

behavior of Newton’s method, which is suboptimal with an inferior initial guess.
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(c) Voltage phase angles

Figure 4.9: Simulation results with only the first block of Fig.4.4.
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Figure 4.10: Simulation results with the first and the second blocks of Fig.4.4

Simulation: Robustness to Bad Data

In this section, we conduct similar simulations to those in the last subsection. However, besides using

the first building block (the left block of Fig.4.4, we will use the second (middle) building block as well.

This block targets at improving the result, by filtering out data points with relatively large residuals and by

creating a soft decision rule as discussed in Section 4.2.4.

For comparison purposes, we simulate this part in parallel to simulations in the last subsection, namely

the robustness to topology changes. Therefore, we observe the same estimation mean and variance in blue

for Newton’s method initialized by the previous state estimate. As one can observe, the only difference

between Fig.4.10b and Fig.4.9b are that the mean of R-KNNs ratio in Fig.4.10b is flatter and its variance is

smaller than the ratio in Fig.4.9b. This is caused by the filtering out of measurements with relatively large

residuals, thanks to richer data comparison across the horizontal time line, instead of the single data point
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Figure 4.11: Simulation results with all three blocks of Fig.4.4

used in traditional static SE. Another piece of evidence supporting to this observation is that Fig.4.10a shows

a smaller MSE ratio than does Fig.4.9a.

Simulation: Robustness to Malicious Attack

The data used in this subsection are slightly different from the two simulations above. To mimic the possi-

bility that at some point in time human beings might try to inject bad data that could pass the Chi-square test,

we injected malicious data intentionally into the measurement set only in the testing sets. From Fig.4.11a,

we can see that the Mean Square Error before and after the malicious-data-filtering are not so different.

However, we can also observe large errors in the state space in Fig.4.11b and Fig.4.11c. For example, the

rectangular plot in blue shows a long distance to 1 in Fig.4.11b. We can see a similar thing in Fig.4.11c as

well. This shows that the malicious data can change the state estimate dramatically without triggering the

bad data alarm.

In contrast, the red star-like curve is close to one in the voltage magnitude plotting and close to zero in the

voltage phase angle plotting. The variance in red is also much smaller than the variance in blue, illustrating

the robustness of the proposed data drive approach against malicious data.

Speed Up

In this section the speedup method proposed in Section 4.3 is used. The comparison process is conducted

400 times with and without speedup.
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Figure 4.12: Simulation results for the speedup

Time Reduction To illustrate the speedup, we define the relative execution time ϕ for the ith testing data

during the R-KNNs search:

ϕi =
twp,i

tex,i
, (4.21)

where twp represents the R-KNNs search time with preprocessing (dimension reduction and k-d tree index-

ing). tex represents the exhausted R-KNNs search time without preprocessing.

The plot of ϕi is drawn in Fig.4.12a. It shows that the proposed preprocessing approach has greatly

reduced the historical NN search time. For example, the average ratio (ϕ) for all testing cases is around

10−3, creating a 99.9% reduction in search time. Such a result leads to a rational interpretation for the

proposed procedure: since the historical data is organized in a compact way, the nearest neighbors search

can be conducted much more efficiently.

Accuracy Similar to the ratio metric defined in the last subsection, we define the ith relative error πi for

the testing data as

πi =
MSEwp,i

MSEex,i
. (4.22)

The plot of πi shows that the relative error is only slightly larger than 1 (less than 0.01 on average), so the

proposed two-step approach returns a group of historical data highly similar to the groups in the exhaustive

search. The slightly larger error (≈ 1%) may be caused by dimension reduction. But it is negligible when
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compared to the 1000 time speedup. Therefore the proposed approach achieves approximately the same

accuracy as the slow but highly accurate data-driven SE as shown in Fig.4.9, Fig.4.10, and Fig.4.11.

Conclusions

In this section, we discussed how to systematically obtain a robust data-driven state estimation for AC power

systems. Based on the intuition that similar measurements and topology reflect similar power system states,

we formulated the finding of the initial SE as a minimum distance search problem. Further, a Bayesian

estimate was obtained via kernel ridge regression. We further proposed how to systematically reduce the

computational costs of the proposed method. Such a computational reduction was based on the observation

that power system consumption displays periodic pattern. In particular, dimension reduction and efficient

indexing over trees were proposed. The numerical results showed that the proposed method can achieve

a highly accurate robust data-driven state estimate in a short time with a 1000 time speedup over IEEE

benchmark systems.

4.4 Data-Driven Approach for Topology Identification

Power system state estimation is usually formulated based on bus-branch network modeling. The goal

is to compute nodal voltage magnitudes and phase angles based on various measurements and the grid

topology. Unfortunately, topology error happens occasionally when an undetected breaker status change

appears in a line, a transformer, a shunt capacitor, or a bus coupler [77]. As a result, systematic topology error

identification methods have been developed based on a post-SE procedure [78]. Specifically, a topology

error is detected if measurements associated with a branch or a bus are flagged as outliers by an SE-based

residual test. Since the state estimation and topology estimation processes are based on the correctness

of each other, it is easy to find cases where multiple conforming measurements cause incorrect topology

identification results [7, 40, 41].

In the traditional transmission network, it is possible to use the topology identification process described

above, based on the belief that no significant topology change appears in a short time with limited non-

conforming errors. However, such a belief does’t hold with a smart grid, where frequent topological changes

appear, which may lead to a large amount of topology errors, making it hard on the method above to identify
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them all.

Similar to the last section, where historical data is used for SE, this section aims to utilize valuable his-

torical data resources to improve topology identification accuracy against the ever-changing hard-to-predict

uncertainties in smart grids. Instead of using only a single data point (the current time), the key in this section

is to use more historical data (i.e. topology and measurement) for robustness. The proposed method is based

on the idea that two similar system measurement sets usually indicate two similar topology configurations.

After collecting a group of similar measurements in the past, a supervised learning framework is employed

to map the historical data to the current topology estimate. Specifically, we propose a Bayesian approach

based on a historical data search, where a group of measurement sets and the corresponding topology infor-

mation are used in combination with the current measurement in a logistic kernel regression framework [14]

to pursue a good estimate of the current topology.

The performance of the data-driven method is the verified by simulations on standard IEEE 14, 30,

and 39-bus test cases [37, 38]. Provided with enough historical data, the data-driven topology estimate

outperforms the estimate from the traditional approach.

The rest of the section is organized as follows: Subsection 4.4.1 reviews the current topology identifica-

tion approach; in Subsection 4.4.2, we pose a data-driven topology estimation problem; Subsection 4.4.3

describes the nearest neighbors approach; Subsection 4.4.4 illustrates the simulation results and subsec-

tion 4.4.5 concludes the section.

4.4.1 Current State-of-the-Art Power System Topology Error Identification

Topology estimation deals with the occasionally unreported removal of customer nodes, sensor failures,

and manually updated breakers. Without accurate topological estimation, SCADA systems will the wrong

topology for subsequent state estimation, resulting in erroneous consumer power cut-offs or even a blackout

throughout the grid.

The well-known method [7,40,41] for topology estimation has two steps: the first step uses a bus branch

model for AC power systems. Subsequently, Weighted Least Squares and the Chi-square test [42] are used

to locate the branches suspected of abnormal measurements.

Recall that the state estimation in static WLS form is highly non-convex. Due to the non-convexity of the

cost function in (2.2), currently used Newton’s method is highly sensitive to the initial guess. An undesirable
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Figure 4.13: Problem definition.

local optimum may appear.

After SE, a topology error is identified if measurements associated with a branch or a bus are flagged as

outliers by an SE-based residual test. Such a method is problematic due to (1) the interdependence between

SE and Topology Estimation, and (2) the local optimum issue with Newton’s method. In the next two

sections, we are going to discuss a new systematic approach for topology estimation.

4.4.2 Problem Definition

In this section, we aim to perform historical data-driven topology estimation for power systems in a manner

similar to how we have performed data-driven state estimation. The major difference is that, instead of

continuous state estimation, we will use discrete topology estimation. Specifically, we consider a sequence

of historical SCADA measurements obtained every 2 seconds (or shorter, when faster devices such as Pha-

sor Measurement Units are available). These measurements are represented as a discrete time sequence

{z1, z2, · · · , zk, · · · ,zQ}, where k ∈ {1, 2, · · · , Q}. For instance, each column of Fig.4.13 represents a

measurement set at a particular time slot. In addition, the corresponding circuit breaker statuses are repre-

sented as {s1, s2, · · · , sk, · · · sQ}, where si is a binary vector representing the topology connections at time

slot i. For each element of si, 1 indicates connected and 0 otherwise. The problem that we are trying to

solve here is to use historical data to identify the current topology. The formal problem definition, as shown

in Fig.4.13, is as follows:

• Problem Name: Topology Estimation
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• Given:

– a sequence of historical measurement vectors {z1, z2, · · · , zk, · · · ,zQ};

– a sequence of historical topology configurations {s1, s2, · · · , sk, · · · , sQ};

– current measurements zcurrent.

• Find: the current topology scurrent.

4.4.3 The Nearest Neighbors Approach

Mathematically, the proposed data-driven topology estimation algorithm can be decomposed into two parts:

• A minimization problem to obtain a group of historically similar data;

• A Logistic Kernel Regression problem to obtain an “optimal” topology estimate from the group.

Intuitively, similar topologies usually produce similar measurements. Therefore, a smaller distance be-

tween the current measurement set zcurrent and a historical measurement set zk at time k implies that the

associated historical topology vector sk has a high probability of staying closer to the current topology vec-

tor scurrent. Provided with the aforesaid, we propose a historical data search method. To free the estimation

from relying on a single data point, a group of nearest neighbors is obtained instead of a single historical

data point. This is similar to 4.3.

4.4.4 Bayesian Inference: Logistic Kernel Regression

To combine prior beliefs with data in a principled way, we propose conducting Bayesian inference over

the collected K-Nearest Neighbor points to obtain a data-driven topology estimate. Since the major goal is

to conduct robust inference for the hidden parameters (topology) based on the labeled data (the historical

measurements-topology pairs), one can invert the causality relation for a Discriminative model. Recall that,

after obtaining the minimum distance index set u, this subsection aims to use the associated measurements

and their corresponding topology, as well as the current measurement set, to obtain a good current topology

estimate. In the following we start with a Generative model, namely Naive Bayes, to obtain the preferred

Discriminative model, namely Logistic Regression.
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We define the mapping from the measurements to a topology variable s(l) as

f(z) = P (s(l) = 1|z = {z(1), z(2), · · · , z(k), · · · ,z(K)}),

where s(l) represents the status of the lth circuit breaker, i.e. s(l) = 1 if the lth circuit breaker is close.

To learn P (s(l)|z), Naive Bayes uses the training data to estimate P (z|s(l)) and P (s(l)) separately. With

these estimates, the Bayes rule can then be applied to determine P (s(l)|z) for any new instance, such as

zcurrent [79].

P (s(l) = 1|z) = P (s(l) = 1)P (z|s(l) = 1)

P (s(l) = 1)P (z|s(l) = 1) + P (s(l) = 0)P (z|s(l) = 0)

=
1

1 + exp(ln P (s(l)=0)P (z|s(l)=0)

P (s(l)=1)P (z|s(l)=1)
)

=
1

1 + exp
(
(ln 1−π

π ) +
∑

i ln
P (z(i)|s(l)=0)

P (z(i)|s(l)=1)

) , (4.23)

where P (s(l)) is assumed to be Bernoulli (π), and the Gaussian Naive Model assumes that all z(i) are

conditionally independent given s(l). As we will see later, this assumption is removed in our learning phase

when Logistic Regression is applied. Now, we focus on the second term in the denominator of (4.23):

m∑
i=1

ln
P (z(i)|s(l) = 0)

P (z(i)|s(l) = 1)
=

m∑
i=1

ln

1√
2πσ2

i

exp(−(z(i)−µi0)
2

2σ2
i

)

1√
2πσ2

i

exp(−(z(i)−µi1)2

2σ2
i

)
=

m∑
i=1

(µi0 − µi1

σ2
i

z(i) +
(µ2

i1 − µ2
i0)

2σ2
i

)
.

Note that this expression is a linear weighted sum of z(i)s. Substituting it into (4.23), we obtain

P (s(l) = 1|z) = 1

1 + exp((ln 1−π
π ) +

∑
i

(µi0−µi1

σ2
i

z(i) +
(µ2

i1−µ2
i0)

2σ2
i

)
)
=

1

1 + exp(w0 +
∑n

i=1wiz(i))

(4.24)

where P (z(i)|s(l)) is assumed to be Gaussian N(µil, σi). The weights w1, · · · , wn are given by
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wi =
µi0 − µi1

σ2
i

, i ∈ {1, 2, · · · ,m}, (4.25)

w0 = ln
1− π

π
+

m∑
i=1

µ2
i1 − µ2

i0

2σ2
i

. (4.26)

As P (s(l) = 0|z) = 1− P (s(l) = 1|z), we have

P (s(l) = 0|z) =
exp(w0 +

∑n
i=1wiz

(i))

1 + exp(w0 +
∑n

i=1wiz(i))
. (4.27)

As for our inference, the distribution of s(l) is not needed, we prefer to learn P (s(l)|z), or w directly

from (4.24) and (4.27). There are also other motivations for this preference. First, the form of P (s(l)|z) used

by Logistic Regression holds under a broad variety of settings beyond the Gaussian Naive Bayes problem.

Second, we may wish to estimate the wi parameters directly from the data, rather than going through the

intermediate step of estimating the Gaussian Naive Bayes (GNB) parameters that forces us to adopt its

more stringent modeling assumptions [79]. For example, GNB assumes conditional independence of the

measurements given one topology connectivity, which does not hold for power systems.

To train Logistic Regression, we choose to maximize the conditional data likelihood below:

ŵ = arg max
k∈{û}

∏
l

P (s(l)|zk,w), (4.28)

where w = {w0, w1, · · · , wn}. Taking the log, we obtain the conditional data log-likelihood function

l(w) =
∑

k∈{û}

[
s
(l)
k lnP (s

(l)
k = 1|z,w) + (1− s

(l)
k ) lnP (s

(l)
k = 0|z,w)

]
. (4.29)

Note that, since s
(l)
k is binary, only one term appears. Plug in (4.24) and (4.27), and we have

l(w) =
K∑
k=1

[
s
(l)
k (w0 +

n∑
i

wiz
(k)
i )− ln

(
1 + exp(w0 +

n∑
i

wiz
(k)
i )

)]
. (4.30)

Subsequently, the gradient ascent method can be used to estimate an optimal ŵ.
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Kernel Logistic Regression

From the above, we learn the Discriminative model of one circuit breaker status by using historical data.

Such a form is easily expanded to learn all circuit breaker statuses. Further, to deal with the nonlinearity

inherent in electric power systems (5.1), we employ Logistic Kernel Regression instead of Logistic Regres-

sion.

In Kernel Logistic Regression, we want to minimize [80]:

H = −
∑

k∈{û}

[
slf(zk)− ln

(
1 + exp(f(xi))

)]
+

λ

2
||f ||2Hk

, (4.31)

where Hk is the reproducing kernel Hilbert space and λ is the penalization parameters. The mapping f(z) =

w0+
∑m

i=1wiK(z, zi). With some derivation, it can be shown that this is equivalent to the finite dimensional

form:

H = −z(Kww) + 1T ln(1 + exp(Kww)) +
λ

2
wTKcw, (4.32)

where the regressor matrix Kw = [K(zi, zj)]N×N ; and the regularization matrix Kc = Kw. [80] shows

that the Newton-Raphson step at step g is a weighted least squares step:

w((g)) =(KT
αAKα + λKq)

−1KT
αA(Kww

(k−1)) +A−1(s− p), (4.33)

where w((q)) is the value of w in the qth step and p = p(z). The weight matrix is A = diag[p(zi)(1 −

p(zi))]N×N .

Notice that Kw = [K(zi,zj)]N×N creates the potential to reduce computation costs.

The Kernel Trick for the Normal Discriminative Model

Recall that kernels are important building blocks for high-dimensional learning techniques. There is a trick

called kernelization for improving a computationally simple classifier/regressor [14]. The idea is to embed

the covariate zj into a higher dimensional space and apply regression in the embedding space. This can

yield a more flexible estimator while retaining computational simplicity. The point is that to get a richer set
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of regression models, we do not need to give up the convenience of a relatively easier regression model. We

simply map the covariates to a higher-dimensional space.

Model Selection

In order to choose the best model, we need to assess the performance of various models based on different

λs in (4.31) and the kernels above.

Therefore, we divide the data into three phases.

• In the training phase, one applies part of the historical data to different kernel functions and λ pairs to

calculate different ws.

• In the validating phase, another part of the historical data is used to choose the best kernel function

and λ.

• Finally, the chosen ŝB , computed from the validated λ and the chosen kernel function, is used for the

testing phase with topology estimation.

4.4.5 Simulation Results

In this section, we simulate and verify the performance of the nearest neighbors (NN) approach, and compare

it to the traditional SE-based approach in standard IEEE 14, 30 and 39-bus test cases for topology estimation.

We find that the two approaches perform similarly. The 30-bus result is shown.

Data Setup

The simulations are completed in a MATLAB environment in accordance with the MATLAB Power System

Simulation Package (MATPOWER) [37,38]. Further, to simulate power system behavior in a more practical

way, the online load profile from the New York ISO [76] is adopted in the simulation. Specifically, it has

online load profiles from the New York ISO area recorded every five minutes. The load data used is between

February 2005 and December 2013 with a consistent data format. Therefore, we use the load data between

February 2005 and May 2013 in training and validation sessions. The load profiles between July 2013 and

December 2013 are used in the testing session.
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To generate the data for topology estimation, we first fit the normalized load data into the case file. Then

we fix an integer number β ∈ [1, 10] and randomly disconnect β branches in the case file. Subsequently, an

AC power flow is run to generate the true states of the power system, and then we create true measurement

sets with Gaussian noises (the standard deviations in Table 4.1). We assume that each measurement set

includes 1) power injection; 2) line power flows; 3) voltage magnitudes; and 4) some phase angle measure-

ments.

Training, Validation, and Testing

• Training Phase: By randomly selecting one data point between July 2013 and December 2013 as

a test case, a group of robust nearest neighbor measurements in (??) between February 2005 and

December 2012 is selected via Fig.?? in Section 4.4.3. Then w is computed for different choices of

λ and kernel functions.

• Validation Phase: w is validated on the data between January 2013 and May 2013 to obtain the best

choice for λ and the kernel pair.

• Testing Phase: We use w chosen in the validating phase to calculate a Bayesian topology estimate sB

in the data between July 2013 and December 2013. For comparison purposes, the industrial approach

of the SE-based residual test is also applied to the same testing data.

Robustness to Topology Changes

We use different β to test the performance of the proposed approach. For comparison, the traditional ap-

proach discussed in Section 2.2 is simulated as well. Fig.4.15 shows the averaged successful probability

of the two approaches in the IEEE 30 bus system in Fig.4.14. We simulated up to 10 topology errors. In

particular, for each value of β, we generate historical data with measurements and topologies. When testing

a data point, these historical data are used together with the measurements of the testing data point. The goal

is to identify the topology of the testing data point via the data-driven approach. In contrast, the traditional

approach based on post-state estimation and residual test is run based on the original case file. The algorithm

will then iteratively detect topology error and try to correct it according to Section 4.4.1 or Chapter 8 in [7].

After all the testing cases are simulated for the fixed β, we average the success probability of finding the

correct “current” topology in both approaches. Then we change the value of β, and redo the process above.
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The simulation results for the IEEE 30 bus systems are displayed in Fig.4.15. The x coordinate represents

the topology error numbers, and the y coordinate represents the averaged success probability.

Figure 4.14: Bus branch model
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Figure 4.15: Averaged topology identification success probability

By comparing the two curves, we observe that both the traditional approach and the proposed data-driven

approach can successfully identify up to three topology errors on average. When the error number increases

to four and above, the success probability of the traditional approach decreases dramatically. However, for

four to eight errors, the proposed nearest neighbors approach still has a success probability of close to 100%.

When the topology error goes beyond 8, the proposed nearest neighbors approach starts to deteriorate, due

to the increased configuration possibilities and insufficient training data. From this fact, we can reasonably

conclude that, given enough training data, the proposed data-driven approach is able to handle more topology
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errors than the traditional approach. Notably, since a the power grid usually has a topology error tendency

at ceratin locations, the proposed data-driven approach is expected to perform even better in practice than in

simulations.

Conclusions

In this section, we propose a new historical data-driven topology estimation method based on data mining. In

particular, we formulate the finding of the topology estimate as a minimum distance search problem based

on the intuition that similar measurements reflect similar power system topologies. Further, a Bayesian

estimate is obtained via Logistic Kernel Regression for robustness and to deal with the inherent nonlinearity

of power systems. The numerical results show that our data-driven method can be a way for sustainable

smart grid design to break the current model-based monitoring architecture that requires both large complex

modeling and a great deal of computation time.

4.5 Dynamic Approach

In the non-parametric approach in the previous section with the nearest-neighbors search and regression, the

static SE model limits the gain one can obtained using historical data. The dynamic approach introduced in

this section aims at utilizing both historical data and the dynamic model.

4.5.1 Current State-of-the-Art Kalman Filter Approaches for State Estimation

Recently, several approaches have been proposed for enhancing the current static model with a linear dy-

namic model for quasi-static SE [15,81] via the Kalman Filter [82]. These approaches enable us to correlate

current and past on-line data for SE. However, they use an Extended Kalman Filter (EKF) approach that is

known to be quite suboptimal in a highly nonlinear environment such as that of an electric power system;

this is caused by the fundamental flaw in the EKF of approximating non-Gaussian density function with a

Gaussian density function through a closure scheme [83, 84]. This causes several nontrivial problems, most

importantly an unbounded error variance growth. For instance, [85] shows that EKF is difficult to tune,

and is only reliable for systems that are almost linear on the time scale of the updates. Secondly, the EKF

approaches in [15] only rely on active-reactive power measurement pairs, and neglect other important mea-
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surement types, such as voltage magnitudes and the highly accurate phase angle measurements [8, 9] from

Phasor Measurement Units (PMUs). This leads to an overall suboptimal design, significant performance

loss, and poor observability; this problem is made worse in combination with unexpected missing data. Fur-

ther, the computational burden is high since EKF needs to store and manipulate error covariance matrices,

which becomes unmanageable for high dimensional models.

Another approach is to rely on PMU measurements [8] alone. For instance, the ongoing industry pilot

experiments plan to have PMU measurements installed at all major 230 KV substations and all large gener-

ators. However, because the deploying process is gradual, the PMU measurements [9] will be insufficient

and limited for a long time to come. Even if all buses are equipped with PMUs, we still need redundancy

from other measurement types for robustness [10] because current experience shows that a PMU is imper-

fect, and its accuracy varies depending on manufacturing qualities and various sources of uncertainties (GPS

synchronization, instrument transformers, A/D converters, etc.). Therefore, for future SE, we need a general

dynamic SE method to deal with the combined SCADA and PMU data.

Motivated by the above systemic problems in the current and proposed SE methods, we propose a new

historical data-driven SE approach. The proposed method can be implemented given recent advances in

communications and computing and these advances are becoming drivers and sources of data previously u-

navailable in the electric power industry. Notably, learning from the data has been widely recognized as play-

ing a critical role in achieving a key design for Wide Area Monitoring, Control and Protection (WAMPAC)

systems that centers on efficient and reliable operation.

Specifically, different from earlier work [15], parameters in the model are obtained via supervised learn-

ing over the historical data with an Expectation-Maximization (EM) algorithm [65], which has been widely

adopted in machine learning literature and successfully applied to economic forecasting, biological sequence

studies, speech recognition, video processing, and prediction of Web-user behavior. As an iterative method,

EM alternates between performing an Expectation (E) step, which creates a function for the expectation

of the log-likelihood evaluated using the current parameter estimate, and a Maximization (M) step, which

computes parameters maximizing the expected log-likelihood found on the E-step. Then these parameter-

estimates are used to determine the distribution of the latent variables (the electric power system states)

in the next E-step. As a result, all unknown parameters will have closed form solutions. One possible

advantage of this approach over traditional model-based static state estimation methods and dynamic state

estimation [15], may come from its purely data-constructed modeling, where data can be flexibly organized
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for learning according to the cyclic nature of power system operation. Further, to deal with the inherent non-

linearity of an electric power system, we first employ kernels to embed the state into a higher dimensional

feature space before starting the learning process with EM.

In addition to its inclusion of all measurement types for learning and estimation, we show that the

proposed data-driven SE improves simulation accuracy significantly. Moreover, once the parameters are

learned, the data-driven state estimator can adaptively adjust its measurement subset for possible missing

data and bad data and thereby facilitate robust streaming SE. The proposed method is very attractive in prac-

tical terms because its on-line computational complexity is the same or smaller than that of the currently

used static state estimation based on Newton’s method, where the learning phase is done off-line due to

limited computational resources. Furthermore, the algorithm can adaptive to bad data. Finally, when new

historical data comes into the database, the proposed method can also be used to start a new learning round

with the possibility of improvements.

4.5.2 Kalman Filter Approach

Since the Data Grid maps the Power Grid in real time, it would be useful to have a view into the future evo-

lution of the various variables. The traditional, time-tested way to simulate the dynamic behavior of a power

system is with a mathematical parameter-driven model of the system. Therefore, one might support the

use of dynamic equations for dynamic data-driven SE. Unfortunately, such high-order dynamic equations

are highly complex, and phenomena in the power grid occur much faster than the measurements’ scanning

speed; i.e., the electromechanical effects of oscillations in motors and generators take place in around 10

microseconds. To use the distinct correlation between scans, past work addressed dynamic estimation prob-

lems via modifying the Kalman Filter for quasi-static state estimation. Blood et al. [16] proposed a static

state estimation through Kalman filtering where power flow equations are used to derive a linear state space

model. The state space modeling can be found in section 2.2. One problem with such an approach is its poor

performance due to the first order Taylor approximation used in the model. To overcome this drawback, we

start with a embedded kernel space approach [86] to time series modeling that preserves the framework of a

linear dynamical system for our data-driven SE.

We now define the problem of historical data-driven SE as a two-stage problem as in Fig.4.16; in the first

stage, historical measurements {z1, z2, · · · , zK} are used to obtain the best model parameters in (2.9a) and
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(2.9b). However, since the actual power system model (2.8a) and (2.8b) is nonlinear, we embed the state

xk into xϕ
k , which is the feature state space proposed in [12, 13, 33, 35, 36, 87]. In particular, the feature

space approach is used to extend the state space so that a maximum-likelihood estimate can be obtained in

this linear model. Once the system parameters are estimated, stage two is performed via a standard online

Kalman Filter based on current measurement zt at time t to find the Minimum Mean Square Error (MMSE)

estimate of x̂t. This two-stage historical data-driven SE process is described next.

Figure 4.16: Block diagram of the proposed historical data-driven approach.

4.5.3 Stage 1: Historical Data-Driven Parameter Estimation

Here we assume stationarity, which means that topology changes and bad data have not been detected for

the time being. In the case of topology changes, only the historical data associated with the new topology is

used. In case of detected bad data, the learned measurement matrix C in (2.9b) will be changed adaptively

by eliminating the corresponding rows.
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Kernel Spaces for Nonlinearity

One drawback of using (2.9) to approximate (2.8) comes from the inherent nonlinearity in electric power

systems, which contain watts, vars, voltage magnitudes, and voltage angles. To overcome this drawback, we

start with a kernel space approach [86] to time series modeling that preserves the framework of the linear

dynamical system for our data-driven SE.

The key to the proposed approach is the embedding of state space into a feature space as xk → xϕ
k : ϕ =

ϕ(xk), on which we assume the linear state space model (Fig.4.17),

xϕ
k = Aϕxϕ

k−1 +wϕ
k , (4.34a)

zk = Cϕxϕ
k + uk, (4.34b)

where we assume wϕ
k ∼ N (0,Γϕ).

Using our work on Semidefinite Programming for State Estimation in Chapter 3 [33, 36, 87, 88], we

now choose a polynomial kernel with order 2 for linearity in (4.34b). Since the generation power and load

changes cause the system state in the power system to change, our polynomial kernel choice for (4.34a)

is also preferable because it produces a quadratic form of states (voltages) rather than the direct voltage

expression in (2.9).

Figure 4.17: Linear feature space model.
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Expectation-Maximization Algorithm

After obtaining the linear dynamic system in the embedded feature space (4.34), we then estimate the un-

known parameters (θ = {Aϕ,Γϕ, Cϕ,Σ}) and the hidden state sequence {xϕ
k} (latent variables) in the

upper part of Fig.4.17 that maximize the likelihood of the historical data sequence {zk} in the lower part

of Fig.4.17. The model has latent variables, but this can be addressed using the EM algorithm [65]. Such a

method has become an appealing field for machine learning approaches [66, 89] over the last few decades.

Specifically, the EM algorithm is an iterative method for finding maximum-likelihood or maximum-a-

posteriori (MAP) estimates of parameters in statistical models that are dependent on unobserved laten-

t variables. It starts with a certain initial selection for the model parameters, which can be denoted by

θold = {Aϕ,old,Γϕ,old, Cϕ,old,Σold}. Then we take these parameter values and find the posterior distri-

bution of the latent variables p(xϕ|z,θold) in the E-step. Subsequently, we use this posterior distribution

to evaluate the expectation of the logarithm of the complete-data likelihood function, as a function of the

parameters θ, and to employ a maximum-likelihood criterion to find the θ in the M-step before going back

to the E-step. Then the M-step and E-step repeat until the algorithm converges.

Expectation (E) Step

In this part, filtering (forward) and smoothing (backward) algorithms are conducted to obtain the hidden

states. The first step is forward-moving like the Kalman Filter. Given the initial value of state mean µϕ
0 ,

state variance V0, and “old” fixed parameters θold, we can compute the Kalman gain, state mean, and state

variance at time slot k = 1 as follows:

K1 = V0(C
ϕ,old)T (Cϕ,oldV0(C

ϕ,old)T +Σold)−1, (4.35a)

µ1 = µold
0 +K1(z

old
1 − Cϕ,oldµold

0 ), (4.35b)

V1 = (I −K1C
ϕ,old)V0, (4.35c)
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where I is an identity matrix. The algorithm then moves forward until the end of the training data at discrete

time K.

Pk−1 = Aϕ,oldVk−1(A
ϕ,old)T + Γϕ,old, (4.36a)

Kk = Pk−1(C
ϕ,old)T (Cϕ,oldPk−1(C

ϕ,old)T +Σold)−1, (4.36b)

µϕ,fw
k = Aϕ,oldµϕ,fw

k−1 +Kk(zk − Cϕ,oldAϕ,oldµϕ,fw
k−1 ), (4.36c)

V fw
k = (I −KkC

ϕ,old)Pk−1, (4.36d)

where Pk−1 updates the state covariance matrix based on the previous estimate. Kk is the Kalman gain

for updating the prediction with the new measurement vector zk. The superscript “fw” indicates it is a

“forward” step while the superscript T represents the transpose operator. Thus, given the values of µϕ
k−1

and Vk−1 one time slot back, together with the new observation zk, we can evaluate the Gaussian marginal

for xϕ
k as having mean µϕ,fw

k and covariance V fw
k .

The Kalman Filter above is a “forward algorithm” that is optimal in obtaining current state estimate by

using past and current measurements. However, since all future measurements are more or less dependent

on the past state, a better estimate can be achieved by conducting a backward (“bw”) algorithm, and obtain

a smoothed estimate,

µϕ,bw
k = µϕ,bw

k + Jk(µ
bw
k+1 −Aµϕ,fw

k ), (4.37a)

V bw
k = V fw

k + Jk(V
bw
k+1 − Pk)J

T
k , (4.37b)

where Jk , V fw
k (Aϕ,old)T (Pk)

−1.

Note that these recursions require a completed forward pass so that the quantities µϕ,fw
k and Vk will be

available for the backward pass.

Maximization (M) Step

As a summary of the E-step for the M-step, we rewrite the results above in the following form

E[xϕ
k ] = µϕ,bw

k , (4.38a)

E[xϕ
k(x

ϕ
k−1)

T ] = Jk−1V
bw
k + µϕ,bw

k (µϕ,bw
k−1 )

T , (4.38b)

E[xϕ
k(x

ϕ
k)

T ] = V bw
k + µϕ,bw

k (µϕ,bw
k )T . (4.38c)
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With the statistical estimate of {xϕ
k} in (4.38) and the measurement set sequence {zk}, the EM algorithm

can estimate parameters using the maximum-likelihood method rather than the complete-data log-likelihood

function below.

ln p(Xϕ,Z|θ) = ln p(xϕ
1 |µ

ϕ
0 , V0) +

N∑
k=2

ln p(xϕ
k |x

ϕ
k−1, A

ϕ,Γϕ) +

N∑
k=1

ln p(zk|xϕ
k , C

ϕ,Σ), (4.39)

in which we make explicit the dependence on the parameters, and define Xϕ = {xϕ
1 , · · · ,x

ϕ
N}, Z =

{z1, · · · , zN}. Note that {Aϕ,Γϕ, Cϕ,Σ} are parameters in need of a new estimation in this M-step, rather

than the {Aϕ,old,Γϕ,old, Cϕ,old,Σold} with fixed values in the E-step.

We now take the expectation of the complete-data log-likelihood regarding the posterior distribution

ln p(Xϕ,Z|,θ), namely, EX|θold [ln p(Xϕ,Z|θ)]. By taking the derivative of E[ln p(xϕ
1 |µ

ϕ
0 , V0)] and

E[
∑N

k=2 ln p(x
ϕ
k |x

ϕ
k−1, A

ϕ,Γϕ)] and employing the first order condition, we reach

µϕ,new
0 = E[xϕ

1 ], (4.40a)

V new
0 = E[xϕ

1 (x
ϕ
1 )

T ]−E[xϕ
1 ]E[(xϕ

1 )
T ], (4.40b)

Aϕ,new =

( N∑
k=2

E[xϕ
k(x

ϕ
k−1)

T ]

)( N∑
k=2

E[xϕ
k−1(x

ϕ
k−1)

T ]

)−1

, (4.40c)

Γϕ,new =
1

N − 1

N∑
k=2

{
E[xϕ

k(x
ϕ
k)

T ]−AnewE[xϕ
k−1(x

ϕ
k−1)

T ]− E[xϕ
k(x

ϕ
k−1)

T ](Aϕ,new)T

+Aϕ,newE[xϕ
k−1(x

ϕ
k−1)

T ](Aϕ,new)T
}
. (4.40d)

Note that Aϕ,new must be evaluated first, and then the result can be used to determine Γϕ,new. Similarly,

in order to determine the new values of Cϕ,new and Σnew, maximizing E[
∑N

k=1 ln p(zk|x
ϕ
k , C

ϕ,Σ)] in

(4.39) with respect to Cϕ and Σ, then we have

Cϕ,new
row i =

( N∑
k=1

zn,iE[(xϕ
n)

T ]

)( N∑
k=1

E[xϕ
k(x

ϕ
k)

T ]

)−1

, (4.41a)

Σnew =
1

N

N∑
k=1

{
E[zkz

T
k ]− Cϕ,newE[xϕ

k ]z
T
k − zkE[(xϕ

k)
T ] · Cϕ,new + (Cϕ,new)TE[xϕ

k(x
ϕ
k)

T ]Cϕ,new

}
.

(4.41b)

These new parameters are treated as θold in a subsequent E-step, and a new round of EM computation is

started until the parameters converge. Notably, the Cϕ,new matrix, because of its row-wise form, is adaptable

for bad data detection.
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4.5.4 Stage 2: On-line Kalman Filter State Estimation

After convergence, the parameters learned and denoted by θ̂ = {Âϕ, Γ̂ϕ, Ĉϕ, Σ̂}, are used in the standard

Kalman Filter for dynamic power system AC SE. When conducting a Kalman Filter for real-time data with

the parameters θ̂ learned from the historical data, the state estimate lies in embedding feature space rather

than the original state space. Therefore, we need to conduct a further step to map the state back into the state

space, leading to the following optimization problem

x̂t = argmin
xt

||Cϕϕ(xt)− zt||2, (4.42)

where subscript t is used to distinguish the real time SE from the EM algorithm over the historical data,

where the subscript k is employed.

Performing Newton’s method with a flat start for state recovery is not as good as using the converged

values of Ĉϕ in the EM algorithm and the real-time Kalman Filter result x̂ϕ to compute the MMSE estimate

via h(x̂t) = Ĉϕx̂ϕ
t = h(xt) + ut, which creates a recovery problem as

x̂t = argmin
xt

(
h(x̂t)− h(xt)

)T
R−1

(
h(x̂t)− h(xt)

)
, (4.43)

where R = (Ĉϕ)TP−1
t Ĉϕ.

Summary

The calculation steps of the proposed data-driven SE in Fig.4.16 are the following

• embed the state space model into feature space via the polynomial kernel with order 2 to deal with the

inherent nonlinearity of the electric power system;

• use historical data to learn the system parameters in feature space with the EM algorithm;

• apply the learned linear state space model in order to conduct a feature space Kalman Filter over a

real-time dynamic SE;

• conduct a reverse state mapping back into state space for complex bus voltages.
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4.5.5 Simulation Results

The simulations are implemented on the IEEE standard 14, 30, 39, 57, 118, and 300-buses test systems.

300-bus simulation results are presented here with the MATLAB Power System Simulation Package (MAT-

POWER) from [37, 38]. The historical data preparation is similar to Section 4.3.3. Data between February

2005 and December 2010 are used for training with EM algorithm, and the rest are used for testing various

estimators for comparison.

Numerical Results

The proposed method achieves its improvements by conducting the following SE approaches below on the

01/01/11 to 12/31/11 testing data:

• industrially used Static SE;

• the Kalman Filter Approach to Quasi-Static SE from [15], denoted by EKF;

• the proposed Data-Driven SE in this paper.

We apply in Fig.4.18 a normalization for the Euclidean distances between the various estimation results

and the true system states at different time slots.

Ratio{Static,k} =
||vStatic,k − vTrue,k||
||vStatic,k − vTrue,k||

= 1, (4.44a)

Ratio{EKF,k} =
||vEKF,k − vTrue,k||
||vStatic,k − vTrue,k||

, (4.44b)

Ratio{DataDriven,k} =
||vDD,k − vTrue,k||
||vStatic,k − vTrue,k||

. (4.44c)

The x coordinate in Fig.4.18 is the time of the testing data. The y coordinate is for the metric in (4.44).

We observe that the EKF SE is similar to the static SE (due to its measurement number reduction) while

the proposed data-driven approach significantly reduces error by at least 20% compared to the other two

approaches except in rare cases. The proposed method can sometimes achieve an error reduction of more

than 50%. In addition, the small distance between the data-driven approach curve and the zero value line

informs us that the proposed approach greatly increases the possibility of hitting the true state because not
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Figure 4.18: Normalized Euclidean state distance.

only does it learn patterns from the historical data, but it also deals with the inherent nonlinearity of electric

power systems by using kernel spaces.

Fig.4.19a and Fig.4.19b compare the proposed method with others in terms of voltage magnitudes and

phase angles and display the results in the state domain. To visualize the comparison, Fig.4.19 displays

one part of the test results obtained (bus 2 to bus 16). Similar results are observed at the other buses in

the 300-bus system. From Fig.4.19a and Fig.4.19b, the proposed approach (in red dots) shows superiority

in performance to static SE (in blue diamonds) and EKF (in green triangle) by providing a much closer

estimate to the true state (in black boxes).

4.6 Chapter Summary

This chapter proposed historical data-driven frameworks for solving both static and dynamic AC power

system state estimation (SE) problems in EMS/SCADA systems. In particular, we used the periodicity of

power system operation in a static data-driven approach for a nearest neighbors search to improve accuracy.

Then, non-parametric regression was used to obtain the current state estimate, followed by using the kernel

trick for state embedding. Several data filtering steps were conducted to further enhance the robustness of

SE. Finally, speedup methods were introduced to make the data-driven approach online.
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Figure 4.19: IEEE 300 bus.

To use the inertia of the power systems, we also introduced a dynamic state estimation approach in the

embedded kernel space. First, we formulated a linear state space model in the proper embedded space to

deal with the inherent nonlinearity in power systems by adopting the Expectation-Maximization algorithm

for system parameter learning. Second, we used the learned parameters in linear feature space for real-time

Kalman Filter state estimation. Subsequently, the state in embedded feature space was converted back into

state space via MMSE estimation to obtain complex voltages. We demonstrated by simulations that using the

data-driven approach can significantly reduce error and obtain a more accurate estimate than when applying

the conventional static or dynamic methods, despite the chance of missing data and measurement types.

Notably, we can conduct this learning process continuously to achieve accuracy when accommodating new

measurements into SCADA.
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Chapter 5

Graphical Model-Based State Estimation

The potential gap in SE performance between the state-of-the-art methods and the desired informative data

exploration can result in fragile grid behavior, such as blackouts for example. The previous chapter aims at

utilizing historical data to bridge the gap.

However, the gap may grow as new unconventional resources are deployed within electric power grids,

which were not initially designed to accommodate the social objectives of deploying clean resources and

reducing the environmental footprint [90]. For instance, numerous distributed power plants (wind, solar,

etc.) have been connected to the existing grid in the past ten years. Their presence and exponential growth

have raised great concerns about the reliability of electric power grids in the future because these new plants

serve primarily local areas and are hard to absorb into large power systems. Furthermore, President Obama’s

goal of putting one million electric vehicles on the road by 2015 will also contribute to the grid architecture

shift. The robustness of these new architectures will have to be studied. Because of their unconventional

characteristics, new and proper modeling of these technologies in order to account for the uncertainties of

their architectures is necessary for accurate SE in the smart grid.

Besides, the SE used by the industry today is hard to scale up and is computationally complex [11].

To avoid excessive computational complexity, only the representations of Extra High Voltage (EHV), High

Voltage (HV) and occasionally Medium Voltage (MV) in complex multi-voltage power grids are included

here. However, in current industrial operation, low voltage (LV) distribution networks are not modeled nor

supported by today’s on-line SE, which in turn, makes it difficult to estimate the status and the states of

diverse resources and users newly connected to LV level distribution systems. The operators of traditional
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power grids are now facing inherent difficulties in managing the effects of small scale generations and

loads, terms which cover not only renewable energy generators, such as wind and solar generators, but also

responsive small electricity users and storage-based electricity users such as electric cars. While these new

components are more environmentally friendly, they also raise tremendous concerns regarding the secure

and reliable operation of backbone EHV/HV power grids. In particular, each and every component’s state

needs to be estimated in order to account for its effect on the state of the entire power grid. The necessity

to estimate the online state of the entire electric power grid makes it even more difficult than before to

manage all the data in a centralized way. For future electric energy systems, a multi-layered, distributed

implementation of state estimators is likely to become the preferred approach between different layers within

the complex grid, because the grid has to integrate the objectives of various users. This requires a systematic

design of distributed algorithms that are capable of maintaining or improving upon the performance of the

centralized methods.

Therefore, this chapter proposes using distributed system architecture as well as historical data to manage

the uncertainties created by new energy providers, users, and delivery providers in a distributed way in the

future smart grid. This chapter offers a formal problem formulation for modeling, decision-making, and

performance evaluation, which is achieved by a proposed graphical model description [65] of the electric

power grid. Such a modeling is inspired by the exciting results made available by applying graphical models

to compact uncertainty representations and computationally-tractable inferences [91, 92]. Specifically, we

consider a graph representing the electrical power system as a graphical model [1], and we model power

grid states (the bus voltages) as random variables on the graph vertices. The edges of the graph determine

the interaction of the state variables according to physical laws (i.e. Kirchhoff’s laws). Viewed together,

the graphical model is specified by the joint density of random variables in the network for state estimation,

subject to the constraints imposed by the physical laws.

Distinguished from the traditional state estimation process that aims to minimize mean square error

(MMSE) [2,4], this section aims to maximize a posteriori probability (MAP) popular in the graphical model.

To achieve MAP, an exact inference on the distributed SE for trees is conducted via belief propagation

(BP) [65,93–95], which is an approach that embed the graphical model distribution into a larger probability

space. This is one way of organizing the “global” computation of marginal beliefs in terms of smaller

local computations in the graphical model, which are enabled by distributed computation capability and the

communication capability (a wireless, telephony or Internet link) of components in the future smart grid
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(such as a small generator).

To deal with meshed networks like transmission systems, we further adopt a variational belief propa-

gation (VBP) algorithm [17, 96] with the embedding techniques introduced in Section 1.4 in sum-product

form for single bus state estimation, by breaking a meshed structure into multiple spanning trees [89]. In

addition to our preliminary work on sum-product algorithms, we illustrate how to conduct joint state estima-

tion for the whole power grid via max-product algorithm, which is preferable to the sum-product in power

grid analysis. To avoid bias, we propose using historical data to compute the prior information for MAP, or

using uninformative prior. We further propose a modified VBP called sequential tree-reweighted message

passing to solve the convergence problem and other challenges that arise out of the application of the VBP

algorithm [97]. Finally, a tree agreement condition is proposed in order to check the optimality of all VBP

algorithms.

Such BP-based algorithms can form the basis for enhanced system operation in smart grids by enabling

numerous small system users to participate. For example, the operator of the backbone system does not

need to estimate the state (power consumed, voltage) of smart meters based on the measurement provided

at a given location. Instead, the state of small users can be estimated in a distributed, message-passing

manner with neighboring system users where smart meters are located. Then the aggregated information is

communicated to the backbone system operator in a bottom-up way. Therefore, the BP method offers a way

to break the current centralized monitoring architecture that requires both a large communication overhead

and tight data synchronization.

We use simulations of IEEE test systems of up to 300 buses to show that this graphical model approach

can provide more accurate results than weighted least square (WLS) SE does. Further, the proposed ap-

proach features an approximately linear computational time, which as not been available in the past. Based

on these preliminary results, we believe the proposed method can offer a major promise off scalable SE with

high accuracy for the future smart grid.

In Section 5.1, we present state-of-the-art analysis of the Bayesian method for electric power systems.

In Section 5.2, we introduce probabilistic graphical modeling. In Section 5.3, we use various systems as a

proof-of-concept illustration of the proposed graphical model approach. The entire chapter is summarized

in Section 5.4.
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5.1 State-of-the-Art Bayesian Method and Probabilistic Analysis for Power

Systems

In the following, we summarize various work in power system analysis related to the Bayesian method and

probabilistic approach.

• Evaluate Performances: [98] presents an application of Bayesian networks (BN) to the problem of

reliability assessment of power systems. Efficient probabilistic inference algorithms in Bayesian net-

works permit not only computation of the loss of load probability but also the answers to various

probabilistic queries about the system. [99] presents a method for power system security assessment

based on the Bayes classifier, which calculates probabilistic security indices as well as on-line security

assessment.

• Bayes Estimation: [100] proposes a reliable and efficient methodology based on the recursive Bayesian

approach and its improved version is proposed for transformer tap position estimation. In [101], three

element-oriented models based on simplified Bayesian networks with Noisy-Or and Noisy-And nodes

are proposed to estimate the faulty section of a transmission power system. The three models are used

to test whether any transmission line, transformer, or busbar within a blackout area is faulty.

• Probabilistic Estimation: [102] proposes storing critical network configurations in the form of a model

bank and conducting a recursive Bayesian topology reconfiguration to utilize the output of the state

estimation function of each model in the bank. [103] proposes a Quasi-Monte Carlo-based method to

solve the probabilistic load flow problem of a radial distribution network. Such a method is particu-

larly suitable for high dimension problems with low effective dimensions, and has been successfully

used to solve large scale problems in econometrics and statistical circuit design. With the increase in

intermittent generation in power systems, [104] includes uncertainties to calculate probability density

function (PDF) of reactive power at generators in order to evaluate their capability of maintaining bus

voltage at the desired level for power flow solution. [105] presents a probabilistic modeling in a hybrid

solar-wind power system for solar tracking, which shows annual energy gain.

• Prediction: In [106], a classification method combined with a simple regression model is presented to

predict the discrete PDF of power market clearing prices, a prediction which is critical for decisions

such as how to optimize bidding strategies, and which is very difficult to accomplish because of high
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market uncertainties. In [107], a Bayesian model has been designed for Short-Term Load Forecasting,

which is a very important aspect of the power system that ensures safe and economic operations and

achieves a scientific management of the power system.

• Network Planning and Stability Analysis: [108] proposes a methodology and a practical tool for the

study of long-term network planning under uncertainties by using a probabilistic model of micro-

scenarios based on past statistics. Massive Monte-Carlo simulations are used to generate and simulate

a large number of scenarios and store the detailed results in a relational database. The probability of

transient stability is analyzed in [109] with a Monte Carlo simulation method to determine whether

transient stability probability is feasible.

5.2 Probabilistic Graphical Modeling for State Estimation

In the typical mathematical description of a power grid, the key variables are usually assumed to be deter-

ministic. However, there is an increasing recognition of sources of randomness in the grid, such as random

power due to newly-built intermittent distributed wind generators, random electric vehicle charging, and

random failure of transmission lines, etc., due to natural and human causes. Therefore, the traditional power

system model must be extended to account for stochastic property; since these variables are related through

the power grid graph, this suggests the use of a graphical model description of the electric power grid.

The basic graph representation is motivated by an abstract model of the existing U.S. electric power

grid, represented as a graph G(V,E). The vertices of the graph represent state variables xi, which have a

concrete physical interpretation as the voltage of bus i [110]. Other auxiliary variables zi represent physical

quantities, such as power flow. Known physical laws, such as Kirchoff laws determine the interaction of

these variables, which are represented by the edges E of the graph [110].

Recall from Chapter 2, Section (2.1.2), a power grid is defined as a physical graph G(V,E) with ver-

tices V that represent the buses (generators and loads) and edges E that represent the transmission lines

and transformers. The graph of the physical network can be visualized as the physical layer in Fig.5.1,

which describes the interactions between the electric power network variables based on electromagnetics

(Kirchhoff’s laws). The probabilistic measurement model of AC power system state estimation is expressed
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Figure 5.1: Physical network and cyber network (14 bus system).

as

zi = hi(v) + ui, (5.1)

where the vector v = [|v1|ejδ1 , |v2|ejδ2 , · · · , |vn|ejδn ]T represents the probabilistic power system states,

instead of the conventionally used deterministic states. ui is the ith additive measurement noise assumed to

be independent Gaussian random variable with zero mean, i.e., u ∼N (0,Σ), where Σ is a diagonal matrix,

with the ith diagonal element σ2
i . zi is the ith telemetered measurement, such as power flow and voltage

magnitude. hi(·) is the nonlinear function associated with the ith measurement.

The probabilistic power system state estimator aims to find an estimate (v̂) of the true states (v) that

achieves the maximum a posteriori probability (MAP), given the measurement set z and the priori state

information of v according to the measurement model in (5.1). It is mathematically expressed as

max
v

p(v|z) = p(v)p(z|v)
p(z)

, (5.2)

where p(·) represents the probability density function. Such a process is achieved via the cyber network

layer as in Fig.5.1. In this work, the cyber network topology is the same as the physical network topology.

To obtain the MAP estimate in (5.2), we need to 1) obtain proper formulations for p(v), p(z|v), and p(z);

and 2) employ efficient algorithms to conduct marginalization or maximization over p(v|z) with respect to

v. While the first problem will be addressed in subsection 5.2.4, we start by introducing efficient marginal

and maximization computations for trees, which will be extended to account for meshed networks such as

the IEEE 14 bus system.
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5.2.1 Belief Propagation for Tree Networks

Belief Propagation, also known as sum-product message passing, is a message passing algorithm for per-

forming inference on graphical model [111]. Due to its ability of decompose large marginalization problems

into smaller ones, it allows marginals to be computed efficiently, leading to wide applications.

Here we provide a simple illustration of four binary variables in a chain, defined by the joint probabil-

ity p(v1, v2, v3, v4) in Fig.5.2. When the graph sparsity is disregarded, 23 = 8 summations (this grows

exponentially) are needed to obtain the marginal distribution of v1 via p(v1) =
∑

v2,v3,v4
p(v1, v2, v3, v4).

Instead, BP needs only 2 · 3 = 6 summations (the number grows linearly here) when exploring the sys-

tem structure via p(v1) =
∑

v2
p(v1|v2)

∑
v3
p(v2|v3)

∑
v4
p(v4)p(v3|v4). In such an operation, M4→3 ,∑

v4
p(v4)p(v3|v4), a function of v3, is interpreted as a message passed from node 4 to node 3 [93]. It

represents what node 4 believes node 3’s probability mass function (pmf) to be, based on node 4’s own pmf

and the joint pmf between them.

Figure 5.2: A graph with four nodes.

As a generalization [65], BP can be conducted on an arbitrary tree-structured graph G(V,E) with a

pairwise Markov Random Field factorization

p(v1, v2, · · · , vn) = α
∏
s∈V

ϕs(vs)
∏

(s,t)∈E

ϕst(vs, vt), (5.3)

where ϕs and ϕst are compatibility functions [93] for joint distribution p(v1, v2, · · · , vm); α denotes a posi-

tive constant chosen to ensure distribution normalization. Finally, BP conducts message updates according

to

Ms→t(vt)←
∑
vs

ϕs(vs)ϕst(vs, vt)
∏

k∈N (s), k ̸=t

Mk→s(vs), (5.4)

where N (s) is the set of neighboring buses of the bus s.

In such a message-passing calculation, product is taken over all messages going into node s except for

the one coming from node t. In practice, we can start with the nodes on the graph edge, and compute a
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message only when all necessary messages are received. Therefore, each message needs to be computed

only once for a tree structured graph.

5.2.2 Variational Belief Propagation for Mesh Networks

As observed above, the key assumptions of the BP algorithm are: 1) each subgraph remains a tree after

graph division; and 2) the subgraphs are disjointed. Such assumptions often do not hold for electric power

transmission networks, such as in the test case of the IEEE 14-bus system. To overcome this problem, a

variational BP approach [17] is used by randomly generating spanning trees of the meshed network. The

key is to assign probability to the edges based on the edges’ appearance probability ρst in the spanning trees

according to (5.5). Mathematically, VBP starts by randomly generating spanning trees [112] according to

the mesh network structure, leading to the probability assignment of edge appearance ρst as follows

ρst =
No. of spanning trees with edge (s,t)

No. of all spanning trees
. (5.5)

Subsequently, convex combination methods are adopted to approximate the inference on the meshed net-

works with the BP algorithm on the trees [96]. Mathematically, the new message-passing algorithm below

for marginalization is run with ρst until convergence of the states,

Mn+1
t→s (vs) = α

∑
vt

{
exp

(
θst(vs, vt)

ρst
+ θt(vt)

)∏
k∈N (t)\s[M

n
k→t(vt)]

ρkt

[Mn
s→t(vt)]

(1−ρts)

}
, (5.6)

where θst and θt are the exponential parameters associated with compatible functions such as ϕst, and ϕs in

(5.3). Note that, if ρst = 1, ∀(s, t) ∈ E, the VBP in (5.6) degrades to the BP form in (5.4) due to the tree

structure implication. Further, the VBP approach relies on a special exponential family that includes many

common distributions, such as the normal, exponential, gamma, and Chi-square distributions, instead of the

more general arbitrary distribution in (5.3) and (5.4). However, the exponential family is sufficient for the

purpose of this paper.

In power systems, when the joint maximum a posterior probabilities are preferred, the following formula

can be employed according to [113]:

Mn+1
t→s (vs) = αmax

vt

{
exp

(
θst(vs, vt)

ρst
+ θt(vt)

)∏
k∈N (t)\s[M

n
k→t(vt)]

ρkt

[Mn
s→t(vt)]

(1−ρts)

}
. (5.7)

As we can see, the algorithm in (5.7) simply replaces the “
∑

” operator in (5.6) with the “max” operator.

This is because both (5.6) and (5.7) are based on giving different weights to the spanning trees. Therefore,

they are also called tree re-weighted algorithms.
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5.2.3 Sequential Variational Belief Propagation Algorithm

The VBP algorithms introduced in the last subsection were formed by minimizing an upper bound based

on a convex combination. However, there are no guarantees regarding the decrease of this bound [97],

which may actually go up. This is because the tree re-weighted algorithm does not maintain the convex

combination constraint
∑

ρiθi = θ̄, where θ̄ and θis are parameters associated with the mesh network and

the spanning trees. Without such a constraint, re-parameterizations of the original parameter vector may

violate the equality constraint. Besides, VBP has no guaranteed convergence. To improve its performance,

[97] constructs a modified VBP called a sequential tree re-weighted message passing algorithm.

Algorithm: Sequential tree re-weighted algorithm.

• 0. Generate spanning trees that satisfy
∑

ρiθi = θ̄, where ρi is the ith spanning tree probability.

• 1. Select some order for nodes and edges in V ∪ E. For each element w ∈ V ∪ E, find all trees

containing w. If there is more than one tree, then do the following:

– For all trees re-parameterize θ such that values θ gives the correct min-marginals [16] as follows:

ϕs(θ) = θns + consts,

ϕst(θ) = θns + θnst + θnt + constst.

– “Averaging” operation:

∗ If w = s is a node in V then compute θn+1
s = 1

ρs

∑
All Treesρiθ

n
si, where ρs is the node

appearing probability.

∗ If w = (s, t) is an edge in E then compute Mn+1
t→s = 1

ρst

∑
vt
ρst(θ

n+1
s (vs) + θnst(vs, vt) +

θn+1
t (vt)); set θn+1

st (vs, vt) such that θn+1
s (vs) + θn+1

st (vs, vt) + θn+1
t (vt) = Mn+1

t→s .

• 2. Check whether the message Mt→s converges; if yes, terminate, otherwise go to step 1.

Similar to the VBP approach, the sequential method in Sequential tree re-weighted algorithm works by

message passing. Specifically, for each directed edge (t → s) ∈ E, a message Mt→s is computed and

passed. The following choice is needed to run the algorithm above:
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- choose spanning tree probability distribution ρ such that
∑

i ρi = 1. Also, each edge must be covered

by at least one chain.

- select the computational order of the different nodes.

Importantly, the sequential belief propagation algorithm only requires half as much memory as VBP.

This is because VBP requires bi-direction message storing, i.e. Mst and Mts. However, the new approach

needs to store either Mst or Mts due to the node pre-ordering.

Tree Agreement Condition

As the algorithms above reduce to the sum product or the max product algorithm for tree networks, they are

exact for tree networks. However, for mesh networks, this can no longer guarantee the output of the correct

MAP assignment. This is because the algorithmic derivation is based on approximating the distribution of

mesh networks via upper bounds, and it is straightforward to demonstrate problems on which it specifies an

incorrect MAP estimate. However, one can always use the following condition to validate the tightness of

bounds after the associated VBP algorithm or sequential VBP algorithm is applied. This condition is called

the tree agreement condition.

Definition We say the VBP decomposition satisfies the tree agreement if different spanning trees, which

form the upper bound of the mesh network, share a common optimal result when the BP algorithm in 5.4 is

run on each of them.

5.2.4 Variational Belief Propagation for AC Power System State Estimation

In this subsection, we explain how to apply the VBP algorithm in (5.6), (5.7), and in the sequential tree

re-weighted algorithm to the posterior probability distribution in (5.2) in an AC power system state estima-

tion setting. In particular, we explain what form is used for priori state distribution P (v) and conditional

distribution P (z|x), so that VBP can be applied. First, we can use the uniform prior probability distribution

for voltage magnitude, i.e. |vi| ∈ [0, 10], and the phase angle, i.e. δi ∈ [0, 2π], instead of historical da-

ta [92,114,115] in order to avoid bias. This is because maximum a posteriori probability (MAP) estimation

can be viewed as a regularization of currently-used maximum likelihood estimation (MLE). By relaxing

the regularization conditions on non-informative prior probability distributions, we can prevent bias in the
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Bayesian framework. With p(v) defined above and p(z) as a constant, we show next the forms of p(z|v)

needed to calculate posterior probability distribution p(v|z) in (5.2).

Since VBP is built on the exponential family, we use the additive Gaussian noise in (5.1) to represent

p(z|v) ∼ exp

{
−

∑
i

(zi − hi(v))
2/σ2

i

}
. (5.8)

Without loss of generality, we omit the variance σ2
i in the rest of the paper for simplicity. In the following,

we specify each measurement type.

The complex valued power flow (pf) measurement on branch (edge) s− t near bus s

p(zpfi |v) ∼ exp

{
−

∑
i

∣∣∣zi − (vs − vt)Y
∗
stv

∗
s

∣∣∣2}. (5.9)

This form can easily be extended into real power measurements and reactive power measurements.

The voltage magnitude (vm) on bus s

p(zvmi |v) ∼ exp

{
−

∑
i

(
zi − (vsv

∗
s)

1
2

)2
}
. (5.10)

The voltage phase angle (va) on bus s

p(zvai |v) ∼ exp

{
−

∑
i

(
zi − tan−1 Im(vs)

Re(vs)

)2
}
. (5.11)

The probability distribution functions associated with the measurement types above satisfy the pairwise

Markov Random Field representation requirement of the SE problem in (5.3) and (5.6), etc. Now we discuss

how to deal with a power injection measurement that violates the pairwise requirement.
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The power injection into bus s

p(zpinji |v) ∼ exp

{
−

∑
i

∣∣∣zi − ∑
t∈N (s)

(vs − vt)Y
∗
stv

∗
s

∣∣∣2} = exp{−T}, (5.12)

where T equals∑
i

∣∣∣zi − ∑
t∈N (s)

(vs − vt)Y
∗
stv

∗
s

∣∣∣2 = ∑
i

{
zi −

∑
t∈N (s)

(vs − vt)Y
∗
stv

∗
s

}{
zi −

∑
k∈N (s)

(vs − vk)Y
∗
skv

∗
s

}∗

=
∑
i

{
|zi|2 − zi

∑
k∈N (s)

(v∗s − v∗k)Yskvs − z∗i
∑

t∈N (s)

(vs − vt)Y
∗
stv

∗
s +

∑
t∈N (s)

∑
k∈N (s)

|vs|2Y ∗
stYsk(vs − vt)(v

∗
s − v∗k)

}
,

(5.13)

which can be abstracted as∑
s

{
θs(vs) +

∑
t∈N (s)

θ(vs, vt) +
∑

t∈N (s)

∑
k∈N (s)

|vs|2Y ∗
stYskvtv

∗
k

}
, (5.14)

By including the multiplication of three different state variables, |vs|2Y ∗
stYskvtv

∗
k violates the pairwise

Markov random assumption required by the VBP algorithm. To resolve the problem, dummy variable vector

wstk , [w
(1)
stk, w

(2)
stk, w

(3)
stk]

T and the corresponding ϕ(wstk) , |vs|2Y ∗
stYskvtv

∗
k are defined for regularization.

In this way, the original problem of either maximizing (5.12) or equivalently minimizing (5.14) can be

regarded as a problem of minimizing the following regularized problem∑
s

{
θs(vs) +

∑
t∈N (s)

θst(vs, vt) +
∑

t∈N (s),k∈N (s)

ϕstk(wstk) + 10|w(1)
stk − vs|2 + 10|w(2)

stk − vt|2 + 10|w(3)
stk − vk|2

}
(5.15)

where 10 is adopted as the penalty coefficient. |w(1)
stk − vs|2 = |w(1)

stk|
2 −w

(1)
stkv

∗
s −w

(1)∗
stk vs + |vs|2 results in

a pairwise expression, with a similar extension to regularization on vt and vk in (5.15).

Now all measurement types can be written in a pairwise Markov form as in (5.3). Furthermore, since the

prior state distribution is uniform, which is uninformative, maximizing the posterior distribution p(v|z) is

equivalent to maximizing the conditional distribution p(z|v) according to Bayes’ rule in (5.2), given z. We

can apply the VBP algorithm in (5.7), or the sequential tree re-weighted algorithm to (5.8) (a compact

summary of different measurements types (5.9), (5.10), (5.11), and (5.12) ), to obtain the maximum a

posteriori joint probability distribution of p(v|z) or the probabilistic state estimate for all buses. Similarly,

if marginal distribution is preferred, one can apply (5.6) to (5.8).
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Remark One may also be concerned about the bias of the prior information, which may cause states to look

good when bad data appears. However, when using a Bayesian Approach, it is assumed that the statistical

model is correct, or that bad data detection and the filtering process are conducted before the proposed

inference is run.

Algorithm Summary

We provide here a summary of the proposed graphical model-based SE in Fig.5.3 with the following steps:

• Step 1: randomly generate spanning trees of the graph based on the physical power system topology

according to [112]. (If a sequential tree re-weighted method is used, add the constraint that convex

combination of the tree parameters equals to the mesh parameters.) Then calculate the appearance

probability ρst of each edge according to (5.5);

• Step 2: use the measurement values of z in (5.9), (5.10), (5.11), and (5.12) to obtain the joint proba-

bility function (5.8) over state v;

• Step 3: initialize the state variables; (i.e., ones for voltage magnitudes and zeros for voltage phase

angles.)

• Step 4: with the regularization (5.15) of the power injection measurements, apply the result above

to the VBP algorithm in (5.6), (5.7), or the sequential tree re-weighted algorithm for state variable

updates;

• Step 5: repeat Step 4 until the state variables converge.

5.2.5 Illustration on a Small Example

Fig.2a represents a three-bus system to which the proposed VBP is applied. In this example, we assume that

we have voltage measurement zvm1 on bus 1, voltage phase angle measurement zva2 on bus 2, complex power

flow measurement zpf3 on branches 2 − 3 near bus 2, and a complex power injection measurement zpinj4 on

bus 3.

• Step 1: because there are three possible spanning trees shown in Fig.2b,c,d with equal edge probabil-

ity, ρ12 = ρ23 = ρ13 = 2/3;

113



Figure 5.3: Flow chart for the proposed approach.

• Step 2: write p(v|z) as

p(v1, v2, v3|z) ∼ exp

{
−
(
zvm1 − (v1v

∗
1)

1
2

)2
−

(
zva2 − tan−1 Im(x2)

Re(v2)

)2
−

∣∣∣zpf3 − (v2 − v3)Y
∗
ijv

∗
2

∣∣∣2
−
∣∣∣zpinj4 −

[
(v3 − v1)Y31 + (v3 − v2)Y32

]
v∗3

∣∣∣2} (5.16)

and use the measurement value zi and the admittance value Yij , leading to

p(v1, v2, v3) ∼ exp
{
θv1(v1) + θv2(v2) + θv1,v2(v1, v2) + θv2,v3(v2, v3) + θv1,v3(v1, v3) + ϕv1,v2,v3(v1, v2, v3)

}
;

(5.17)

• Step 3: initialize the voltage belief on each bus with magnitude one and phase angle zero;

• Step 4: with regularization (5.15) on ϕv1,v2,v3(v1, v2, v3), apply the result above to VBP algorithm in

(5.6), (5.7) or the sequential tree re-weighted algorithm for message (Mij) passing;

• Step 5: repeat Step 4 until the state variables converge.

• Step 6: check Tree Agreement Condition for optimality.

Having formulated the VBP algorithm for SE and illustrate it in a toy example, we will test it against

other methods in standard IEEE test systems in the next section.
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(a) 3 Bus System (b) 1st spanning tree

(c) 2nd spanning tree (d) 3rd spanning tree

Figure 5.4: Generation of spanning trees to obtain the value of ρij

5.3 Simulation Results

In this section, we simulate and verify the significantly improved performance of the proposed graphical

model-based SE over the WLS SE. The simulations are implemented on IEEE standard test systems for

IEEE 9, 14, 30, 39, 57, 118, and 300-bus test systems. Similar performance improvements are observed in

all the test systems. In particular, the 14-bus system demonstrates error domain improvements. The 30-bus

system and 118-bus system are simulated for state domain comparisons. The 9-bus to 300-bus systems are

simulated to show improvements in computational time. The data preparation is similar to section 3.3.6.

Numerical Results

We demonstrate the performance of the graphical model-based approach by conducting SE with Gaussian

noise. For comparison purposes, Newton’s method is used to obtain a locally optimal estimate. Also, the

true states from the optimal power flow result are also displayed for reference.
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Accuracy

Fig.5.5 shows 30 simulations for the weighted residual sum of squares (WRSS) error in the 14 bus system

with the metric WRSS defined as follows:

WRSS =

m∑
i=1

(
zi − hi(v̂)

σi

)2

, (5.18)

where m is the total measurement number.
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Figure 5.5: Normalized sum square errors (14 bus system).
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(b) Voltage phase angles

Figure 5.6: Results obtained from the IEEE 30 bus.
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Figure 5.7: Results obtained from the IEEE 118 bus.

In this illustration, the x axis is the simulation test number. The y axis is the metric WRSS (normalized

with respect to Newton’s method). It can be seen that the graphical model-based approach can reduce the

error by 20% on average when compared to Newton’s method with a flat start. The reason for simulating

a flat start is to mimic the smart grid environment with a strong state variation, making the typical initial

guess method (from the last static state estimate) less informative for the new estimation process. A more

than 50% improvement is achieved at simulation numbers 8, 12, 20, 24, and 29. These facts lead to a natural

interpretation of the proposed SE procedure: the possibility of the graphical model-based approach coming

closer to the global optimum is greatly increased since the results do not rely heavily on the initial guess.

The flat start seems to perform better only in simulation 27, because it successfully helps Newton’s method

reach the global optimum, over which the VBP cannot improve. The VBP fails in this particular simulation

because the objective of VBP is MAP, not MMSE. However, such a case rarely occurs in a true smart grid

scenario where a flat start performs poorly. Note that the proposed distributed method is superior to the

distributed implementation of Newton’s method as well. This is because the centralized method is equal to

or better than its distributed realization.

Fig.5.6a and Fig.5.6b show the estimates of voltage magnitudes and phase angles of the proposed ap-

proach for the IEEE 30-bus system. It can be seen from the two plots that the graphical model-based ap-

proach (red solid triangles) is superior to Newton’s method with a flat start (green circles) since it provides

an estimate much closer to the true state. Fig.5.7a and Fig.5.7b also show a more accurate state estimation

for the VBP method with respect to voltage magnitudes and phase angles for the 118 bus system. In sum-
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mary, since our priori state distribution is non-informative, the proposed VBP estimate is suitable for the

future smart grid, in which priori information may be less helpful. In addition, we will show later that VBP

has another favorite property–linear scalability–that is unavailable with Newton’s method.

Computational Cost

A plot of CPU time is provided in Fig.5.8 for a computational time comparison of the regular WLS and

the graphical model-based methods. The x axis is the test case bus number. The y axis stands for the

log(CPU time). All simulations are obtained using MATLAB on an Intel Core 2 CPU with 3GB RAM.

The computational time needed by the graphical model-based method grows linearly, and is much lower than

that needed by the regular WLS method from MATPOWER where the matrix inversion has a computational

complexity of O(n2 log n), growing exponentially. As a result, computational cost is reduced via distributed

algorithm. This confirms VBP’s scalable feature, which is the key to the design of the future Wide Area

Monitoring, Control and Protection (WAMPAC) systems.
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Figure 5.8: CPU time comparison.

Improvement with Sequential Tree Re-weighted Algorithm

To illustrate the superiority of the sequential tree re-weighted algorithm (STRW) over the ordinary tree re-

weighted algorithm (TRW), or VBP, we also compare the two algorithms in Table 5.1. The probability of

118



optimality is checked by the tree agreement condition. As one can observe, the sequential tree re-weighted

Table 5.1: Convergence

Method Convergence probability Probability of optimality

TRW 93% 86%

STRW 100% 97%

algorithm can solve the convergence problem for the VBP algorithm. The probability of optimality is also

guaranteed with a probability of 97%. Finally, it is worth noting that the sequential algorithm needs about

half the memory of the ordinary VBP approach, which is especially important for computation in large

networks.

5.4 Chapter Summary

In this chapter, we propose for the first time a probabilistic model for the whole power grid. This type of

model is valuable when labeled historical data is not available, but historical state distribution is. Unlike

many cyber models that do not account for physical constraints, and unlike deterministic engineering mod-

eling defined solely by physical laws, this chapter combines the two into a single cyber-physical graphical

model. In particular, this chapter introduces a distributed graphical model approach for AC power system

state estimation that uses embedding techniques; as such, it is sufficiently scalable to account for low voltage

level distributed technologies. Mature graphical model inference tools, such as variational belief propaga-

tion, are subsequently applied. To improve our approach’s performance, a sequential tree re-weighted belief

propagation algorithm is introduced to solve the convergence problem. We demonstrate that the proposed

approach can significantly reduce SE error. Furthermore, its linear computational time is attractive due to

network scalability needs, and such scalability is vital for the future large-scale smart grid. This also open-

s the door for other CPS networks in which scalable probabilistic analysis according to physical laws is

preferred.

As a highlight of this work, the future grid structure for SE will include a mesh network (transmission

grid) in the center and many tree networks (distribution grids) on the borders. Therefore, using an algorithm

that combine BP and VBP algorithms to suit a partially mesh and partially tree network is vital for the future
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smart grid. Fig.5.9 illustrates such a need, where local service entities are cooperating with the backbone

transmission network on message passing.

Figure 5.9: Centralized and decentralized BP
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Chapter 6

Comparison of the Various Proposed

Methods using IEEE 30-bus systems

In different SCADA centers around the world, the software, the availability of historical data, and computa-

tional resources differ dramatically. Therefore, we consider the different settings below in order to improve

current static state estimation. This chapter aims to illustrate the advantage of each method in different S-

CADA center setups. A flow chart is drawn at the end to help decide the SE method of choice at the SCADA

center.

In the following, we list various simulation scenarios. For the sake of consistency, an IEEE 30-bus

system is used.

• A SCADA center without historical data where the measurement noises are regular Gaussian noise.

• A SCADA center without historical data where the noise is very small.

• A SCADA center with some historical data about the estimated states.

• A SCADA center with long labeled historical data. Here “labeled” means that the historical measure-

ment data are either labeled or associated with a state estimation.

• A SCADA center with long labeled historical data. However, undetected bad data and malicious

attacks may exist in the data set.
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• A SCADA center with long labeled historical data. The data rate is exceptionally fast in order to

capture dynamics.

• A SCADA center with poor historical data.

6.1 Simulation Scenario I: A SCADA Center without Historical Data.

Some SCADA centers do not have historical data. This happens especially with a new SCADA center. In

this case, any improvement over Newton’s method is desirable. Since there are no historical data, we will

only compare:

• Newton’s method with a flat start

• Centralized SDP approach

• Distributed SDP approach

• No-noise-SDP approach

• Lower bound

The simulation setup is similar to that in Section 3.3.6. To evaluate the performances for accuracy, we

first compute the weighted residual sum of squares error (WRSS)

WRSS =
m∑
i=1

((
zi − tr(TiW)−Mif

)
/σi

)2
, (6.1)

where m is the total measurement number. Here, we conduct such a comparison with an IEEE 30 bus

system multiple times. Fig.6.1 illustrates the 30 simulation results; the x coordinate represents the test index

number and the y coordinate represents the metric of WRSS metric defined above. To display the relative

improvements, we normalize the WRSS with respect to Newton’s method with a flat start.

From Fig.6.1, we can see that

• The centralized SDP approach (red solid line) and distributed SDP approach (dot star line) achieve a

similar performance. Their curves are also very close to the lower bound, leading to approximately

global optimum results.
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Figure 6.1: Simulation scenario II: accuracy comparison (measurement domain).

• The WLS method (green dash square line) performs worse than the centralized and distributed SDP

approaches. However, WLS does hit the global optimum in tests 10 and 27. In the other tests, the

WLS approach hits the local optimum and stops.

• The No-noise-SDP approach does not work well because the noise is not close to zero.

Since the centralized SDP and distributed SDP perform best in minimizing error, we compare, in Fig.6.2,

their computational costs with respect to that of WLS. Great acceleration can be observed in the proposed

distributed algorithm for the distributed parallel SDP approach, especially in large systems. In these sys-

tems, thanks to the fast rate of convergence, the distributed method saves much more time than the extra

time needed to compute the dual variable λ with respect to the centralized SDP SE. As a result, although

distributed SDP SE is consistently more time-consuming than the traditional WLS method, it nevertheless

reduces the time dramatically from that required by centralized SDP by flattening the curve in Fig. 6.2.

Admittedly, for a small system such as 4-bus system, the distributed (parallel) SDP method requires more

time than the distributed one. This is because, for a small system, dividing the network into multiple sub-

networks cannot substantially lower the optimization variable number. Instead, dual variables’ computation

may produce heavy burdens for the algorithm. Therefore, Fig. 6.2 suggests distributed computation for
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Figure 6.2: Simulation scenario II: computational time comparison.

large systems and centralized computation for small systems.

In conclusion, when no historical data are available, the distributed parallel SDP approach is preferable

for large systems.

6.2 Simulation Scenario II: A New SCADA Center without Historical Data

where the Noise is Very Small.

In this section, the simulation setup is similar to the setup in the last section except that here we use a much

smaller noise: the standard deviation is 0.1% of the measurement value. Since there is no historical data,

we will compare

• Newton’s method with a flat start.

• Centralized SDP approach

• Distributed SDP approach
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• No-noise SDP approach

• Lower bound

From Fig.3.3, we see that the No-noise SDP approach is the closest to the lower bound. Therefore, this

method is preferable when the noise is small and no historical data are available.
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Figure 6.3: Simulation scenario II: accuracy comparison (measurement domain).

6.3 Simulation Scenario III: A SCADA Center with Some Historical Data

about the Estimated States.

In this section, some historical data means that the SCADA center has a priori distribution of the state

variables. However, no detailed information about the historical measurements and states is available.

Since the centralized and distributed SDP approaches have similar accuracy, we only show the simulation

result for the centralized SDP approach in this section, and we call it the SDP approach for short. Also, since

the noise level is set at ordinary (not close to zero), we already know because of the simulation results in

Simulation Scenario I that the SDP approach is better than the no-noise SDP approach. Finally, data-driven
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SE approach is not included here due to the unavailability of labeled measurement-state pairs. Therefore,

one can neither conduct the static data-driven SE nor the dynamic data-driven SE. We compare

• Newton’s method with a flat start.

• SDP approach.

• Belief Propagation approach.

In simulation scenario I and II, all the approaches being compared focus on minimizing the sum square

error in the measurement domain. Therefore, it is fair to compare all of them in the measurement domain.

However, the belief propagation approach in this section focuses on maximum-a-posterior distribution of

the state. Since the ultimate goal of SE is to estimate state, we compare differences in state domain in this

section. The simulation setup is similar to that in Section 5.3.
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Figure 6.4: Simulation scenario III: accuracy comparison (state domain).

From Fig. 6.4 and Fig. 6.5, we see that the Belief Propagation approach generates a state that is closer

to the true state, when comparing to the SDP method and WLS method with Newton’s method.

Speedup by the BP approach is illustrated in Fig.6.6.
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Figure 6.5: Simulation scenario III: accuracy comparison (state domain).
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Figure 6.6: Simulation scenario III: computational time comparison.
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6.4 Simulation Scenario IV: A SCADA Center with Long Labeled Historical

Data. However, Undetected Bad Data and Malicious Attacks May Exist

in the Data Set.

The simulation setup is similar to that in Section 4.3.3 for Robust Data-Driven SE. Bad data are occasionally

added into both the historical data and the current measurements. We compare:

• Newton’s method with bad data detection

• SDP approach with bad data detection

• Belief Propagation approach

• Static Data-Driven SE

• Robust Static Data-Driven SE

• Dynamic Data-Driven SE

Again, we are going to make comparison in the state domain.

From Fig.6.7, robust data-driven SE is the best. Since the belief propagation approach, static data-driven

approach, and dynamic data-driven SE are not designed to deal with bad data, they perform more poorly

here. For the other approaches in the Fig.6.7, robust data-driven approach is the best.

6.5 Simulation Scenario V: A SCADA Center with Labeled Historical Data.

The Data Rate is Very Fast.

In this part, we assume that the measurement data rate is fast and at 1 result per second. We compare:

• Newton’s method with a flat start.

• SDP approach.

• Belief Propagation approach.
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(a) Voltage Magnitude Comparison 1
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(b) Voltage Magnitude Comparison 2
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(c) Voltage Phase Angle Comparison 1
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(d) Voltage Phase Angle Comparison 2

Figure 6.7: Simulation scenario IV: accuracy comparison (state domain).
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• Static Data-Driven SE.

• Dynamic Data-Driven SE.

The comparison is in the state domain.
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(a) Voltage Magnitude Comparison
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Figure 6.8: Simulation scenario V: accuracy comparison (state domain).

From the simulation above, we can see that the dynamic data-driven approach performs the best.

6.6 Simulation Scenario VI: A SCADA Center with Poor Historical Data.

The simulation setup is similar to Section 4.3.3 for Data-Driven SE. However, we intentionally remove

historical data and give wrong priori distribution on the state. we compare:

• Newton’s method with a flat start.

• SDP approach.

• Belief Propagation approach

• Static Data-Driven SE

• Dynamic Data-Driven SE

From the simulation, we can see that
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(b) Voltage Magnitude Comparison 2
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(c) Voltage Phase Angle Comparison 1
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Figure 6.9: Simulation scenario VI: accuracy comparison (state domain).
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• the Static Data-Driven approach is bad occasionally due to loss of similar historical data;

• the dynamic Data-Driven SE fails due to the inconsecutive data for learning;

• the Belief Propagation approach fails because the priori is wrong;

• the BP is not working well as the historical data constructed priori state distribution is wrong;

• the SDP approach is the best. This is because the SDP-based approach has the advantage of being

independent of historical bad data or bias because it does not use historical information.
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6.7 Chapter Summary

In this chapter, various proposed SE approaches are applied to IEEE 30-bus system for comparison. The

results show that a SCADA center should use a strategies depending on: 1) noise level, 2) historical data

availability, 3) historical data quality, 4) scalability need, and 5) the desire for a probabilistic state estimate.

In particular, the simulation results recommend that the flow chart in Fig.6.10 be employed to select a

suitable SE approach.

Figure 6.10: Decision tree for the various new SE approaches.
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Chapter 7

Conclusions

This thesis attempts to resolve, via embedding techniques, the challenges produced by sources of random-

ness in the power grid that cause uncertainties and vulnerability in power system state estimation (SE).

By exploring the convex optimization method and machine learning approaches to enhance the robustness,

accuracy, and speed of current SE, we find a way to deal with new power producers such as newly built

intermittent distributed wind generators, electric vehicle charging, and accidental transmission line failures.

There are three scenarios where SE can be improved for power system monitoring. First, when reliable

historical data is unavailable, we propose embedding state space to a high dimensional space in order to

deal with the nonconvexity of the static AC SE problem. This embedding process allows a linear model and

enables a convex semidefinite programming (SDP) representation of the problem. But despite the benefit of

working well for backbone power grids with a small number of buses, this method makes the SDP method

increasingly time-consuming as the network size grows, so that a centralized solver will be infeasible for

large networks. To address this restriction, we introduce a distributed algorithm to restructure the centralized

SDP computation into local SDP problems without compromising the accuracy. Finally, we propose an

alternative SDP-based approach to convexify the SE problem exactly when no noise appears. Even when

noise is present, such a method still works well since the presence of noise will only mildly perturb the

optimal result. Simulations show that the proposed SDP-based SE approaches can significantly reduce the

large residuals common in conventional static SE for large scale electric power systems and achieve a near-

global optimum. On average, our proposed SDP approach can improve on the industrial approach by 30%

on average.
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In the second scenario, we consider using historical data to deal with new uncertainties within grids

associated with the intermittent generation of renewables, etc. The idea is motivated by the recent success

of applying data-driven approaches to other cyber systems. To first refine the historical data for use, we

propose conducting a nearest neighbors search due to the periodic nature of power system operation. After

obtaining these neighbors, we use the associated measurements and their corresponding states, as well as

the current measurement embedded in a larger feature space to obtain a good current state estimate. We

conduct a parameter learning process to achieve good current SE based on a discriminative model called

kernel regression that maps the historical data similar to current measurements into the current state. The

training and validation stages of the mapping process lead to an efficient data-driven SE. In general, the

proposed method is time-consuming when the historical data size is large, resulting in an excessive amount

of time required to solve optimization problems. Therefore, the application of the proposed method can be

computationally infeasible for large networks with massive amount of historical data. To reduce the time

needed to search historical data, we propose utilizing the clustered nature of power system data. This enables

a better streaming estimation process with real-time guarantees.

To conduct robust data-driven SE against topology changes, we notice that the proposed data-driven

method above only uses current measurements and past measurement-state pairs. It does not use another

important data set: current topology. Our refined idea is to use past information and current topology

together for a similarity data points search. Then, as an extension to the data-driven SE approach, we propose

conducting topology estimation within the same framework. Since the grid connection can be described by

discrete and binary variables, we use kernel logistic regression instead of kernel ridge regression with the

same embedding technique.

While historical data is useful for predicting the current state, the correlation between consecutive on-line

data is another resource with which to enhance estimation accuracy. A static SE was previously preferable

due to the slow updates of past measurement systems. However, we now have opportunities for dynam-

ic tracking because faster sensors have been deployed in recent years [116, 117]. Therefore, we propose

a kernel Kalman filter approach capable of dealing with nonlinearity in the measurement equations, via

embedding, as well as capturing the correlation between two neighbor data points.

Our simulations show that the proposed data-driven approaches are particularly useful when reliable

historical data is available. The improvement can be as high as 90% in the state domain.
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Apart from utilizing historical data to deal with the uncertainties in power grid monitoring, we also

need to address scalability issues as the grid grows larger. Such challenges are enormous as the industry

paradigm shifts from a traditional centralized monitoring architecture-based deterministic model to a high-

ly distributed interactive data and resource management-based probabilistic model. Therefore, to properly

model a system’s stochastic property and conduct efficient distributed SE, we propose a probabilistic graph-

ical model description [65] of the electric power grid. Our graphical model is inspired by results from ap-

plying such models for uncertainty representation and computationally-tractable inferences in several other

field [91, 92, 118].

We then conduct computationally-tractable distributed inferences [91, 92, 118], namely “Belief Propa-

gation” over the graphical model and Variational Belief Propagation [17], which are based on embedding

the true probability distribution into a larger space of distributions. Since the future power grid will have

load serving entities with distributed renewable energy generations, an extension of the algorithm can be

conducted on a partially mesh/partially tree network.

Our numerical results show that when distributed computation is available and the historical data reflects

good priori on the state, the accuracy improvement is 80% on average. The improvement on computation

time is higher, only 1
10 time of the current industrial approach is needed.
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.1 Other Measurement Type for Distributed Semidefinite Programming-Based

State Estimation

This section discusses the inclusion of power flow measurements in the distributed algorithm.

Power flow measurements Similarly to the power injection expression (3.18), the power flow represen-

tation without considering substation topology (Mif ) can be formulated as:

sij = vii
H
ij = vi(Ybrav)k, (1)

where k indicates that branch ij is the kth branch in the case file (Mif can easily be added when necessary

due to its linear operation over the measurement formula.). As a result, the power flow vectors are:

sflow = diag{DvvHY H
f } = diag{TvvHY HTH}, (2)

pflow = diag{DvvHMactTH}, (3)

qflow = diag{DvvHM reaTH}, (4)

where D is a deterministic matrix mapping the bus voltages onto the branch voltages. As a result, our

problem turns from (3.19) to:

minimize
W

l∑
i=1

[
(Di,:T

actWDT
i,: − zact.pfi )2

+ (Di,:T
reaWDT

i,: − zrea.qfi )2
]

subject to W ≽ 0.

where l is the branch power flow measurement number. Ti,: is the ith row of matrix T .

The SDP SE above is equivalent to the following optimization, by adding equality constraints and auxil-

iary variables yact.pf and yrea.qf .

min
W

l∑
i=1

[
(yact.pfi )2 + (yrea.qfi )2

]
subject to W ≽ 0,

yact.pfi = Di,:WMactDT
i,: − zact.pfi ,

yrea.qfi = Di,:WM reaDT
i,: − zrea.qfi .
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Its Lagrangian can be written as

L(W,λact.pf ,λrea.qf ,yact.pf ,yrea.qf) (5)

=
n∑

i=1

[
(yact.pfi )2 + λact.pf

i (yact.pfi −Di,:WMactDT
i,: + zact.pfi )

]
+

n∑
i=1

[
(yrea.qfi )2 + λrea.qf

i (yrea.qfi −Di,:WW reaDT
i,: + zrea.qfi )

]
.

Therefore the dual problem is

max
λ

min
W, y

l∑
i=1

[
(yact.pfi )2 + (yrea.qfi )2 + λact

i (yacti + zacti )

+ λrea
i (yreai + zreai )−Di,:WT actDT

i,:

−Di,:WM reaDT
i,:

]
,

subject to W ≽ 0.

Notice that Di,:T
actWDT

i,: can be converted into the simpler form below with a new matrix Mflow such that

l∑
i=1

Di,:(T
act + T rea)WT T

i,: =

n∑
i=1

n∑
k=1

T flow
ik Wki. (6)

Consequently, the above optimization becomes equivalent to

max
λ

min
W, y

l∑
i=1

[
(yact.pfi )2 + (yrea.qfi )2 + λact

i (yacti + zacti )

+ λrea
i (yreai + zreai )

]
−

n∑
i=1

n∑
k=1

T flow
ik Wki,

subject to W ≽ 0.

Voltage magnitude and voltage phase angle measurements can be derived similarly.
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