

Use of the ToxCast and Tox21 Screening Strategies in Support of Chemical Prioritization for Risk Assessment

Lisa Truong, Keith A. Houck

National Center for Computational Toxicology (NCCT/ORD/EPA)

IEBMC

October 20, 2018

houck.keith@epa.gov

Regulatory Agencies Make a Broad Range of Decisions on Chemicals...

Number of Chemicals /Combinations

Ethics/Relevance Concerns

Economics

- Number of chemicals and combinations of chemicals is extremely large (>20,000 substances on active TSCA inventory)
- Due to historical regulatory requirements, most chemicals lack traditional toxicity testing data
- Traditional toxicology testing is expensive and time consuming
- Traditional animal-based testing has issues related to ethics and relevance

Toxicology Moving to Embrace 21st Century Methods

High-Throughput Assays Used to Screen Chemicals for Potential Toxicity

- Understanding of what cellular processes/pathways may be perturbed by a chemical
- Understanding of what amount of a chemical causes these perturbations

Key Steps in Satisfying Toxicologists and Regulators

- Transparency and validation
- Systematically addressing limitations in alternative test systems
- Put results in a dose/exposure context
- Characterize uncertainty
- Emphasize development of computational models to integrate experimental data
- Deliver of data and models through decision support tools

Broad Success Derived from High-Throughput Screening Approaches

Group Chemicals by Similar Bioactivity and Predictive Modeling

Assays/Pathways

Provide Mechanistic Support for Hazard ID

IARC Monographs

Prioritization of Chemicals for Further Testing

FIFRA SAP, Dec 2014

Targeted Pathways (AOP Approach)

18 In Vitro Assays Measure ER-Related Activity

80-05-7 : Bisphenol A

ER Model Performance

Browne et al., Environ. Sci. Technol., 2015

ER Minimal Model

Combinations of four assays provide good balanced accuracy

R.S. Judson et al. / Regulatory Toxicology and Pharmacology 91 (2017) 39e49

Regulatory Applications: EDSP

"The approach incorporates validated high-throughput assays and a computational model and, based on current research, can serve as an alternative for some of the current assays in the Endocrine Disruptor Screening Program (EDSP) Tier 1 battery."

Androgen Receptor Model

Some Existing Limitations in High-Throughput and *In Vitro* Test Systems

Biological Coverage (Gene Basis)

Chemical Coverage and Specific Chemical Types (e.g., VOCs)

Metabolic Competence

Organ and Tissue Responses

Assessing Cross-Species Differences in Response

Multispecies Attagene Trans Reporter Assay

Highly multiplexed reporter gene assay

Evaluated Compound	
pool	
c)	
FACTORIAL MS	
$\hat{\Phi}$	
Profile reporter RTU RNA	4 <i>s</i>
Φ	
NR activity profile	
0 0 0 5 0 0 1 1 0 1 0 0 1 0 0	

NR family	NR	Class	Species	Sequence ID
Estrogen	ER1		Danio rerio	BC162466
	ER2a	Fish	Danio rerio	BC044349
	ER2b		Danio rerio	BC086848
	ER1	Amphibian	Xenopus laevis	NM_001089617
	ER2	Amphibian	Xenopus laevis	NM_001130954
	ER1	Reptilian	Chrysemys picta	NM_001282246
	ER1	Avian	Gallus gallus	NM_205183
	ERa	Mammalian	Homo Sapiens	NM_000125
	ERb	Mammanan	Homo Sapiens	NM_001437
	AR	Fish	Danio rerio	NM_001083123
Androgen	AR	Amphibian	Xenopus laevis	NM_001090884
	AR	Reptilian	Chrysemys picta	XM_005279527
	AR	Avian	Gallus gallus	NM_001040090
	AR	Mammalian	Homo Sapiens	NM_000044
Thyroid	TRa	Fish	Danio rerio	BC096778
	TRb	LISH	Danio rerio	BC163114
	TRa	Amphibian	Xenopus laevis	NM_001088126
	TRa	Reptilian	Chrysemys picta	XM_005294120
	THRa	Mammalian	Homo Sapiens	NM_199334
	THRb	Manninanan	Homo Sapiens	NM_000461
PPAR	PPARg	Fish	Danio rerio	NM_131467
	PPARg	Mammalian	Mus musculus	NM_001127330
	PPARg	iviaiTiiTlallaTI	Homo Sapiens	BC006811

- Host cell: human HepG2
- · Agonist mode for all receptors
- · Antagonist for ER and AR

Cross-Species Differences in Nuclear Receptor Responses

- 180 Chemicals tested in concentrationresponse
- Chemicals selected for NR activity

Beginning to Address Concerns for Increased Biological Coverage

Gene Coverage ToxCast Not in ToxCast Pathway Coverage* *At least one gene from

pathway represented

High-throughput Genomics (HTTr) Thousands of chemicals Multiple Cell Types Requirements: Low cost • 384 well

Automatable

• Whole genome

Pathway Potencies by Benchmark Dose Analysis

Pilot Study

- Reference chemicals for a variety of MoA's
- MCF7 human breast cancer cell line

 Broad range of pathway level potency estimates and number of pathways affected across chemicals.

Josh Harrill, NCCT, unpublished

Predicting MoA by Connectivity Mapping

- Connectivity Mapping
 - Use DEGs / CRGs to define "signatures" for each chemical or treatment
 - Search signature database annotated with MoA
 - Infer MoA using pair-wise similarity between signature

Promiscuous Target

Mapping

Trichostatin A DMEM 06h

- Differential gene expression observed with reference chemicals
- Putative targets identified using Connectivity Mapping
- Large degree of promiscuity of predicted targets observed
- Currently evaluating additional methods for MIE prediction

Imran Shah, NCCT, unpublished

Cell Painting Phenotypic Screen Background

- Cell Painting (Bray et al., 2016, *Nature Protocols*): A cell morphology-based phenotypic profiling assay multiplexing six fluorescent "non-antibody" labels, imaged in five channels, to evaluate multiple cellular compartments and organelles.
- Key Features:
 - Non-targeted screening (i.e. target agnostic)
 - Tractable across different adherent cell lines
 - High content 100s 1000s of features measured at the cell level
 - Concentration-response analysis
 - · Fingerprinting and clustering

Marker	Cellular	Labeling Chemistry	Labeling Phase	Opera Phenix	
	Component			Excitation	Emission
Hoechst 33342	Nucleus	Bisbenzamide probe that binds to dsDNA		405	480
Concanavalin A – AlexaFluor 488	Endoplasmic reticulum	Lectin that selectively binds to α-mannopyranosyl and α-glucopyranosyl residues enriched in rough endoplasmic reticulum		435	550
SYTO 14 nucleic acid stain	Nucleoli	Cyanine probe that binds to ssRNA	Fixed	435	550
Wheat germ agglutinin (WGA) – AlexaFluor 555	Golgi Apparatus and Plasma Membrane	Lectin that selectively binds to sialic acid and N- acetylglucosaminyl residues enriched in the trans-Golgi network and plasma membrane		570	630
Phalloidin – AlexaFluor 568	F-actin (cytoskeleton)	Phallotoxin (bicyclic heptapeptide) that binds filamentous actin			
MitoTracker Deep Red	Mitochondria	Accumulates in active mitochondria	Live	650	760

Reference Compound Effects

Preliminary Results

Josh Harrill, NCCT, unpublished

Assays Retrofit for Xenobiotic Metabolism: Extracellular

Assays Retrofit for Xenobiotic Metabolism: Intracellular

Framework for Integrating Hazard Components...

Moving Towards Risk: Adding a High-Throughput Toxicokinetic Component

Chemical Use

Wetmore et al., Tox Sci., 2012

Wambaugh et al., 2014

Data

Bioactivity Provides a Conservative Estimate of a NOAEL/LOAEL

Environmental Monitoring Application: Nationwide Streams Surveillance

- 38 total sites (4 reference sites) across US and PR
- Water samples collected 2012-2014
- Locations varied by watershed drainage

26

Brett Blackwell/ORD/EPA

Bioassay Analysis Workflow

Extract Analysis

- 6-point curve; 3-fold dilution
- 24h exposure
- Area Under Curve (AUC)
 - Response relative to extract blank

Bioassay Results

- 26/70 endpoints AUC >1.25-fold (borderline active)
- 11/70 endpoints AUC >1.5-fold (active)

Active Endpoints

- PXRE, PXR, AhRE 30-36 sites
- ERE 17 sites
- ERα, PPARγ 10 sites
- GR, VDRE, NRF2 6-8 sites
- RORE, RXRβ 2 sites

Bioassay Results

Deliver Data and Models Through Decision Support Tools

Comptox Chemistry Dashboard

Concluding Remarks

- Multiple opportunities exist for using high-throughput and computational approaches to address challenges in toxicology and risk assessment
- In vitro/alternative approaches valuable for chemical prioritization, especially where we understand the toxicity pathways
- May also be useful in conservative point-of-departure approaches for unknown/non-selective effects
- Combining with exposure predictions allows prioritization for risk
- Using high-throughput approaches will require systematically addressing key technical and data analysis challenges
- Enabling application of high-throughput data to chemical safety decisions with require delivery and integration using a broad range of IT tools

