
exascaleproject.org

Verification and Refactoring

Better Scientific Software Tutorial

Anshu Dubey
Mathematics and Computer Science Division
Argonne National Laboratory

Supercomputing 2018
Dallas, TX
November 12, 2018

See slide 2 for
license details

2

License, citation, and acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• Requested citation: Anshu Dubey, Verification and Refactoring, Better Scientific Software tutorial,

in SC ‘18: International Conference for High Performance Computing, Networking, Storage and
Analysis, Dallas, Texas, 2018. DOI: 10.6084/m9.figshare.7303946.

Acknowledgements
• Alicia Klinvex contributed many slides to this presentation
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced

Scientific Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by
UChicago Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-
06CH11357

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://dx.doi.org/10.6084/m9.figshare.7303946

Definitions
Why is testing important?

Verification3

4

Verification

• Code verification uses tests
– It is much more than a collection of tests

• It is the holistic process through which you ensure that
– Your implementation shows expected behavior,
– Your implementation is consistent with your model,
– Science you are trying to do with the code can be done.

5

Stages and types of verification

• During initial code development
– Accuracy and stability
– Matching the algorithm to the model
– Interoperability of algorithms

• In later stages
– While adding new major capabilities or modifying existing capabilities
– Ongoing maintenance
– Preparing for production

6

Stages and types of verification

• If refactoring
– Ensuring that behavior remains consistent and expected

• All stages have a mix of automation and human-intervention

Note that the stages apply to the whole code
as well as its components

7

Other specific verification challenges

• Functionality coverage
• Particularly true of codes that allow composability in their configuration
• Codes may incorporate some legacy components

– Its own set of challenges
• No existing tests at any granularity

• Examples – multiphysics application codes that support multiple domains

8

Benefits of testing

• Promotes high-quality software that delivers correct results and improves
confidence

• Increases quality and speed of development, reducing development and
maintenance costs

• Maintains portability to a variety of systems and compilers
• Helps in refactoring

– Avoid introducing new errors when adding new features
– Avoid reintroducing old errors

9

How common are bugs?

• Bugs per 1000 lines of code (KLOC)

• Industry average for delivered software

– 1-25 errors

• Microsoft Applications Division

– 10-20 defects during in-house testing

– 0.5 in released product

Programs do not acquire bugs as people acquire germs,

by hanging around other buggy programs.

Programmers must insert them.

- Harlan Mills

Code Complete (Steven McConnell)

10

Why testing is important:
the protein structures of Geoffrey Chang

• Some inherited code flipped two columns of data, inverting an electron-density
map

• Resulted in an incorrect protein structure
• Retracted 5 publications

– One was cited 364 times

• Many papers and grant applications conflicting with his results were rejected
He found and reported the error himself

11

Why testing is important:
the 40 second flight of the Ariane 5

• Ariane 5: a European orbital launch vehicle meant to lift 20 tons into low Earth
orbit

• Initial rocket went off course, started to disintegrate, then self-destructed less
than a minute after launch

• Seven variables were at risk of leading to an Operand Error (due to conversion of
floating point to integer)
– Four were protected

• Investigation concluded insufficient test coverage as one of the causes for this
accident

• Resulted in a loss of $370,000,000.

12

Why testing is important:
the Therac-25 accidents

• Therac-25: a computer-controlled radiation therapy
machine

• Minimal software testing
• Race condition in the code went undetected
• Unlucky patients were struck with approximately 100

times the intended dose of radiation, ~ 15,000 rads
• Error code indicated that no dose of radiation was given,

so operator instructed machine to proceed
• Recalled after six accidents resulting in death and

serious injuries

13

Test Definitions

• Unit tests
– Test individual functions or classes

• Integration tests
– Test interaction, build complex

hierarchy

• System level tests
– At the user interaction level

• Restart tests
– Code starts transparently from a

checkpoint

• Regression (no-change) tests
– Compare current observable output to a

gold standard

• Performance tests
– Focus on the runtime and resource

utilization

14

Test Development

• Development of tests and diagnostics goes hand-in-hand with code
development
– Non-trivial to devise good tests, but extremely important
– Compare against simpler analytical or semi-analytical solutions

• When faced with legacy codes with no existing tests
– More creative approach becomes necessary

• Verify correctness
– Always inject errors to verify that the test is working

15

Example from E3SM

• Isolate a small area of the code
• Dump a useful state snapshot
• Build a test driver

– Start with only the files in the area
– Link in dependencies

– Copy if any customizations needed

• Read in the state snapshot
• Restart from the saved state

state

driver

16

Workarounds for Granularity

• Approach the problem sideways
– Components can be exercised against

known simpler applications
– Same applies to combination of

components

• Build a scaffolding of verification
tests to gain confidence

Mocked up
dependency

Real dependency

Unit test Unit test

Unit test Unit test

Unit test

17

Example from FLASH

Unit test for Grid
• Verification of guard cell fill
• Use two variables A & B
• Initialize A in all cells and B only

in the interior cells (red)
• Apply guard cell fill to B

Unit test

18

Example from Flash

Unit test for Equation of State (EOS)
• Three modes for invoking EOS

– MODE1: Pressure and density as input, internal energy and temperature as output
– MODE2: Internal energy and density as input temperature and pressure as output
– MODE3: Temperature and density as input pressure and internal energy as output

• Use initial conditions from a known problem, initialize pressure and density

• Apply EOS in MODE1

• Using internal energy generated in the previous step apply EOS in MODE2

• Using temperature generated in the previous step apply EOS in MODE3

• At the end all variables should be consistent within tolerance

Unit test

19

Example from FLASH

Unit test for Hydrodynamics
• Sedov blast wave
• High pressure at the center
• Shock moves out spherically
• FLASH with AMR and hydro
• Known analytical solution

Though it exercises mesh, hydro and eos, if mesh and
eos are verified first, then this test verifies hydro

Unit test Unit test

Unit test

More testing needed for Grid using AMR
Flux correction and regridding

20

Example from FLASH

Reason about correctness for testing Flux correction and
regridding
IF Guardcell fill and EOS unit tests passed
• Run Hydro without AMR

– If failed fault is in Hydro

• Run Hydro with AMR, but no dynamic refinement
– If failed fault is in flux correction

• Run Hydro with AMR and dynamic refinement
– If failed fault is in regridding

21

Selection of tests

• Two purposes
– Regression testing

• May be long running
• Provide comprehensive coverage

– Continuous integration
• Quick diagnosis of error

• A mix of different granularities works well
– Unit tests for isolating component or sub-component level faults
– Integration tests with simple to complex configuration and system

level
– Restart tests

• Rules of thumb
– Simple
– Enable quick pin-pointing

22

Why not always use the most stringent testing?
• Effort spent in devising tests and testing regime are a tax on team resources
• When the tax is too high…

– Team cannot meet code-use objectives

• When is the tax is too low…
– Necessary oversight not provided
– Defects in code sneak through

• Evaluate project needs
– Objectives: expected use of the code
– Team: size and degree of heterogeneity
– Lifecycle stage: new or production or refactoring
– Lifetime: one off or ongoing production
– Complexity: modules and their interactions

23

Commonalities

• Unit testing is always good
– It is never sufficient

• Verification of expected behavior
• Understanding the range of validity and applicability is always important

– Especially for individual solvers

24

Test Selection

• First line of defense
– code coverage
tools (demo later)

• Necessary but not
sufficient – don’t
give any
information about
interoperability

• Build a matrix
– Physics along rows
– Infrastructure along columns
– Alternative implementations, dimensions, geometry

• Mark <i,j> if test covers corresponding features
• Follow the order

– All unit tests – including full module tests
– Tests representing ongoing productions
– Tests sensitive to perturbations
– Most stringent tests for solvers
– Least complex test to cover remaining spots

25

Hydro EOS Gravity Burn Particles
AMR CL CL CL CL
UG SV SV SV
Multigrid WD WD WD WD
FFT PT

Tests Symbol
Sedov SV
Cellular CL
Poisson PT
White Dwarf WD

Example

• A test on the same row indicates
interoperability between corresponding
physics

• Similar logic would apply to tests on the
same column for infrastructure

• More goes on, but this is the primary
methodology

26

Regular Testing

• Essential for large code
– Set up and run tests
– Evaluate test results

• Easy to execute a logical subset of tests
– Pre-push
– Nightly

• Automation of test harness is critical for
– Long-running test suites
– Projects that support many platforms

Jenkins
C-dash
Custom
(FlashTest)

• Part of ongoing verification
• Automating is helpful
• Can be just a script
• Or a testing harness

27

Regular Testing

• Testing regime is only useful if it is
– Maintained

• Tests and benchmarks periodically updated
– Monitored regularly

• Can be automated
– Has rapid response to failure

• Tests should pass most of the time

Refactoring

29

Considerations

• Know bounds on acceptable behavior change
• Know your error bounds

– Bitwise reproduction of results unlikely after transition

• Map from here to there
• Check for coverage provided by existing tests
• Develop new tests where there are gaps

Incorporate testing overheads into refactor cost estimates

30

Example FLASH
30

Hydro MHD

Gravity Burn

Physics

Driver

Simulation

Grid Runtime
Params I/O

Profiling

Logfile

Monitoring

Infrastructure

• Grid
– Manages data
– Domain discretization

• Hydro
– simpleUnsplit
– Unsplit

• Driver
– Time-stepping
– Orchestrates interactions

31

FLASH5

Refactoring for Next Generation Hardware

31

FLASH

Other units

GridMain

Grid API

AMR

Paramesh

Uniform
Grid

FLASH

Other units

GridMain

Grid API

AMR

Paramesh

Uniform
Grid

AMReX

AMReX - Lawrence Berkeley National Lab
• Designed for exascale
• Node-level heterogeneity
• Smart iterators hide parallelization

Goal: Replace Paramesh with AMReX

Plan:
• Paramesh & AMReX coexist
• Adapt interfaces to suit AMReX
• Refactor Paramesh implementation
• Compare AMReX implementation against

Paramesh implementation

32

Refactoring plan

Design
• Degree & scope of change
• Formulate initial requirements
Prototyping
• Explore & test design decisions
• Update requirements
Implementation
• Recover from prototyping
• Expand & implement design

decisions

32

FLASH
Version

4.4

New
Grid
Unit

Imple-
mentation

From
Old

FLASH

AMReX
Mesh

Simple
Hydro

Grid API

Iterators

Fine-coarse

AMReX
Mesh

AMReX
Mesh

Simple
Hydro

Grid API

Require-
ments

gathering

Interfaces
Data

Structures
Iterators

Iterators

Unsplit
Hydro

Hydro Driver

New alternative
Implementation

Iterators over
Paramesh

Flux correction

Top-level
interaction

33

Phase 1 - design

• Derive and understand principal definitions & abstractions
• Collect & understand Paramesh/AMReX constraints

– Generally useful design due to two sets of constraints?

• Collect & understand physics unit requirements on Grid unit
• Design fundamental data structures & update interface

– AMReX introduces iterators over blocks/tiles of mesh
– Package up block/tile index with associated mesh metadata

• Minimal prototyping with no verification

Sit, think, hypothesize, & argue

33

34

Phase 2 - prototyping

• Implement new data structures
– Evolve design/implementation by iterating

between Paramesh & AMReX

• Explore Grid/physics unit interface
– simpleUnsplit Hydro unit

• Discover use patterns of data structures
and Grid unit interface

• Adjust requirements & interfaces

Quick, dirty, & light

34

Verification
• Single simpleUnsplit simulation
• Quantitative regression test with

Paramesh
• Proof of concept with AMReX via

qualitative comparison with Paramesh

35

Phase 3 - implementation

• Derive & implement lessons learned
– Clean code & inline documentation

• Update Unsplit Hydro

• Hybrid FLASH
– AMReX manages data
– Paramesh drives AMR

• Fully-functioning simulation with AMReX

• Prune old code

Toward quantifiable success & Continuous Integration

35

Verification
• Git workflow
• Grow test suite / CI with Jenkins
• Add new feature/test

• Create Paramesh baseline with
FLASH4.4

• Refactor Paramesh implementation
• Implement with AMReX & compare

against Paramesh baseline

36

Other resources
Software testing levels and definitions:
http://www.tutorialspoint.com/software_testing/software_testing_levels.htm

Working Effectively with Legacy Code, Michael Feathers. The legacy software change
algorithm described in this book is very straight-forward and powerful for anyone working on a
code that has insufficient testing.

Code Complete, Steve McConnell. Includes testing advice.

Organization dedicated to software testing: https://www.associationforsoftwaretesting.org/

Software Carpentry: http://katyhuff.github.io/python-testing/

Tutorial from Udacity: https://www.udacity.com/course/software-testing--cs258

Papers on testing:
http://www.sciencedirect.com/science/article/pii/S0950584914001232
https://www.researchgate.net/publication/264697060_Ongoing_verification_of_a_multiphysic
s_community_code_FLASH

Resources for Trilinos testing:
Trilinos testing policy: https://github.com/trilinos/Trilinos/wiki/Trilinos-Testing-Policy
Trilinos test harness: https://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing

38

Agenda
Time Module Topic Speaker

8:30am-8:40am 00 Introduction and Setup David E. Bernholdt, ORNL

8:40am-9:00am 01 Overview of Best Practices in HPC Software Development David E. Bernholdt, ORNL

9:00am-10:00am 02 Git Workflows Jared O’Neal, ANL

10:00am-10:30am Break

10:30am-11:40am 03 Better (Small) Scientific Software Teams Michael A. Heroux, SNL

11:40am-12:00pm 04 Improving Reproducibility through Better Software
Practices

Michael A. Heroux, SNL

12:00pm-1:30pm Lunch (C1/2/3/4 Ballroom, 2nd floor)

1:30pm-2:15pm 05 An Introduction to Software Licensing David E. Bernholdt, ORNL

2:15pm-2:55pm 06 Verification and Refactoring Anshu Dubey, ANL

2:55pm-3:00pm 07 Code Coverage and Continuous Integration Jared O’Neal, ANL

3:00-3:30pm Break

3:30pm-3:40pm 07 Code Coverage and Continuous Integration (continued) Jared O’Neal, ANL

3:40pm-5:00pm 08 Hands-on Activities Jared O’Neal, ANL, and team

Tutorial evaluation form: http://bit.ly/sc18-eval

http://bit.ly/sc18-eval

