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How do we determine what other tests are needed?

Code coverage tools
• Expose parts of the code that aren’t being tested
• gcov

o standard utility with the GNU compiler collection suite
o Compile/link with –coverage & turn off optimization
o counts the number of times each statement is executed

• lcov
o a graphical front-end for gcov
o available at http://ltp.sourceforge.net/coverage/lcov.php

• Hosted servers (e.g. coveralls, codecov)
o graphical visualization of results
o push results to server through continuous integration server

http://ltp.sourceforge.net/coverage/lcov.php
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Code coverage output

https://github.com/jrdoneal/infrastructure

Overall Analysis

Detailed Analysis

https://github.com/jrdoneal/infrastructure
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Code coverage is popular

• gcov also works for C and Fortran
• Other tools exist for other languages
o JCov for Java
o Coverage.py for python
o Devel::Cover for perl
o profile for MATLAB
o etc.



Continuous Integration



8

The Short & Sweet of Continuous Integration

A master branch that always works

• DVCS workflow isolate master from integration environment
• Extend workflow to address difficulties of integrating

– Minimize likelihood of merge conflict
– Detect bugs immediately
– Make debugging process quick and easy
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Work Decomposition

Commit and integrate often
• Limit divergence between feature and master branches
• Decreased probability of conflict
• Conflict resolution is simpler and less risky

vs.

dev1

dev2

master

dev1

dev2

master
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Error detection

Test at integration to identify failures immediately

• Control quality of code

• Isolate failure to few commits

• No context switching for programmer

We want a system that 

• triggers automated builds/tests on target environments when code changes and 

• ideally tests on proposed merge product without finalizing merge.
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Test Servers

Servers that 
• automate the execution of a test suite or a subset of a test suite,
• allow for running tests on different environments,
• host an interface for viewing results, and
• allows for configuring when the tests are run.

Examples
• CTest/CDash
• Jenkins
• Travis CI and GitLab CI
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Cloud-based Test Servers
• Linked to VCS hosts

o GitHub & Travis CI

o GitLab CI

o BitBucket Pipelines

• Automated builds/tests triggered via pushes and pull requests

• Builds/tests can be run on cloud systems

• Test results are reported in repository’s web interface

• Can trigger code coverage analysis & documentation build
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Continuous integration (CI)

• Has existed for some time and interest is growing
• ECP working to adapt CI for HPC machines
• Setup, maintenance, and monitoring required
• Prerequisites

o A reasonably automated build system
o An automated test system with significant test coverage & useful feedback
o Builds/tests must finish in reasonable about of time
o Ability to bundle subset of tests



CI Hello World

https://github.com/jrdoneal/CI_HelloWorld

https://travis-ci.org/jrdoneal/CI_HelloWorld

https://github.com/jrdoneal/CI_HelloWorld
https://travis-ci.org/jrdoneal/CI_HelloWorld
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GitHub Repository Page

https://github.com/jrdoneal/CI_HelloWorld

https://github.com/jrdoneal/CI_HelloWorld
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Travis CI Configuration File
.travis.yml
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The Script Phase

hello_world.sh
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Connecting GitHub & Travis CI
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Repository in Travis CI
https://travis-ci.org/jrdoneal/CI_HelloWorld

https://travis-ci.org/jrdoneal/CI_HelloWorld
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Commit History

.travis.yml
added
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Travis CI Build History
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Travis CI Build History
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Travis CI Build History

!
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2:15pm-2:55pm 06 Verification and Refactoring Anshu Dubey, ANL

2:55pm-3:00pm 07 Code Coverage and Continuous Integration Jared O’Neal, ANL
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