
exascaleproject.org

Code Coverage and 
Continuous Integration

Better Scientific Software Tutorial

Jared O’Neal
Mathematics and Computer Science Division
Argonne National Laboratory

Supercomputing 2018
Dallas, TX
November 12, 2018

See slide 2 for 
license details



2

License, citation, and acknowledgments

License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

• Requested citation: Alicia Klinvex and Jared O’Neal, Code Coverage and Continuous Integration, Better 
Scientific Software tutorial, in SC ‘18: International Conference for High Performance Computing, 
Networking, Storage and Analysis, Dallas, Texas, 2018. DOI: 10.6084/m9.figshare.7304180

Acknowledgements 
• Alicia Klinvex developed earlier versions of this module

• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific 
Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort 
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. 

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago
Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 

https://creativecommons.org/licenses/by-sa/4.0
https://dx.doi.org/10.6084/m9.figshare.7304180


Code Coverage



4

How do we determine what other tests are needed?

Code coverage tools
• Expose parts of the code that aren’t being tested
• gcov

o standard utility with the GNU compiler collection suite
o Compile/link with –coverage & turn off optimization
o counts the number of times each statement is executed

• lcov
o a graphical front-end for gcov
o available at http://ltp.sourceforge.net/coverage/lcov.php

• Hosted servers (e.g. coveralls, codecov)
o graphical visualization of results
o push results to server through continuous integration server

http://ltp.sourceforge.net/coverage/lcov.php


5

Code coverage output

https://github.com/jrdoneal/infrastructure

Overall Analysis

Detailed Analysis

https://github.com/jrdoneal/infrastructure


6

Code coverage is popular

• gcov also works for C and Fortran
• Other tools exist for other languages
o JCov for Java
o Coverage.py for python
o Devel::Cover for perl
o profile for MATLAB
o etc.



Continuous Integration



8

The Short & Sweet of Continuous Integration

A master branch that always works

• DVCS workflow isolate master from integration environment
• Extend workflow to address difficulties of integrating

– Minimize likelihood of merge conflict
– Detect bugs immediately
– Make debugging process quick and easy



9

Work Decomposition

Commit and integrate often
• Limit divergence between feature and master branches
• Decreased probability of conflict
• Conflict resolution is simpler and less risky

vs.

dev1

dev2

master

dev1

dev2

master



10

Error detection

Test at integration to identify failures immediately

• Control quality of code

• Isolate failure to few commits

• No context switching for programmer

We want a system that 

• triggers automated builds/tests on target environments when code changes and 

• ideally tests on proposed merge product without finalizing merge.



11

Test Servers

Servers that 
• automate the execution of a test suite or a subset of a test suite,
• allow for running tests on different environments,
• host an interface for viewing results, and
• allows for configuring when the tests are run.

Examples
• CTest/CDash
• Jenkins
• Travis CI and GitLab CI



12

Cloud-based Test Servers
• Linked to VCS hosts

o GitHub & Travis CI

o GitLab CI

o BitBucket Pipelines

• Automated builds/tests triggered via pushes and pull requests

• Builds/tests can be run on cloud systems

• Test results are reported in repository’s web interface

• Can trigger code coverage analysis & documentation build



13

Continuous integration (CI)

• Has existed for some time and interest is growing
• ECP working to adapt CI for HPC machines
• Setup, maintenance, and monitoring required
• Prerequisites

o A reasonably automated build system
o An automated test system with significant test coverage & useful feedback
o Builds/tests must finish in reasonable about of time
o Ability to bundle subset of tests



CI Hello World

https://github.com/jrdoneal/CI_HelloWorld

https://travis-ci.org/jrdoneal/CI_HelloWorld

https://github.com/jrdoneal/CI_HelloWorld
https://travis-ci.org/jrdoneal/CI_HelloWorld


15

GitHub Repository Page

https://github.com/jrdoneal/CI_HelloWorld

https://github.com/jrdoneal/CI_HelloWorld


16

Travis CI Configuration File
.travis.yml



17

The Script Phase

hello_world.sh



18

Connecting GitHub & Travis CI



19

Repository in Travis CI
https://travis-ci.org/jrdoneal/CI_HelloWorld

https://travis-ci.org/jrdoneal/CI_HelloWorld


20

Commit History

.travis.yml
added



21

Travis CI Build History



22

Travis CI Build History



23

Travis CI Build History

!



24

Agenda
Time Module Topic Speaker

8:30am-8:40am 00 Introduction and Setup David E. Bernholdt, ORNL

8:40am-9:00am 01 Overview of Best Practices in HPC Software Development David E. Bernholdt, ORNL

9:00am-10:00am 02 Git Workflows Jared O’Neal, ANL

10:00am-10:30am Break

10:30am-11:40am 03 Better (Small) Scientific Software Teams Michael A. Heroux, SNL

11:40am-12:00pm 04 Improving Reproducibility through Better Software 
Practices

Michael A. Heroux, SNL

12:00pm-1:30pm Lunch (C1/2/3/4 Ballroom, 2nd floor)

1:30pm-2:15pm 05 An Introduction to Software Licensing David E. Bernholdt, ORNL

2:15pm-2:55pm 06 Verification and Refactoring Anshu Dubey, ANL

2:55pm-3:00pm 07 Code Coverage and Continuous Integration Jared O’Neal, ANL

3:00-3:30pm Break

3:30pm-3:40pm 07 Code Coverage and Continuous Integration (continued) Jared O’Neal, ANL

3:40pm-5:00pm 08 Hands-on Activities Jared O’Neal, ANL, and team

Tutorial evaluation form: http://bit.ly/sc18-eval

http://bit.ly/sc18-eval

