
exascaleproject.org

Git Workflows

Better Scientific Software Tutorial

Jared O’Neal
Mathematics and Computer Science Division
Argonne National Laboratory

Supercomputing 2018
Dallas, TX
November 12, 2018

See slide 2 for
license details

2

License, citation, and acknowledgments

License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

• Requested citation: Jared O’Neal, Git Workflows, Better Scientific Software tutorial, in SC ‘18: International
Conference for High Performance Computing, Networking, Storage and Analysis, Dallas, Texas, 2018. DOI:
10.6084/m9.figshare.7304171.

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific

Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago
Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

• Anshu Dubey, Klaus Weide, Saurabh Chawdhary, and Carlo Graziani

• Iulian Grindeanu

https://creativecommons.org/licenses/by-sa/4.0
https://dx.doi.org/10.6084/m9.figshare.7304171

3

Goals

Development teams would like to use version control to
collaborate productively and ensure correct code
• Understand challenges related to parallel code development via distributed version

control

• Understand extra dimensions of distributed version control & how to use them
– Local vs. remote repositories
– Branches
– Issues, Pull Requests, & Code Reviews (next talk)

• Exposure to workflows of different complexity

• What to think about when evaluating different workflows

• Motivate continuous integration

4

Distributed Version Control System (DVCS)

Two developers collaborating via Git
• Local copies of master branch synched to origin
• Each develops on local copy of master branch
• All copies of master immediately diverge
• How to integrate work on origin?

master

Alice’s Local Repository

master
Bob’s Local Repository

A B C

master
Main Remote Repository (origin)

D F G IA B C

E H JA B C

X
= commit
= commit ID

= branch

5

DVCS Race Condition

Integration of independent work occurs when
local repos interact with remote repo
• Alice pushes her local commits to remote

repo first
• No integration conflicts
• No risk
• Alice’s local repo identical to remote repo

master

Alice’s Local Repository

master
Bob’s Local Repository

master
Main Remote Repository (origin)

E H JA B C

X
= commit
= commit ID

= branch

D F G IA B C

D F G IA B C

6

Integration Conflicts Happen

Bob’s push to remote repo is rejected
• Alice updated code in commit D
• Bob updated same code in commit E
• Alice and Bob need to study conflict and decide

on resolution at pull (time-consuming)
• Possibility of introducing bug on master branch

(risky)

master

Alice’s Local Repository

master
Bob’s Local Repository

E H JA B C

D F G IA B C

loops.cpp (commit C) loops.cpp (commit D) loops.cpp (commit E)

7

Our First Workflow

This process of collaborating via Git is called the Centralized Workflow
• See Atlassian/BitBucket for more information
• “Simple” to learn and “easy” to use
• Leverages local vs. remote repo dimension

– Integration in local repo when local repos interact with remote repo

• What if you have many team members?
• What if developers only push once a month?
• What if team members works on different parts of the code?
• Working directly on master

https://www.atlassian.com/git/tutorials/comparing-workflows

8

Branches
Branches are independent lines of development
• Use branches to protect master branch
• Feature branches

– Organize a new feature as a sequence of related
commits in a branch

• Branches are usually combined or merged
• Develop on a branch, test on the branch, and

merge into master
• Integration occurs at merge commits

FeatureA
master

Fast-Forward

master

No Merge

A B C
D E

A B C D E

FeatureA

master
Divergence Merge Commit

A C

B D
FeatureA

master
A C

B D

E

9

Control Branch Complexity

Workflow policy is needed
– Descriptive names or linked to issue tracking system
– Where do branches start and end?
– Can multiple people work on one branch?

stuff
master

b

a

10

Feature Branches

Extend Centralized Workflow

• Remote repo has commits A & B

• Bob pulls remote to synchronize local repo to remote

• Bob creates local feature branch based on commit B

• Commit C pushed to remote repo

• Alice pulls remote to synchronize local repo to remote

• Alice creates local feature branch based on commit C

• Both develop independently on local feature branches

master

Alice’s Local Repository

master

Bob’s Local Repository

master
Main Remote Repository (origin)

E H J

D F G I
A B C

A B C

Issue151

A B

add_solver_A

11

Feature Branch Divergence

Alice integrates first without issue
• Alice does fast-forward merge to local master
• Alice deletes local feature branch
• Alice pushes master to remote
• Meanwhile, Bob pulls master from remote and

finds Alice’s changes
• Merge conflict between commits D and E

master

Alice’s Local Repository

master

Bob’s Local Repository

master
Main Remote Repository (origin)

E H J

D F G IA B C

Issue151

D F G IA B C

D F G IA B C

12

Feature Race Condition

Integration occurs on Bob’s local repo

• Bob laments not having fast-forward merge

• Bob rebases local feature branch to latest commit on master
– E based off of commit B
– E’ based off of Alice’s commit I
– E’ is E integrated with commits C, D, F, G, I

• Merge conflict resolved by Bob & Alice on Bob’s local branch
when converting commit E into E’

• Can test on feature branch and merge easily and cleanly

master

Alice’s Local Repository

master

Bob’s Local Repository

master
Main Remote Repository (origin)

E’ H’ J’

D F G IA B C

Issue151

D F G IA C

D F G IA B C

B

E H J

13

Feature Branches Summary
• Multiple, parallel lines of development possible on single local repo

• Easily maintain local master up-to-date and useable

• Integration with rebase on local repo is safe and can be aborted

• Testing before updating local and remote master branches

• Rebase is advanced Git command
– Rebase can cause complications and should be used carefully.

• Hide actual workflow
– History in repo is not represent actual development history
– Less communication
– Fewer back-ups using remote repo

• Does it scale with team size? What if team integrates frequently?

• Commits on master can be broken

• See Atlassian/BitBucket for a richer Feature Branch Workflow

https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://www.atlassian.com/git/tutorials/comparing-workflows

14

More Branches
Branches with infinite lifetime
• Base off of master branch
• Exist in all copies of a repository
• Each provides a distinct environment

– Development vs. pre-production

For this example,
• All feature branches start and end

on master
• Merge into development before

merging into master
• No integration happening

Issue151

development

master

add_solver_A

15

Issue151

development

master

add_solver_A

Challenges

Multiple feature branches developed in parallel
• All commits in master are in development
• Merge conflicts first exposed on development
• Set workflow so that infinite branches don’t diverge

16

Current FLASH5 Workflow

Test-driven workflow
• Feature branches start and end with master
• All feature branches are merged into development for integration

& manual testing
• All feature branches are then merged into staged for full,

automated testing

dev2

development

master

staged

dev1

17

More Branch Rules
Is staged really necessary?
• Contains only changes intended for master
• No integration means cleaner branch
• Allows for extra stage of testing with more tests
• Extra buffer for protecting master branch

dev2

development

master

staged

dev1

Wild West/Integration

Clean-ish/Full Testing

Correct

18

Branch Rules

Why base feature branches off master?
• Start from correct, verified commit
• Clean and simple to learn/enforce
• Isolate master from integration environment

development

master

staged

bad_idea good_idea

Motivates more rules
• Development never merged into

another branch
• Staged never merged into

another branch

19

Merge Conflicts
How are merge conflicts resolved in FLASH5 Workflow?
• Merge conflict with master means merge conflict with staged and development
• We want to avoid conflict resolution when merging into master
• Directly on feature branch if resolution is there
• One idea is to merge master into feature branch

dev2

development

master

staged

dev1

20

Git Flow
• Full-featured workflow
• Increased complexity
• Designed for SW with official releases
• Feature branches based off of develop
• Git extensions to enforce policy
• How are develop and master

synchronized?
• Where do merge conflicts occur and how

are they resolved?

https://github.com/nvie/gitflow

21

GitHub Flow

http://scottchacon.com/2011/08/31/github-flow.html
– Published as viable alternative to Git Flow
– No structured release schedule
– Continuous deployment & continuous integration allows for simpler workflow

Main Ideas
1. All commits in master are deployable

2. Base feature branches off of master

3. Push local repository to remote constantly

4. Open Pull Requests early to start dialogue

5. Merge into master after Pull Request review

http://scottchacon.com/2011/08/31/github-flow.html

22

GitLab Flow

https://docs.gitlab.com/ee/workflow/gitlab_flow.html
– Published as viable alternative to Git Flow & GitHub Flow
– Semi-structured release schedule
– Workflow that simplifies difficulties and common failures in synchronizing infinite

lifetime branches

Main Ideas
• Master branch is staging area

• Mature code in master flows downstream into pre-production & production infinite
lifetime branches

• Allow for release branches with downstream flow
– Fixes made upstream & merged into master.
– Fixes cherry picked into release branch

https://docs.gitlab.com/ee/workflow/gitlab_flow.html

23

Things to Think About When Choosing a Git Workflow

Want to establish a clear set of polices that
• results in correct code on a particular branch (usually

master),
• ensures that a team can develop in parallel and

communicate well,
• minimizes difficulties associated with parallel and distributed

work, and
• minimizes overhead associated with learning, following, and

enforcing policies.

24

Conclusions

Version control is an amazing tool
• Parallel and distributed working requires coordination and rules to be productive

and produce correct code
• Appropriately chosen workflows can ensure quality results and help

debugging/verification while helping productivity
Adopt what is good for your team
• Consider team culture and project challenges
• Assess what is and isn’t feasible/acceptable
• Start with simplest and add complexity where and when necessary

25

Agenda
Time Module Topic Speaker

8:30am-8:40am 00 Introduction and Setup David E. Bernholdt, ORNL

8:40am-9:00am 01 Overview of Best Practices in HPC Software Development David E. Bernholdt, ORNL

9:00am-10:00am 02 Git Workflows Jared O’Neal, ANL

10:00am-10:30am Break

10:30am-11:40am 03 Better (Small) Scientific Software Teams Michael A. Heroux, SNL

11:40am-12:00pm 04 Improving Reproducibility through Better Software
Practices

Michael A. Heroux, SNL

12:00pm-1:30pm Lunch (C1/2/3/4 Ballroom, 2nd floor)

1:30pm-2:15pm 05 An Introduction to Software Licensing David E. Bernholdt, ORNL

2:15pm-2:55pm 06 Verification and Refactoring Anshu Dubey, ANL

2:55pm-3:00pm 07 Code Coverage and Continuous Integration Jared O’Neal, ANL

3:00-3:30pm Break

3:30pm-3:40pm 07 Code Coverage and Continuous Integration (continued) Jared O’Neal, ANL

3:40pm-5:00pm 08 Hands-on Activities Jared O’Neal, ANL, and team

Tutorial evaluation form: http://bit.ly/sc18-eval

http://bit.ly/sc18-eval

