Supplementary Information

Computational Studies of Intrinsically Disordered Proteins

Vy T. Duong,^{1,2} Zihao Chen,² Mahendra T. Thapa,³ Ray Luo^{2,4*}

¹Department of Chemistry, University of California, Irvine, California 92697-3900, USA
²Center of Complex Biological Systems, University of California, Irvine, California 92697-3900, USA
³Department of Physics, California State University, Chico, Chico, California 95929, USA
⁴Departments of Molecular Biology and Biochemistry, Chemical Engineering and Materials Science, and Biomedical Engineering, University of California, Irvine, California, Irvine, California 92697-3900, USA

Table of Contents:

Cumulative Averaging of Observables:	.S1
Figure S1. The $\Delta \delta C^{\alpha}$ -derived cumulative averages per EGAAXAASS peptide and force field type	
were calculated and averaged between the 10 simulations.	S1
Figure S2. The ${}^{3}J_{HNH\alpha}$ -derived cumulative averages per EGAAXAASS peptide and force field type	
were calculated and averaged between the 10 simulations.	S2
Figure S3. The $\Delta \delta C^{\alpha}$ -derived cumulative averages per apo Rev peptide and force field type were	
calculated and averaged between the 10/50 simulations.	S3
Figure S4. The ${}^{3}J_{HNH\alpha}$ -derived cumulative averages per apo Rev peptide and force field type were	
calculated and averaged between the 10/50 simulations.	S4
Figure S5. The $\Delta\delta C^{\alpha}$ - and ${}^{3}J_{HNH\alpha}$ -derived cumulative averages per RRE-Rev complex and force field	ld
type were calculated and averaged between the 5 simulations	S5
Biphasic Exponential Fitting of $\Delta\Delta\delta C^{\alpha}$ Datasets:	. S6
Figure S6. Biphasic exponential fittings were generated using $\Delta\Delta\delta C^{\alpha}$ from cumulative average data	a in
Figure S1 for EGAAXAASS (X= D, E, H, K) peptides and force field types	S6
Figure S7. Biphasic exponential fittings were generated using $\Delta\Delta\delta C^{\alpha}$ from cumulative average data	a in
Figure S1 for EGAAXAASS (X= L, P, Q, W, Y) peptides and force field types	S7
Figure S8. To evaluate cumulative average convergence of apo Rev simulations from Figure S3, a	
scatter plot of $\Delta\Delta\delta C^{\alpha}$ values (blue dots) and corresponding biphasic exponential fit were generated to	for
each simulation (long, short) and force field (<i>ff</i> 14SB, <i>ff</i> 14IDPSFF) types	S8
Figure S9. Biphasic exponential fittings were generated using $\Delta\Delta\delta C^{\alpha}$ from cumulative average data	a in
Figure S5 for RRE-Rev complexes and force field types	
Biphasic Exponential Fitting of $\Delta^3 J_{HNH\alpha}$ Datasets:	S10
Figure S10. Biphasic exponential fittings were generated using $\Delta^3 J_{HNH\alpha}$ from cumulative average data	ata
in Figure S2 for EGAAXAASS (X= D, E, H, K) peptides and force field types	S10
Figure S11. Biphasic exponential fittings were generated using $\Delta^3 J_{HNH\alpha}$ from cumulative average data	ata
in Figure S2 for EGAAXAASS (X= L, P, Q, W, Y) peptides and force field types	S11
Figure S12. To evaluate cumulative average convergence of apo Rev simulations from Figure S4, a	ι
scatter plot of $\Delta^3 J_{HNH\alpha}$ values (blue dots) and corresponding biphasic exponential fit were generated each simulation (long, short) and force field (<i>ff</i> 14SB, <i>ff</i> 14IDPSFF) types	for S12
Figure S13. Biphasic exponential fittings were generated using $\Delta^3 J_{HNH\alpha}$ from cumulative average data	ata
in Figure S5 for RRE-Rev complexes and force field types.	S13
Clustering (apo Rev):	S14
Figure S14. Determination of appropriate cluster/mixture number using the Bayesian information	
criterion (BIC) for apo Rev simulations.	S14
Figure S15. Top 10 clusters of <i>ff</i> 14SB-parameterized simulations (200ns x 50) encompass 19.36%	of
all frames.	S15
Figure S16. Top 10 clusters of <i>ff</i> 14IDPSFF-parameterized simulations (200ns x 50) encompass	
19.32% of all frames.	S16

DSSP:
Figure S17. The average secondary structure propensity of each disordered short peptide
Figure S18. The average secondary structure propensity of each apo Rev residue was quantified from
long simulation (1µs x 10) datasetsS18
Figure S19. The average secondary structure propensity of each apo Rev residue was quantified from
short simulation (200ns x 50) datasets
Figure S20. Average helical propensity of Rev from bound RRE-Rev simulations using the DSSP ¹
programS20
RMSF
Figure S21. RMSF analyses of backbone Cα atoms Rev-related simulations
References:

Cumulative Averaging of Observables:

Figure S1. The $\Delta \delta C^{\alpha}$ -derived cumulative averages per EGAAXAASS peptide and force field type were calculated and averaged between the 10 simulations. The first/third column is populated with short peptides simulated using the *ff*14SB and the second/fourth column is populated by the corresponding peptide simulated using the *ff*14IDPSFF. Each row represents an EGAAXAASS (X = D, E, H, K, L, P, Q, W, Y) peptide.

Figure S2. The ${}^{3}J_{HNH\alpha}$ -derived cumulative averages per EGAAXAASS peptide and force field type were calculated and averaged between the 10 simulations. The first/third column is populated with short peptides simulated using the *ff*14SB and the second/fourth column is populated by the corresponding peptide simulated using the *ff*14IDPSFF. Each row represents an EGAAXAASS (X = D, E, H, K, L, P, Q, W, Y) peptide.

Figure S3. The $\Delta \delta C^{\alpha}$ -derived cumulative averages per apo Rev peptide and force field type were calculated and averaged between the 10/50 simulations. Two simulations types were generated: fifty 200ns simulations using (A) *ff*14SB (B) and *ff*14IDPSFF, (C) and ten 1 µs simulations using *ff*14SB (D) and *ff*14IDPSFF. Residues are colored according to the legend with an asterisk (*) indicating non-native residues.

Figure S4. The ${}^{3}J_{HNH\alpha}$ -derived cumulative averages per apo Rev peptide and force field type were calculated and averaged between the 10/50 simulations. Two simulations types were generated: fifty 200ns simulations using (A) *ff*14SB (B) and *ff*14IDPSFF, (C) and ten 1 µs simulations using *ff*14SB (D) and *ff*14IDPSFF. Residues are colored according to the legend with an asterisk (*) indicating non-native residues.

Figure S5. The $\Delta \delta C^{\alpha}$ - and ${}^{3}J_{HNH\alpha}$ -derived cumulative averages per RRE-Rev complex and force field type were calculated and averaged between the 5 simulations. Secondary chemical shifts occupy the first row from (A) *ff*14SB-generated simulations and (B) *ff*14IDPSFF-generated simulations. ${}^{3}J_{HNH\alpha}$ -coupling constants occupy the second row from (C) *ff*14SB-generated simulations and (D) *ff*14IDPSFF-generated simulations. Residues are colored according to the legend with an asterisk (*) indicating non-native residues.

Biphasic Exponential Fitting of $\Delta\Delta\delta C^{\alpha}$ Datasets:

Figure S6. Biphasic exponential fittings were generated using $\Delta\Delta\delta C^{\alpha}$ from cumulative average data in Figure S1 for EGAAXAASS (X= D, E, H, K) peptides and force field types. Each average cumulative $\Delta\Delta\delta C^{\alpha}$ (blue dots) 100-ns increment was plotted per residue. Datasets were fitted to the following exponential decay function: $\Delta\Delta\delta C^{\alpha} = A_1 e^{-\frac{x}{\tau_1}} + A_2 e^{-\frac{x}{\tau_2}} + c$ (red line). Each column represents a peptide and force field, and each row represents a single residue. Only residues 2G-8S are fitted.

Figure S7. Biphasic exponential fittings were generated using $\Delta\Delta\delta C^{\alpha}$ from cumulative average data in Figure S1 for EGAAXAASS (X= L, P, Q, W, Y) peptides and force field types. Each average cumulative $\Delta\Delta\delta C^{\alpha}$ (blue dots) 100-ns increment was plotted per residue. Datasets were fitted to the following exponential decay function: $\Delta\Delta\delta C^{\alpha} = A_1 e^{-\frac{x}{\tau_1}} + A_2 e^{-\frac{x}{\tau_2}} + c$ (red line). Each column represents a peptide and force field, and each row represents a single residue. Only residues 2G-8S are fitted.

Figure S8. To evaluate cumulative average convergence of apo Rev simulations from Figure S3, a scatter plot of $\Delta\Delta\delta C^{\alpha}$ values (blue dots) and corresponding biphasic exponential fit were generated for each simulation (long, short) and force field (*ff*14SB, *ff*14IDPSFF) types. Datasets were fitted to the following exponential decay function: $\Delta\Delta\delta C^{\alpha} = A_1 e^{-\frac{x}{\tau_1}} + A_2 e^{-\frac{x}{\tau_2}} + c$ (red line). The above subplot columns are titled according to simulation and force field type and rows labeled according to residue, with non-native residues marked with an asterisk (*) on the y-axis.

Figure S9. Biphasic exponential fittings were generated using $\Delta\Delta\delta C^{\alpha}$ from cumulative average data in Figure S5 for RRE-Rev complexes and force field types. We applied the same fitting to the following exponential decay function: $\Delta\Delta\delta C^{\alpha} = A_1 e^{-\frac{x}{\tau_1}} + A_2 e^{-\frac{x}{\tau_2}} + c$ (red line). Each average cumulative $\Delta\Delta\delta C^{\alpha}$ (blue dots) 1-ns increment was plotted per residue. Each column represents a peptide and force field, each row is labeled to its corresponding residue, and non-native residues marked with an asterisk (*).

Biphasic Exponential Fitting of $\Delta^3 J_{HNH\alpha}$ Datasets:

Figure S10. Biphasic exponential fittings were generated using $\Delta^3 J_{HNH\alpha}$ from cumulative average data in Figure S2 for EGAAXAASS (X= D, E, H, K) peptides and force field types. Each average cumulative $\Delta^3 J_{HNH\alpha}$ (blue dots) 100-ns increment was plotted per residue. Datasets were fitted to the following exponential decay function: $\Delta^3 J_{HNH\alpha} = A_1 e^{-\frac{x}{\tau_1}} + A_2 e^{-\frac{x}{\tau_2}} + c$ (red line). Each column represents a peptide and force field and each row represents individual residues. Only residues 3A-9S are fitted.

Figure S11. Biphasic exponential fittings were generated using $\Delta^3 J_{HNH\alpha}$ from cumulative average data in Figure S2 for EGAAXAASS (X= L, P, Q, W, Y) peptides and force field types. Each average cumulative $\Delta^3 J_{HNH\alpha}$ (blue dots) 100-ns increment was plotted per residue. Datasets were fitted to the following exponential decay function: $\Delta^3 J_{HNH\alpha} = A_1 e^{-\frac{x}{\tau_1}} + A_2 e^{-\frac{x}{\tau_2}} + c$ (red line). Each column represents a peptide and force field, and each row represents individual residues.

Only residues 3A-9S are fitted.

Figure S12. To evaluate cumulative average convergence of apo Rev simulations from Figure S4, a scatter plot of $\Delta^3 J_{HNH\alpha}$ values (blue dots) and corresponding biphasic exponential fit were generated for each simulation (long, short) and force field (*ff*14SB, *ff*14IDPSFF) types. Datasets

were fitted to the following exponential decay function $\Delta^3 J_{HNH\alpha} = A_1 e^{-\frac{x}{\tau_1}} + A_2 e^{-\frac{x}{\tau_2}} + c$. The above subplots are titled according to simulation and force field type. Each column represents a peptide and force field, each row is labeled to its corresponding residue, and non-native residues marked with an asterisk (*).

Figure S13. Biphasic exponential fittings were generated using $\Delta^3 J_{HNH\alpha}$ from cumulative average data in Figure S5 for RRE-Rev complexes and force field types. We applied the same fitting to the following exponential decay function: $\Delta^3 J_{HNH\alpha} = A_1 e^{-\frac{x}{\tau_1}} + A_2 e^{-\frac{x}{\tau_2}} + c$ (red line). Each average cumulative $\Delta^3 J_{HNH\alpha}$ (blue dots) 1-ns increment was plotted per residue. Each column represents a peptide and force field, each row is labeled to its corresponding residue, and non-native residues marked with an asterisk (*).

Clustering (apo Rev):

Figure S14. Determination of appropriate cluster/mixture number using the Bayesian information criterion (BIC) for apo Rev simulations. We calculated the BIC score between 1 to 300 mixtures, and the mixture/cluster number with the lowest BIC was selected for GMM generation. Chosen cluster numbers are indicated in the legend according to secondary structure categories from DSSP pre-clustering. (A) BIC plot of ten 1µs simulations using the *ff*14SB force field. (B) BIC of ten 1µs simulations using the *ff*14IDPSFF force field. (C) BIC plot of fifty 200ns simulations using the *ff*14IDPSFF force field. (D) BIC plot of fifty 200ns simulations using the *ff*14IDPSFF force field.

S15

DSSP:

Figure S17. The average secondary structure propensity of each disordered short peptide. Colors correspond to force fields: purple -ff14SB, green -ff14IDPSFF. All values were calculated using the DSSP¹ program and MDtraj.² Rows indicate peptide (X = D, E, H, K, L, P, Q, W, Y) and columns indicate one of the three generalized secondary structures (helical, coiled, beta).

Figure S18. The average secondary structure propensity of each apo Rev residue was quantified from long simulation $(1 \mu s \times 10)$ datasets. Colors correspond to force fields: purple -ff14SB, green -ff14IDPSFF. All values were calculated using the DSSP¹ program and MDtraj.² (A) The probability of a residue exhibiting helical content. (B) Probability of coil content per residue. (C) Displays the beta-sheet helical propensity per residue. Non-native residues are indicated with an asterisk (*).

Figure S19. The average secondary structure propensity of each apo Rev residue was quantified from short simulation (200ns x 50) datasets. Colors correspond to force fields: purple -ff14SB, green -ff14IDPSFF. All values were calculated using the DSSP¹ program and MDtraj.² (A) The probability of a residue exhibiting helical content. (B) Probability of coil content per residue. (C) Displays the beta-sheet helical propensity per residue. Non-native residues are indicated with an asterisk (*).

Figure S20. Average helical propensity of Rev from bound RRE-Rev simulations using the DSSP¹ program. Colors indicate force field: purple -ff14SB, green -ff14IDPSFF.

RMSF

Figure S21. RMSF analyses of backbone C α atoms Rev-related simulations. (A) Average RMSF of backbone atoms in apo and bound Rev *ff*14SB-parameterized simulations. (B) Average RMSF of backbone atoms in apo and bound Rev *ff*14IDPSFF-parameterized simulations. Non-native residues contain an asterisk (*).

References:

- 1. Kabsch, W.; Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. *Biopolymers* **1983**, *22* (12), 2577-637.
- McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.; Swails, J. M.; Hernandez, C. X.; Schwantes, C. R.; Wang, L. P.; Lane, T. J.; Pande, V. S., MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. *Biophys J* 2015, *109* (8), 1528-32.