Supporting Information

Regiodivergent Ring-Opening Cross-Coupling of Vinyl Aziridines with Phosphorus Nucleophiles: Access to Phosphorus-Containing Amino Acid Derivatives

Dahye Kang, Taehwan Kim, Hyunpyo Lee and Sungwoo Hong*

Department of Chemistry, Korea Advance Institute of Science and Technology (KAIST), and Center for Catalytic Hydrocarbon Functionalization Institute for Basic Science (IBS), Daejeon, 34141, Korea

I. General Methods and Materials	S2
II. Synthesis of Vinyl Aziridines	S3
III. Experimental Procedure	S6
IV. Control Experiments	S8
V. Computational Details	S10
VI. Compound Characterizations	S12
VII. Reference	S31

Appendix I	
Spectral Copies of 1H- and 13C-NMR Data Obtained in this Study	S32
Appendix II	
X-ray Crystallographic Data	S103

I. General Methods and Materials.

Unless stated otherwise, reactions were performed in flame-dried glassware. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F²⁵⁴ plates and visualization on TLC was achieved by UV light (254 and 365 nm). Flash column chromatography was undertaken on silica gel (400-630 mesh). ¹H NMR was recorded on 400 or 600 MHz and chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, td = triplet of doublet, ddd = doublet of doublet. Coupling constants, *J*, were reported in hertz unit (Hz). ¹³C NMR was recorded on 100 or 150 MHz and was fully decoupled by broad band proton decoupling. Signals of ¹³C spectra of carbon atom adjacent to phosphorus atom of organophosphorus compounds appeared as a doublet with varied coupling constants between C and P (*J*_{CP}). Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of CDCl₃. ³¹P NMR was recorded on 162 or 243 MHz and was fully decoupled by broad band proton decoupling. High-resolution mass spectra were obtained by using EI or FAB method from KAIST Basic Science Institute. Commercial grade reagents and solvents were used without further purification except as indicated below.

II. Synthesis of Vinyl Aziridines

Vinyl aziridines were synthesized according to the literatures: $1a^{[S1]}$, $1b^{[S2]}$, $1c^{[S3]}$, $1d^{[S4]}$, $1e^{[S5]}$, $1f^{[S6]}$, $1g^{[S7]}$, and $1h-1m^{[S8]}$.

2-benzyl-1-tosyl-3-vinylaziridine (**1f**). White solid. mp 69-72 °C. ¹H NMR (300 MHz, Methanol-*d*₄) δ 7.67 – 7.56 (m, 2H), 7.31 – 7.22 (m, 2H), 7.17 – 7.07 (m, 3H), 7.10 – 6.99 (m, 2H), 5.83 (ddd, *J* = 17.2, 10.4, 6.9 Hz, 1H), 5.52 (ddd, *J* = 17.1, 1.7, 0.9 Hz, 1H), 5.38 (ddd, *J* = 10.4, 1.6, 0.8 Hz, 1H), 3.52 – 3.40 (m, 1H), 3.12 – 3.00 (m, 1H), 2.79 (dd, *J* = 14.5, 5.3 Hz, 1H), 2.62 (dd, *J* = 14.5, 8.1 Hz, 1H), 2.42 (s, 3H). HRMS (ESI+) m/z calcd. for [C₁₈H₁₉NO₂S+Na]⁺: 336.1029, found: 336.1028.

Chiral HPLC analysis of 1i-1k.

HPLC conditions: OJ-H column, 5% iPrOH/Hx, 0.3 ml/min, *R_t*: 15.133 min (1i), 17.016 min (1h).

Chiral HPLC-Chromatogram of the racemic mixture(1h and 1i)

Chiral HPLC-Chromatogram of 1h (ee 92%)

Chiral HPLC-Chromatogram of 1i (ee 91%)

HPLC conditions: OJ-H column, 5% iPrOH/Hx, 0.5 ml/min, R_i : 11.945 min (enantiomer), 17.977 min (1j). *Chiral HPLC-Chromatogram of the racemic mixture of 1j*

Chiral HPLC-Chromatogram of 1j (ee >99%)

methyl (2R,3R)-1-(tert-butylsulfonyl)-3-vinylaziridine-2-carboxylate (1k). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 5.75 (ddd, J = 17.3, 10.3, 8.0 Hz, 1H), 5.59 (dd, J = 17.4, 1.3 Hz, 1H), 5.43 (dd, J = 10.3, 1.3 Hz, 1H), 3.78 (s, 3H), 3.53 (d, J = 7.3 Hz, 1H), 3.44 (t, J = 7.7 Hz, 1H), 1.50 (s, 9H). HRMS (ESI+) m/z calcd. for [C₁₀H₁₇NO₄S+Na]⁺: 270.0770, found: 270.0772.

methyl (2S,3R)-1-(tert-butylsulfonyl)-3-vinylaziridine-2-carboxylate (11). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 5.92 (dt, J = 17.0, 9.9 Hz, 1H), 5.61 (dt, J = 16.9, 0.8 Hz, 1H), 5.45 (dt, J = 10.4, 0.6 Hz, 1H), 3.78 (s, 3H), 3.49 (dd, J = 9.5, 3.7 Hz, 1H), 3.42 (d, J = 3.7 Hz, 1H), 1.44 (s, 9H). HRMS (ESI+) m/z calcd. for [C₁₀H₁₇NO₄S+Na]⁺: 270.0770, found: 270.0769.

HPLC conditions: OJ-H column, 5% iPrOH/Hx, 0.6 ml/min, R_i: 17.320 min (enantiomer), 25.158 min (11).

Chiral HPLC-Chromatogram of the racemic mixture

ethyl (2R,3S)-1-tosyl-3-vinylaziridine-2-carboxylate (1m). Transparent oil. ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, *J* = 7.9 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.20 - 6.07 (m, 1H), 5.63 (d, *J* = 17.0 Hz, 1H), 5.51 (d, J = 17.0 Hz,

J = 10.2 Hz, 1H), 4.22 - 4.09 (m, 2H), 3.59 - 3.51 (m, 2H), 2.44 (s, 3H), 1.30 - 1.17 (m, 3H). HRMS (ESI+) m/z calcd. for $[C_{14}H_{17}NO_4S+Na]^+$: 318.0770, found: 318.0772.

III. Experimental Procedure

General Procedure for Phosphonation of Vinyl Aziridine (General Procedure A)

An oven-dried tube was charged with vinyl aziridine 1 (0.1 mmol), phosphorus reagent 2 (2.0 equiv) and $Cu(OAc)_2$ (20 mol %) dissolving in toluene (0.5 mL). The reaction mixture was stirred at room temperature. The reaction mixture was monitored by TLC using mixture of ethyl acetate and *n*-hexanes as the mobile phase. After the reaction completion, the resulting mixture was diluted with CH_2Cl_2 , washed with aqueous NH_4Cl , and dried over MgSO₄. Upon filtration, the organic layer was concentrated and purified by flash chromatography on silica gel (ethyl acetate/*n*-hexanes) to give the desired product.

General Procedure for Phosphonation of Vinyl Aziridine using DBU (General Procedure B)

An oven-dried tube was charged with vinyl aziridine **1** (0.1 mmol), phosphorus reagent **2** (3.0 equiv), DBU (1.5 equiv) and $Cu(OAc)_2$ (20 mol %) dissolving in toluene (0.5 mL). The reaction mixture was stirred at room temperature. The reaction mixture was monitored by TLC using mixture of ethyl acetate and *n*-hexanes as the mobile phase. After the reaction completion, the resulting mixture was diluted with CH_2Cl_2 , washed with aqueous NH_4Cl , and dried over $MgSO_4$. Upon filtration, the organic layer was concentrated and purified by flash chromatography on silica gel (ethyl acetate/*n*-hexanes or acetone/*n*-hexanes) to give the desired product.

General Procedure for Phosphonation for amino acid derivatives (General Procedure C)

An oven-dried tube was charged with vinyl aziridine **1** (0.1 mmol), phosphorus reagent **2** (3.0 equiv) and AgNO₃ (20 mol %) dissolving in MeCN (1.0 mL). The reaction mixture was stirred at room temperature for 4 h. The reaction mixture was monitored by TLC using mixture of ethyl acetate and *n*-hexanes as the mobile phase. After the reaction completion, the resulting mixture was diluted with CH_2Cl_2 , washed with aqueous NH_4Cl , and dried over MgSO₄. Upon filtration, the organic layer was concentrated and purified by flash chromatography on silica gel (ethyl acetate/*n*-hexanes) to give the desired product.

General Procedure for Aerobic Phosphatation of Vinylaziridines (General Procedure D)

An oven-dried tube was charged with vinyl aziridine 1 (0.1 mmol), phosphorus reagent 2 (2.0 equiv) and AgNO₃ (20 mol %). Then, the tube was evacuated and backfilled with oxygen gas (repeated three times) and anhydrous toluene (1.0 mL) was added *via* syringe. The reaction mixture was stirred at 60 °C. The reaction mixture was monitored by TLC using mixture of ethyl acetate and hexanes as the mobile phase. After the reaction completion, the resulting mixture was diluted with CH_2Cl_2 , washed with aqueous

NaHCO₃, and dried over MgSO₄. Upon filtration, the organic layer was concentrated and purified by flash chromatography on silica gel (ethyl acetate/*n*-hexanes) to give the desired product.

General Procedure for Aerobic Phosphatation of amino acid derivatives (General Procedure E)

An oven-dried tube was charged with vinyl aziridine 1 (0.1 mmol), phosphorus reagent 2 (3.0 equiv) and AgNO₃ (30 mol %). Then, the tube was evacuated and backfilled with oxygen gas (repeated three times) and anhydrous toluene (1.0 mL) was added *via* syringe. The reaction mixture was stirred at 60 °C for 17 h. The reaction mixture was monitored by TLC using mixture of ethyl acetate and hexanes as the mobile phase. After the reaction completion, the resulting mixture was filtered through a Celite pad. The organic layer was concentrated under reduced pressure and purified by flash chromatography on silica gel (ethyl acetate/*n*-hexanes) to give the desired product.

1 mmol scale Procedures

An oven-dried tube was charged with vinyl aziridine **1a** (223.1 mg, 1.0 mmol), **2a** (405.1 mg, 2.0 mmol) and $Cu(OAc)_2(36.4 \text{ mg}, 0.2 \text{ mmol})$ dissolving in toluene (3 mL). The reaction mixture was stirred at room temperature. The reaction mixture was stirred for 2 h, and the resulting mixture was diluted with CH_2Cl_2 , washed with aqueous NH_4Cl , and dried over $MgSO_4$. Upon filtration, the organic layer was concentrated and purified by flash chromatography on silica gel (ethyl acetate/*n*-hexanes = 3:1) to give the desired product **3a** (Yield 68%, 289.3 mg).

An oven-dried tube was charged with vinyl aziridine **1a** (222.8 mg, 1.0 mmol), **2f** (275.7 mg, 2.0 mmol) and AgNO₃ (33.7 mg, 0.2 mmol). Then, the tube was evacuated and backfilled with oxygen gas (repeated three times) in anhydrous toluene (5.0 mL) was added *via* syringe. The reaction mixture was stirred at 60 °C. The reaction mixture was stirred for 10 h, and the resulting mixture was diluted with CH_2Cl_2 , washed

with aqueous NH_4Cl , and dried over MgSO₄. Upon filtration, the organic layer was concentrated and purified by flash chromatography (ethyl acetate/*n*-hexanes = 3:2) to give the desired product **4a** (Yield 75%, 284.4 mg).

IV. Control Experiment

Radical capturing using diethyl 2,2-diallylmalonate (5)

An oven-dried tube was charged with **5** (0.1 mmol), **2a** (2.0 equiv) and Cu(OAc)₂ (20 mol %) dissolving in toluene (0.5 mL). The reaction mixture was stirred at room temperature. After 1 h, the crude mixture was diluted with CH₂Cl₂ and washed with saturated ammonium chloride solution followed by brine. Then, the cyclized product **6** was isolated by pTLC (ethyl acetate/*n*-hexanes = 3:2). Yield 11% (4.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.70 (m, 4H), 7.57 – 7.40 (m, 6H), 4.20 – 4.02 (m, 4H), 2.48 – 2.29 (m, 4H), 2.28 – 2.15 (m, 2H), 2.16 – 2.05 (m, 1H), 1.97 (dd, *J* = 13.8, 5.1 Hz, 1H), 1.19 (dt, *J* = 13.6, 7.1 Hz, 6H), 0.88 (d, *J* = 7.1 Hz, 3H). The characterization data of **6** was full agreement with the reported literature.^[S9]

$$H^{-P_{\text{OEt}}} \xrightarrow{\text{OEt}} \frac{\text{AgNO}_3 20 \text{ mol}\%}{\text{toluene}} H^{-P_{\text{OEt}}} \xrightarrow{\text{OEt}} H^{-P_{\text{OEt}}} \xrightarrow{\text{OEt}} \frac{1}{37\%}$$

Formation of phosphate under Ag-catalyzed oxidation

An oven-dried tube was charged with 2g (0.2 mmol) and AgNO₃ (20 mol %) dissolving in toluene (1.0 mL). The reaction mixture was stirred at 60 °C. After 1 h, the crude mixture was filtered through a Celite pad, washed with CH₂Cl₂, and concentrated under reduced pressure. Then, the mixture was analyzed by NMR spectroscopy using tetrabromoethane as an internal standard. ¹H and ³¹P NMR spectrums were well matched with reported data.^[S10]

V. Computational Study

All geometry optimizations and energy calculations were performed at the B3LYP/6-31(d) level of theory using Gaussian 09.^[S11]

- NBO charge analysis

Provided charges are NBO charges.^[S12]

Cartesian coordinates (Å)

С	-2.92690400	-0.20706200	-0.59143500
С	-1.86392700	-0.41616800	-1.61932900
Н	-1.55011700	0.46200900	-2.17925500
N	-1.51359800	-0.48207400	-0.19288000
S	-0.65891400	0.84563600	0.48200000
0	-0.88820700	2.07338000	-0.30180700
0	-0.97079300	0.83435200	1.91512300
С	1.02725900	0.31233000	0.22734000
С	1.51552600	-0.78131700	0.94942100
С	1.83927300	1.00620500	-0.66866700
С	2.83367100	-1.18088600	0.75711000
Н	0.87415400	-1.30796800	1.64842200
С	3.16019500	0.59298000	-0.84325700
Н	1.44362100	1.85663200	-1.21331400
С	3.67757900	-0.50039900	-0.13682900
Н	3.21854100	-2.03200800	1.31338500
Н	3.79831900	1.13199100	-1.53874200
С	5.11470000	-0.92629000	-0.30657100
Н	5.55248900	-0.51207000	-1.22023600
Н	5.72707100	-0.58317700	0.53797700
Н	5.20784000	-2.01738800	-0.34744300

Н	-3.25865300	0.82442100	-0.48396900
Н	-1.77381100	-1.36836200	-2.13626200
С	-3.91529900	-1.24482900	-0.22554700
Н	-3.56341100	-2.27450000	-0.27199100
С	-5.17057600	-0.96970100	0.13268500
Н	-5.53939000	0.05220100	0.19394200
Н	-5.87583300	-1.75846800	0.37958800

ethyl (2R,3S)-1-tosyl-3-vinylaziridine-2-carboxylate

С	1.81235800	0.92951800	0.57266000
С	1.04389200	1.98251900	-0.19099200
Н	1.99622500	1.06182500	1.63504000
Н	1.30858800	2.00586300	-1.24854100
Ν	0.38240700	0.76515900	0.26460800
S	-0.19617200	-0.42698500	-0.84980400
0	-0.16951900	0.08913900	-2.22331000
0	0.47034000	-1.68459500	-0.48945100
С	-1.90601500	-0.51569300	-0.32652100
С	-2.24458300	-1.29791800	0.78099000
С	-2.87807100	0.18589400	-1.03851900
С	-3.57692200	-1.36750300	1.17518100
Н	-1.47799000	-1.84716200	1.31745800
С	-4.20809800	0.10398800	-0.62686600
Н	-2.59959400	0.77839200	-1.90329900
С	-4.57907500	-0.67034900	0.48017800
Н	-3.84620300	-1.97638000	2.03478400
Н	-4.96992800	0.64807200	-1.17927800
С	-6.02285600	-0.77950100	0.90391200
Н	-6.63534000	0.00536800	0.44939300
Н	-6.44845000	-1.74590900	0.60294300
Н	-6.12847800	-0.70755100	1.99235700
С	0.63398500	3.27665300	0.41798400
Н	1.24401500	4.12904100	0.12068200
С	-0.38490800	3.43538700	1.26268300
Н	-1.01228200	2.59930300	1.56043300
Н	-0.62533300	4.41095400	1.67625600
С	2.88381500	0.16631700	-0.16639100
0	2.99297800	0.10712800	-1.37252100

0	3.72554300	-0.40016300	0.70940600
С	4.81563100	-1.17251700	0.13677500
Н	4.38606500	-1.96584100	-0.48217600
Н	5.40307300	-0.51621600	-0.51290000
С	5.63710200	-1.72469900	1.28290300
Н	5.03280900	-2.37407200	1.92498800
Н	6.46862400	-2.31589600	0.88332400
Н	6.05382800	-0.91878300	1.89629600

VI. Compound Characterizations

(E)-N-(4-(diphenylphosphoryl)but-2-en-1-yl)-4-methylbenzenesulfonamide (3a). The product was synthesized according to General Procedure A for 1 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 3:1). Yield 71% (30.0 mg). White solid. mp 126-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.64 (m, 6H), 7.57 – 7.43 (m, 6H), 7.26 (d, *J* = 8.3 Hz, 2H), 5.71 – 5.37 (m, 2H), 5.04 (t, *J* = 6.1 Hz, 1H), 3.44 (td, *J* = 6.0, 2.2 Hz, 2H), 3.15 – 2.94 (m, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 137.0, 132.0 (d, *J*_{CP} = 2.9 Hz), 131.9 (d, *J*_{CP} = 99.6 Hz), 131.6 (d, *J*_{CP} = 11.5 Hz), 130.8 (d, *J*_{CP} = 9.3 Hz), 129.6, 128.7 (d, *J*_{CP} = 11.8 Hz), 127.0, 122.0 (d, *J*_{CP} = 9.3 Hz), 44.9 (d, *J*_{CP} = 2.0 Hz), 34.2 (d, *J*_{CP} = 68.3 Hz), 21.5. ³¹P NMR (243 MHz, CDCl₃) δ 31.01. HRMS (ESI+) m/z calcd. for [C₂₃H₂₄NNaO₃PS]⁺ : 448.1107, found: 448.1089. X-ray crystallographic data of **3a** is provided in Appendix II.

(E)-N-(4-(di-p-tolylphosphoryl)but-2-en-1-yl)-4-methylbenzenesulfonamide (3b). The product was synthesized according to General Procedure A for 1 h and purified by flash chromatography (ethyl

acetate/*n*-hexanes = 3:1). Yield 61% (27.5 mg). White solid. mp 58-62 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.54 (dd, *J* = 11.3, 7.9 Hz, 4H), 7.32 – 7.18 (m, 6H), 5.60 – 5.50 (m, 1H), 5.49 – 5.39 (m, 1H), 5.14 (t, *J* = 6.1 Hz, 1H), 3.49 – 3.29 (m, 2H), 2.99 (dd, *J* = 14.0, 7.4 Hz, 2H), 2.39 (s, 3H), 2.38 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 143.2, 142.4 (d, *J*_{CP} = 2.7 Hz), 137.0, 131.2 (d, *J*_{CP} = 11.5 Hz), 130.9 (d, *J*_{CP} = 9.7 Hz), 129.6, 129.3 (d, *J*_{CP} = 12.0 Hz), 128.9 (d, *J*_{CP} = 102.1 Hz), 127.0, 122.6 (d, *J*_{CP} = 9.0 Hz), 44.9 (d, *J*_{CP} = 1.9 Hz), 34.5 (d, *J*_{CP} = 68.7 Hz), 21.5, 21.4. ³¹P NMR (243 MHz, CDCl₃) δ 30.95. HRMS (ESI+) m/z calcd. for [C₂₅H₂₈NO₃PS+Na]⁺: 476.1420, found: 476.1426.

(E)-N-(4-(bis(3,5-dimethylphenyl)phosphoryl)but-2-en-1-yl)-4-methylbenzenesulfonamide (3c). The product was synthesized according to General Procedure A for 1 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 3:1). Yield 73% (33.8 mg). White solid. mp 108-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.34 – 7.21 (m, 6H), 7.14 (s, 2H), 5.63 – 5.38 (m, 2H), 4.96 (t, *J* = 6.0 Hz, 1H), 3.50 – 3.35 (m, 2H), 3.00 (dd, *J* = 13.7, 7.0 Hz, 2H), 2.40 (s, 3H), 2.33 (s, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 143.1, 138.4 (d, *J*_{CP} = 6.3 Hz), 137.0, 133.6, 132.4 (d, *J*_{CP} = 99.3 Hz), 131.1, 129.5, 128.4, 127.1, 122.8, 45.0, 34.3 (d, *J*_{CP} = 66.6 Hz), 21.4, 21.2. ³¹P NMR (162 MHz, CDCl₃) δ 31.15. HRMS (EI) calcd. for C₂₇H₃₂NO₃PS: [M] = 481.1841, found: 481.1843. X-ray crystallographic data of **3c** is provided in Appendix II.

(E)-N-(4-(bis(4-methoxyphenyl)phosphoryl)but-2-en-1-yl)-4-methylbenzenesulfonamide (3d). The product was synthesized according to General Procedure A for 3 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 4:1 with addition of 2% of MeOH). Yield 75% (36.2 mg). White solid. mp 47-50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.59 (dd, *J* = 11.0, 8.7 Hz, 4H), 7.28 (d, *J* = 8.1 Hz, 2H), 6.97 (dd, *J* = 8.8, 2.2 Hz, 4H), 5.62 – 5.49 (m, 1H), 5.49 – 5.37 (m, 1H), 4.72 (s, 1H), 3.85 (s, 6H), 3.44 (q, *J* = 5.8, 5.0 Hz, 2H), 2.98 (dd, *J* = 14.0, 7.3 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, *J*_{CP} = 2.8 Hz), 143.2, 136.9, 132.7 (d, *J*_{CP} = 10.7 Hz), 131.0 (d, *J*_{CP} = 11.6 Hz), 129.6, 127.1, 123.9, 122.9 (d, *J*_{CP} = 9.1 Hz), 114.2 (d, *J*_{CP}= 12.8 Hz), 55.3, 45.0 (d, *J*_{CP} = 2.2 Hz), 34.8 (d, *J*_{CP}= 69.1 Hz), 21.5. ³¹P NMR (162 MHz, CDCl₃) δ 30.83. HRMS (ESI+) m/z calcd. for [C₂₅H₂₈NO₅PS+Na]⁺: 508.1318, found: 508.1321.

(E)-N-(4-(di(naphthalen-2-yl)phosphoryl)but-2-en-1-yl)-4-methylbenzenesulfonamide (3e). The product was synthesized according to General Procedure A for 1.5 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 3:1). Yield 84% (44.2 mg). White solid. mp 59-61 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 13.3 Hz, 2H), 7.96 – 7.80 (m, 6H), 7.71 – 7.49 (m, 8H), 7.13 (d, *J* = 8.0 Hz, 2H), 5.74 – 5.60 (m, 1H), 5.60 – 5.42 (m, 2H), 3.51 – 3.37 (m, 2H), 3.18 (dd, *J* = 14.0, 7.2 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.0, 136.9, 134.6 (d, *J*_{CP} = 2.2 Hz), 133.0 (d, *J*_{CP} = 8.1 Hz), 132.4 (d, *J*_{CP} =

12.8 Hz), 131.6 (d, $J_{CP} = 11.6$ Hz), 129.5, 129.3 (d, $J_{CP} = 99.4$ Hz), 128.8, 128.5 (d, $J_{CP} = 11.6$ Hz), 128.2, 127.8, 127.0, 127.0, 125.6 (d, $J_{CP} = 10.3$ Hz), 122.2 (d, $J_{CP} = 8.7$ Hz), 44.9, 34.3 (d, $J_{CP} = 68.8$ Hz), 21.4. ³¹P NMR (243 MHz, CDCl₃) δ 30.22. HRMS (ESI+) m/z calcd. for [C₃₁H₂₈NO₃PS+Na]⁺: 548.1420, found: 548.1423.

diethyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3f). The product was synthesized according to **General Procedure B** for 1 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 3:1). Yield 70% (25.4 mg). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 7.8 Hz, 2H), 5.64 – 5.49 (m, 2H), 4.79 (t, *J* = 6.2 Hz, 1H), 4.06 (dqd, *J* = 8.0, 7.1, 1.2 Hz, 4H), 3.54 (q, *J* = 4.8 Hz, 2H), 2.57 – 2.44 (m, 2H), 2.42 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 136.9, 130.1 (d, *J*_{CP} = 14.5 Hz), 129.7, 127.1, 123.1 (d, *J*_{CP} = 11.0 Hz), 62.0 (d, *J*_{CP} = 6.7 Hz), 45.0 (d, *J*_{CP} = 2.3 Hz), 30.1 (d, *J*_{CP} = 140.0 Hz), 21.5, 16.4 (d, *J*_{CP} = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.23. HRMS (ESI+) m/z calcd. for [C₁₅H₂₄NO₅PS+Na]⁺ : 384.1005, found: 384.0996.

dimethyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3g). The product was synthesized according to **General Procedure B** for 1 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 3:1). Yield 64% (21.1 mg). White solid. mp 98-100 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 5.66 – 5.48 (m, 2H), 5.04 (t, *J* = 6.4 Hz, 1H), 3.72 (s, 3H), 3.70 (s, 3H), 3.56 – 3.50 (m, 2H), 2.57 – 2.48 (m, 2H), 2.42 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.4, 136.9, 130.5 (d, *J*_{CP} = 14.6 Hz), 129.7, 127.1, 122.4 (d, *J*_{CP} = 11.1 Hz), 52.7 (d, *J*_{CP} = 6.8 Hz), 44.9 (d, *J*_{CP} = 2.1 Hz), 29.0 (d, *J*_{CP} = 140.3 Hz), 21.5. ³¹P NMR (243 MHz, CDCl₃) δ 29.40. HRMS (EI) calcd.

for $C_{13}H_{20}NO_5PS$: [M] = 330.0800, found: 333.0803.

dibutyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3h). The product was synthesized according to General Procedure B for 1 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 1:1). Yield 55% (22.9 mg). Yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 5.62 – 5.47 (m, 2H), 4.98 – 4.84 (m, 1H), 4.04 – 3.93 (m, 4H), 3.61 – 3.45 (m, 2H), 2.60 – 2.44 (m, 2H), 2.42 (s, 3H), 1.70 – 1.52 (m, 4H), 1.44 – 1.29 (m, 4H), 0.91 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 136.9, 130.1 (d, *J*_{CP} = 14.4 Hz), 129.7, 127.1, 123.2 (d, *J*_{CP} = 11.0 Hz), 65.7 (d, *J*_{CP} = 6.8 Hz), 45.0 (d, *J*_{CP} = 2.2 Hz), 32.5 (d, *J*_{CP} = 6.1 Hz), 29.9 (d, *J*_{CP} = 140.1 Hz), 21.5, 18.7, 13.6. ³¹P NMR (162 MHz, CDCl₃) δ 27.16. HRMS (EI) calcd. for C₁₉H₃₂NO₅PS: [M] = 417.1739, found: 417.1741.

diisobutyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3i). The product was synthesized according to **General Procedure B** for 1 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 1:1). Yield 76% (31.5 mg). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.72 – 5.45 (m, 2H), 4.85 (t, *J* = 6.2 Hz, 1H), 3.75 (q, *J* = 6.3 Hz, 4H), 3.58 – 3.46 (m, 2H), 2.58 – 2.45 (m, 2H), 2.41 (s, 3H), 1.88 (dp, *J* = 13.3, 6.7 Hz, 2H), 0.91 (s, 6H), 0.90 (d, *J* = 6.7 Hz, 13H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 136.9, 130.1 (d, *J*_{CP} = 14.4 Hz), 129.7, 127.1, 123.1 (d, _{CP}*J* = 11.1 Hz), 71.9 (d, *J*_{CP} = 7.1 Hz), 45.0 (d, *J*_{CP} = 2.3 Hz), 29.8 (d, *J*_{CP} = 140.5 Hz), 29.2 (d, *J*_{CP} = 6.3 Hz), 21.5, 18.6. ³¹P NMR (162 MHz, CDCl₃) δ 26.90. HRMS (EI) calcd. for C₁₉H₃₂NO₅PS: [M] = 417.1739, found: 417.1741.

diisopropyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3j). The product was synthesized according to **General Procedure B** for 1 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:1). Yield 54% (18.0 mg). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.61 – 5.46 (m, 2H), 4.75 (t, *J* = 6.2 Hz, 1H), 3.62 – 3.42 (m, 2H), 2.53 – 2.36 (m, 5H), 1.28 (dd, *J* = 8.9, 6.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 136.9, 129.8, 129.7, 127.1, 123.7 (d, *J*_{CP} = 11.1 Hz), 70.4 (d, *J*_{CP} = 6.8 Hz), 45.0 (d, *J*_{CP} = 2.2 Hz), 31.3 (d, *J*_{CP} = 141.0 Hz), 24.0 (d, *J*_{CP} = 4.4 Hz), 21.5. ³¹P NMR (162 MHz, CDCl₃) δ 25.18. HRMS (EI) m/z calcd. for [C₁₇H₂₈NO₅PS]: [M] = 389.1426, found: 389.1427.

diphenyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3k). The product was synthesized according to **General Procedure A** for 1 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 1:1). Yield 62% (28.1 mg). Transparent oil. ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.40 – 7.24 (m, 6H), 7.19 – 7.11 (m, 6H), 5.77 – 5.53 (m, 2H), 4.80 – 4.61 (m, 1H), 3.53 (q, *J* = 5.6 Hz, 2H), 2.84 (dd, *J* = 21.9, 6.9 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 150.2 (d, *J*_{CP} = 8.9 Hz), 143.4, 136.9, 131.6 (d, *J*_{CP} = 15.3 Hz), 129.8, 129.7, 127.1, 125.3, 121.5 (d, *J*_{CP} = 11.5 Hz), 120.5 (d, *J*_{CP} = 4.5 Hz), 44.8 (d, *J*_{CP} = 2.2 Hz), 30.1 (d, *J*_{CP} = 140.0 Hz), 21.5. ³¹P NMR (243 MHz, CDCl₃) δ 19.91. HRMS (ESI+) m/z calcd. for [C₂₃H₂₄NO₅PS+Na]⁺: 480.1005, found: 480.1016.

dibenzyl (E)-(4-((4-methylphenyl)sulfonamide)but-2-en-1yl)phosphonate (3I). The product was synthesized according to General Procedure B for 6 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:1). Yield 64% (31.0 mg). White liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.28 (m, 10H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.52 – 5.35 (m, 2H), 5.03 (dd, *J* = 11.9, 9.2 Hz, 2H), 4.93 (dd, *J* = 11.8, 8.6 Hz, 2H), 4.72 (t, *J* = 6.2 Hz, 1H), 3.48 – 3.41 (m, 2H), 2.53 – 2.49 (m, 1H), 2.46 (d, *J* = 6.7 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 136.9, 136.1 (d, *J*_{CP} = 5.8 Hz), 130.5 (d, *J*_{CP} = 14.7 Hz), 129.7, 128.6, 128.5, 128.0, 127.1, 122.4 (d, *J*_{CP} = 11.2 Hz), 67.6 (d, *J*_{CP} = 6.7 Hz), 44.9, 30.4 (d, *J*_{CP} = 139.6 Hz), 21.5. ³¹P NMR (162 MHz, CDCl₃) δ 28.52. HRMS (ESI+) m/z calcd. For [C₂₅H₂₈NO₅PS]⁺: 485.1426, found: 485.1429.

(E)-N-(4-(5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)but-2-en-1-yl)-4-methylbenzene sulfonamide (3m). The product was synthesized according to General Procedure B for 6 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:1). Yield 77% (28.5 mg). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 5.67 – 5.51 (m, 2H), 5.27 – 5.19 (m, 1H), 4.17 (dd, *J* = 11.1, 8.2 Hz, 2H), 3.78 (dd, *J* = 14.3, 11.1 Hz, 2H), 3.51 (q, *J* = 5.0 Hz, 2H), 2.67 – 2.54 (m, 2H), 2.40 (s, 3H), 1.07 (s, 3H), 0.97 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.3, 137.0, 130.9 (d, *J*_{CP} = 14.5 Hz), 129.6, 127.1, 121.7 (d, *J*_{CP} = 11.4 Hz), 75.1 (d, *J*_{CP} = 6.2 Hz), 44.8 (d, *J*_{CP} = 2.2 Hz), 32.6 (d, *J*_{CP} = 5.8 Hz), 28.5 (d, *J*_{CP} = 137.0 Hz), 21.6, 21.4, 21.3. ³¹P NMR (243 MHz, CDCl₃) δ 22.98. HRMS (EI) calcd. for C₁₆H₂₄NO₅PS: [M] = 373.1113, found: 373.1111.

ethyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)(phenyl)phosphinate (3n). The product was synthesized according to **General Procedure B** for 6 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:1). Yield 64% (25.2 mg). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.67 (m, 4H), 7.59 – 7.53 (m, 1H), 7.50 – 7.43 (m, 2H), 7.28 (d, J = 7.7 Hz, 2H), 5.60 – 5.45 (m, 1H), 5.45 – 5.28 (m, 1H), 4.94 (t, J = 6.1 Hz, 1H), 4.13 – 3.98 (m, 1H), 3.94 – 3.81 (m, 1H), 3.53 – 3.39 (m, 2H), 2.80 – 2.54 (m, 2H), 2.41 (s, 3H), 1.27 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 136.9, 132.5 (d, $J_{CP} = 2.8$ Hz), 131.7 (d, $J_{CP} = 9.7$ Hz), 130.7 (d, $J_{CP} = 12.9$ Hz), 130.0 (d, $J_{CP} = 125.6$ Hz), 129.6, 128.6 (d, $J_{CP} = 12.6$ Hz), 127.1, 122.7 (d, $J_{CP} = 9.2$ Hz), 61.0 (d, $J_{CP} = 6.6$ Hz), 44.9 (d, $J_{CP} = 2.2$ Hz), 34.2 (d, $J_{CP} = 97.6$ Hz), 21.5, 16.4 (d, $J_{CP} = 6.4$ Hz). ³¹P NMR (162 MHz, CDCl₃) δ 41.02. HRMS (EI) calcd. for C₁₉H₂₄NO₄PS: [M] = 393.1164, found: 393.1165.

(E)-4-methyl-N-(4-(6-oxidodibenzo[c,e][1,2]oxaphosphinin-6-yl)but-2-en-1-yl)benzenesulfonamide (30). The product was synthesized according to General Procedure A for 7 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:1). Yield 58% (25.4 mg). White solid. mp 59-61 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (dd, *J* = 8.2, 5.0 Hz, 1H), 7.89 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.83 (ddd, *J* = 12.8, 7.6, 1.5 Hz, 1H), 7.72 – 7.64 (m, 3H), 7.50 (td, *J* = 7.5, 2.9 Hz, 1H), 7.39 – 7.33 (m, 1H), 7.29 – 7.22 (m, 3H), 7.18 (d, *J* = 8.1 Hz, 1H), 5.51 – 5.32 (m, 2H), 4.54 (br, 1H), 3.36 (t, *J* = 5.1 Hz, 2H), 2.78 (dd, *J* = 17.6, 7.2 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.4 (d, *J*_{CP} = 8.4 Hz), 143.4, 136.8, 135.8 (d, *J*_{CP} = 6.3 Hz), 133.5 (d, *J*_{CP} = 2.5 Hz), 131.5 (d, *J*_{CP} = 120.1 Hz), 130.7, 130.4 (d, *J*_{CP} = 9.7 Hz), 122.2 (d, *J*_{CP} = 10.6 Hz), 121.3 (d, *J*_{CP} = 10.2 Hz), 120.3 (d, *J*_{CP} = 6.3 Hz), 44.7 (d, *J*_{CP} = 2.4 Hz), 33.4 (d, *J*_{CP} = 93.3 Hz), 21.5. ³¹P NMR (162 MHz, CDCl₃) δ 34.32. HRMS (ESI+) m/z calcd. for [C₂₃H₂₂NO₄PS+Na]⁺: 462.0899, found: 462.0909.

(E)-N-(4-(diphenylphosphoryl)but-2-en-1-yl)-4-nitrobenzenesulfonamide (3p). The product was synthesized according to General Procedure A for 1 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 3:1). Yield 73% (33.5 mg). White solid. mp 49-51 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, *J* = 8.8 Hz, 2H), 7.98 (d, *J* = 8.8 Hz, 2H), 7.74 – 7.61 (m, 4H), 7.55 (td, *J* = 7.4, 1.5 Hz, 2H), 7.48 (td, *J* = 7.6, 3.0 Hz, 4H), 6.98 (t, *J* = 5.9 Hz, 1H), 5.69 – 5.58 (m, 1H), 5.58 – 5.48 (m, 1H), 3.52 (d, *J* = 5.0 Hz, 2H), 3.06 (dd, *J* = 13.7, 7.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 149.7, 146.4, 132.2 (d, *J*_{CP} = 2.7 Hz), 131.8 (d, *J*_{CP} = 113.1 Hz), 131.5, 130.9 (d, *J*_{CP} = 9.3 Hz), 128.8 (d, *J*_{CP} = 12.0 Hz), 128.2, 124.1, 121.9 (d, *J*_{CP} = 9.3 Hz), 44.8 (d, *J*_{CP} = 2.0 Hz), 34.0 (d, *J*_{CP} = 68.3 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 30.67. HRMS (ESI+) m/z calcd. for [C₂₂H₂₁N₂O₅PS+Na]⁺: 479.0801, found: 479.0809.

(E)-2-((4-(diphenylphosphoryl)but-2-en-1-yl)amino)isoindoline-1,3-dione (3q). The product was synthesized according to General Procedure A for 1 h and purified by flash chromatography (ethyl acetate/MeOH = 40:1). Yield 77% (32.1 mg). Yellow solid. mp 156-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.76 (m, 2H), 7.76 – 7.68 (m, 2H), 7.71 – 7.61 (m, 4H), 7.53 – 7.44 (m, 2H), 7.47 – 7.38 (m, 4H), 5.76 – 5.59 (m, 2H), 4.50 (t, *J* = 5.2 Hz, 1H), 3.61 – 3.53 (m, 2H), 3.10 (d, *J* = 6.0 Hz, 1H), 3.10 – 3.04 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 134.2, 132.6, 132.0, 131.8 (d, *J*_{CP} = 2.6 Hz), 131.3 (d, *J*_{CP} = 11.7 Hz), 130.9 (d, *J*_{CP} = 9.2 Hz), 130.1, 128.6 (d, *J*_{CP} = 11.7 Hz), 124.1 (d, *J*_{CP} = 9.0 Hz), 123.4, 53.1, 34.7 (d, *J*_{CP} = 68.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 30.46. HRMS (ESI+) m/z calcd. for [C₂₄H₂₁N₂O₃P]⁺: 416.1290, found: 416.1287.

(E)-N-(4-(diphenylphosphoryl)-2,3-dimethylbut-2-en-1-yl)-4-methylbenzenesulfonamide (3r). The product was synthesized according to General Procedure A for 1 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:3). Yield 74% (33.5 mg). White solid. mp 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.77 – 7.66 (m, 4H), 7.62 – 7.53 (m, 2H), 7.54 – 7.45 (m, 4H), 7.11 (d, *J* = 8.0 Hz, 2H), 3.35 (s, 2H), 3.05 (d, *J* = 13.7 Hz, 2H), 2.36 (s, 3H), 1.78 (d, *J* = 5.4 Hz, 3H), 1.23 (d, *J* = 3.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 142.3, 137.3, 132.2 (d, *J*_{CP} = 98.6 Hz), 132.0 (d, *J*_{CP} = 2.4 Hz), 131.5 (d, *J*_{CP} = 10.1 Hz), 130.9 (d, *J*_{CP} = 9.4 Hz), 129.2, 128.6 (d, *J*_{CP} = 11.7 Hz), 127.3, 122.6 (d, *J*_{CP} = 10.7 Hz), 46.5 (d, *J*_{CP} = 2.9 Hz), 36.8 (d, *J*_{CP} = 65.9 Hz), 21.4, 21.2, 18.5 (d, *J*_{CP} = 3.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.58. HRMS (ESI+) m/z calcd. for [C₂₅H₂₈NO₃PS+Na]⁺: 476.1420, found: 476.1420.

N-(4-(diphenylphosphoryl)cyclohex-2-en-1yl)-4-methylbenzenesulfonamide (3s). The product was synthesized according to General Procedure A (at 60 °C under N₂ atmosphere) for 3 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 1:1 and CH₂Cl₂/MeOH = 30:1). Overall yield 77% (34.8 mg, trans:cis = 1:1.3).

trans-3s, White solid. mp 179-181 °C. ¹H NMR (400 MHz, Acetone- d_6) δ 7.85 – 7.77 (m, 2H), 7.76 – 7.68 (m, 2H), 7.65 – 7.50 (m, 6H), 7.47 – 7.41 (m, 2H), 7.22 – 7.15 (m, 2H), 5.91 – 5.81 (m, 1H), 5.35 – 5.22 (m, 1H), 3.67 – 3.52 (m, 2H), 2.37 (s, 3H), 2.30 – 2.15 (m, 2H), 2.03 – 1.94 (m, 0H), 1.65 – 1.51 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 138.2, 132.5, 132.4, 132.0 (d, J_{CP} = 2.7 Hz), 131.9 (d, J_{CP} = 2.6

Hz), 131.8 (d, $J_{CP} = 8.6$ Hz), 131.3 (d, $J_{CP} = 23.8$ Hz), 130.6 (d, $J_{CP} = 9.1$ Hz), 130.2, 129.4, 128.8 (d, $J_{CP} = 11.6$ Hz), 128.5 (d, $J_{CP} = 11.7$ Hz), 127.0, 119.3 (d, $J_{CP} = 5.1$ Hz), 50.8 (d, $J_{CP} = 5.4$ Hz), 39.5 (d, $J_{CP} = 67.9$ Hz), 27.5 (d, $J_{CP} = 5.0$ Hz), 23.4 (d, $J_{CP} = 2.4$ Hz), 21.5. HRMS (ESI+) m/z calcd. for $[C_{25}H_{26}NO_3PS+Na]^+$: 474.1263, found: 474.1265.

cis-3s, White solid. mp 97-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.71 (m, 6H), 7.58 – 7.43 (m, 6H), 7.25 (d, *J* = 8.1 Hz, 3H), 6.04 (d, *J* = 9.1 Hz, 1H), 5.71 – 5.61 (m, 2H), 5.56 – 5.46 (m, 1H), 3.88 (s, 1H), 3.16 – 3.05 (m, 1H), 2.39 (s, 3H), 2.03 – 1.81 (m, 1H), 1.76 – 1.62 (m, 1H), 1.65 – 1.53 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 142.9, 139.1, 132.1, 132.1 – 132.0 (m), 131.1 (d, *J*_{CP}= 8.6 Hz), 130.9 (d, *J*_{CP} = 8.6 Hz), 129.6, 128.8 (dd, *J*_{CP} = 11.4, 6.1 Hz), 126.9, 124.5 (d, *J*_{CP} = 6.8 Hz), 47.2, 35.5 (d, *J*_{CP} = 69.5 Hz), 28.0 (d, *J*_{CP} = 7.5 Hz), 21.5, 17.9. ³¹P NMR (162 MHz, CDCl₃) δ 33.13. HRMS (ESI+) m/z calcd. for [C₂₅H₂₆NO₃PS+Na]⁺: 474.1263, found: 474.1260. X-ray crystallographic data of *cis*-3s is provided in Appendix II.

(E)-N-(5-(diphenylphosphoryl)-1-phenylpent-3-en-2-yl)-4-methylbenzenesulfonamide (3t). The product was synthesized according to General Procedure A for 3 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:1). Yield 60% (31.1 mg). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 7.74

-7.62 (m, 4H), 7.58 - 7.48 (m, 2H), 7.52 - 7.41 (m, 6H), 7.21 - 7.09 (m, 5H), 6.92 - 6.79 (m, 2H), 5.61 - 5.46 (m, 1H), 5.45 - 5.32 (m, 1H), 4.53 (s, 1H), 3.90 - 3.74 (m, 1H), 3.00 (tq, J = 14.7, 6.7 Hz, 2H), 2.64 - 2.48 (m, 2H), 2.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.1, 137.3, 136.1, 135.6, 135.6, 132.4 (d, $J_{CP} = 99.0$ Hz), 132.2 (d, $J_{CP} = 99.1$ Hz), 131.9, 131.0 (d, $J_{CP} = 7.7$ Hz), 131.0 (d, $J_{CP} = 7.6$ Hz), 129.5, 129.4, 128.7 (d, $J_{CP} = 4.2$ Hz), 128.6 (d, $J_{CP} = 4.4$ Hz), 128.5, 127.1, 126.7, 120.9 (d, $J_{CP} = 8.9$ Hz), 56.3 (d, $J_{CP} = 2.1$ Hz), 41.8 (d, $J_{CP} = 2.4$ Hz), 34.4 (d, J = 68.4 Hz), 21.5. ³¹P NMR (162 MHz, CDCl₃) δ 30.84. HRMS (EI) calcd. for C₃₀H₃₀NO₃PS: [M] = 515.1684, found: 515.1688.

(E)-N-(1-(diphenylphosphoryl)-6-methylhept-2-en-4-yl)-4-methylbenzenesulfonamide (3u). The product was synthesized according to General Procedure A for 3 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:1). Yield 64% (30.9 mg). White solid. mp 146-149 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.71 – 7.61 (m, 6H), 7.51 (t, *J* = 7.5 Hz, 2H), 7.45 (dt, *J* = 7.9, 3.9 Hz, 4H), 7.22 (d, *J* = 7.9 Hz, 2H), 5.41 (dq, *J* = 14.1, 6.8 Hz, 1H), 5.18 (ddd, *J* = 15.4, 7.4, 4.5 Hz, 1H), 4.83 (d, *J* = 7.4 Hz, 1H), 3.60 (p, *J* = 7.3 Hz, 1H), 2.99 – 2.81 (m, 2H), 2.39 (s, 3H), 1.22 – 1.10 (m, 2H), 1.04 (dt, *J* = 13.6, 6.9 Hz, 1H), 0.64 (d, *J* = 4.0 Hz, 3H), 0.63 (d, *J* = 4.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.0, 138.1, 136.3 (d, *J*_{CP} = 11.7 Hz), 132.4 (d, *J*_{CP} = 99.4 Hz), 132.0 (d, *J*_{CP} = 97.7 Hz), 131.9 (d, *J*_{CP} = 5.2 Hz), 128.5 (d, *J*_{CP} = 5.2 Hz), 127.2, 120.4 (d, *J*_{CP} = 8.8 Hz), 54.0 (d, *J*_{CP} = 2.1 Hz), 44.7, 34.5 (d, *J*_{CP} = 68.4 Hz), 24.0, 22.4, 21.9, 21.5. ³¹P NMR (162 MHz, CDCl₃) δ 31.75. HRMS (EI) calcd. for C₂₇H₃₂NO₃PS: [M] = 481.1841, found: 481.1839.

tert-butyl (R,E)-2-((1,1-dimethylethyl)sulfonamido)-5-(diphenylphosphoryl)pent-3-enoate (3v). The S27

product was synthesized according to **General Procedure C** and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:1). Yield 72% (34.8 mg, ee 92%). White solid. mp 181-184 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.76 – 7.69 (m, 4H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.49 (t, *J* = 3.7 Hz, 4H), 5.86 – 5.76 (m, 1H), 5.69 – 5.58 (m, 1H), 4.65 (d, *J* = 9.5 Hz, 1H), 4.45 (m, 1H), 3.24 – 3.07 (m, 2H), 1.39 (s, 9H), 1.30 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 169.4 (d, *J*_{CP} = 2.4 Hz), 132.2 (d, *J*_{CP} = 98.5 Hz), 132.1 (d, *J*_{CP} = 99.1 Hz), 132.0 (d, *J*_{CP} = 3.2 Hz), 131.1 (d, *J*_{CP} = 12.9 Hz), 131.0 (d, *J*_{CP} = 9.0 Hz), 130.9 (d, *J* = 8.7 Hz), 128.7, 128.7, 122.7 (d, *J*_{CP} = 8.7 Hz), 83.1, 60.0, 58.9 (d, *J*_{CP} = 1.9 Hz), 34.6 (d, *J*_{CP} = 68.2 Hz), 27.8, 24.0. ³¹P NMR (243 MHz, CDCl₃) δ 29.96. HRMS (ESI+) m/z calcd. for [C₂₅H₃₄NO₅PS+Na]⁺ : 514.1788, found: 514.1796. X-ray crystallographic data of **3v** is provided in Appendix II. HPLC conditions: IC-3 column, 20% iPrOH/Hx, 1.0 ml/min, *R_i*: 48.417 min (**3w**), 74.555 min (**3v**).

tert-butyl (S,E)-2-((1,1-dimethylethyl)sulfonamido)-5-(diphenylphosphoryl)pent-3-enoate (3w). The product was synthesized according to **General Procedure C** and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:1). Yield 67% (32.9 mg, ee 92%) from 1i. Yield 70% (34.1 mg, ee 97%) from 1j.

White solid. mp 181-184 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.65 (m, 4H), 7.57 – 7.40 (m, 6H), 5.88 – 5.74 (m, 1H), 5.69 – 5.57 (m, 1H), 4.71 (d, *J* = 9.5 Hz, 1H), 4.49 – 4.36 (m, 1H), 3.23 – 3.04 (m, 2H), 1.38 (s, 9H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 169.4 (d, *J*_{CP} = 2.5 Hz), 132.2 (d, *J*_{CP} = 99.2 Hz), 132.0 (d, *J*_{CP} = 3.6 Hz), 132.0 (d, *J*_{CP} = 99.5 Hz), 132.0 (d, *J*_{CP} = 3.7 Hz), 131.1 (d, *J*_{CP} = 11.7 Hz), 131.0 (d, *J*_{CP} = 9.3 Hz), 130.9 (d, *J*_{CP} = 9.3 Hz), 128.7 (d, *J*_{CP} = 1.5 Hz), 128.7 (d, *J*_{CP} = 1.5 Hz), 122.6 (d, *J*_{CP} = 9.0 Hz), 83.1, 60.0, 58.9 (d, *J*_{CP} = 2.2 Hz), 34.5 (d, *J*_{CP} = 68.1 Hz), 27.8, 24.0. ³¹P NMR (162 MHz, CDCl₃) δ 30.06. HRMS (ESI+) m/z calcd. for [C₂₅H₃₄NO₅PS+Na]⁺ : 514.1788, found: 514.1790. X-ray crystallographic data of **3w** is provided in Appendix II.

Chiral HPLC-Chromatogram of 3w from 1i (ee 92%)

Chiral HPLC-Chromatogram of 3w from 1j (ee 97%)

methyl (**R**,**E**)-2-((1,1-dimethylethyl)sulfonamido)-5-(diphenylphosphoryl)pent-3-enoate (3x). The product was synthesized according to General Procedure C and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2.5:1). Yield 70% (31.3 mg). Transparent oil. ¹H NMR (600 MHz, CDCl₃) δ 7.76 – 7.63 (m, 4H), 7.54 – 7.49 (m, 2H), 7.50 – 7.41 (m, 4H), 5.84 (dq, *J* = 14.1, 7.1 Hz, 1H), 5.58 (dt, *J* = 15.5, 5.2 Hz, 1H), 4.97 (d, *J* = 9.4 Hz, 1H), 4.55 (dt, *J* = 9.8, 4.6 Hz, 1H), 3.66 (s, 3H), 3.13 (dd, *J* = 14.6, 7.5 Hz, 2H), 1.28 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 170.9 (d, *J*_{CP} = 2.7 Hz), 132.0 (d, *J*_{CP} = 99.7 Hz),

132.0 (d, $J_{CP} = 2.9 \text{ Hz}$), 131.0 (d, $J_{CP} = 3.4 \text{ Hz}$), 131.9 (d, $J_{CP} = 2.5 \text{ Hz}$), 130.9 (d, $J_{CP} = 3.4 \text{ Hz}$), 130.5 (d, $J_{CP} = 11.6 \text{ Hz}$), 128.7 (d, $J_{CP} = 3.3 \text{ Hz}$), 128.6 (d, $J_{CP} = 3.3 \text{ Hz}$), 123.4 (d, $J_{CP} = 8.9 \text{ Hz}$), 60.1, 58.2 (d, $J_{CP} = 2.3 \text{ Hz}$), 52.8, 34.5 (d, $J_{CP} = 67.7 \text{ Hz}$), 24.0. ³¹P NMR (162 MHz, CDCl₃) δ 23.79. HRMS (EI) calcd. for C₂₂H₂₈NO₅PS: [M] = 449.1426, found: 449.1424.

diethyl (1-((4-methylphenyl)sulfonamido)but-3-en-2-yl) phosphate (4a). The product was synthesized according to General Procedure D for 9 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 3:2). Yield 77% (29.2 mg). Light yellowish solid. mp 62-64 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.75 (ddd, *J* = 17.0, 10.5, 6.3 Hz, 1H), 5.59 (t, *J* = 6.0 Hz, 1H), 5.34 (d, *J* = 17.2 Hz, 1H), 5.26 (d, *J* = 10.5 Hz, 1H), 4.75 (qd, *J* = 7.3, 3.5 Hz, 1H), 4.15 – 4.01 (m, 4H), 3.19 (ddd, *J* = 11.0, 7.1, 3.7 Hz, 1H), 3.09 (ddd, *J* = 13.2, 7.5, 5.1 Hz, 1H), 2.41 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 136.9, 133.3 (d, *J*_{CP} = 4.8 Hz), 129.7, 127.0, 119.1, 77.6 (d, *J*_{CP} = 5.5 Hz), 64.2 (d, *J*_{CP} = 5.9 Hz), 47.5 (d, *J*_{CP} = 5.0 Hz), 21.5, 16.0 (d, *J*_{CP} = 6.9 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -1.41. HRMS (ESI+) m/z calcd. for [C₁₅H₂₅NO₆PS]⁺: 378.1135, found: 378.1143.

dimethyl (1-((4-methylphenyl)sulfonamido)but-3-en-2-yl) phosphate (4b). The product was synthesized according to General Procedure D for 7 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 3:2). Yield 76% (26.3 mg). White solid. mp 85-88 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 5.75 (ddd, *J* = 17.1, 10.6, 6.4 Hz, 1H), 5.50 – 5.43 (m, 1H), 5.36 (d, *J* = 17.1 Hz, 1H), 5.28 (d, *J* = 10.6 Hz, 1H), 4.81 – 4.72 (m, 1H), 3.75 (d, *J* = 4.4 Hz, 3H),

3.73 (d, J = 4.5 Hz, 3H), 3.23 – 3.16 (m, 1H), 3.11 (ddd, J = 13.3, 7.5, 5.5 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.5, 137.0, 133.1 (d, $J_{CP} = 4.3$ Hz), 129.7, 127.1, 119.4, 77.9 (d, $J_{CP} = 5.5$ Hz), 54.6 (d, $J_{CP} = 1.7$ Hz), 54.6 (d, $J_{CP} = 2.1$ Hz), 47.5 (d, $J_{CP} = 4.8$ Hz), 21.5. ³¹P NMR (243 MHz, CDCl₃) δ 0.77. HRMS (ESI+) m/z calcd. for [C₁₃H₂₁NO₆PS]⁺: 350.0822, found: 350.0824.

diisopropyl (1-((4-methylphenyl)sulfonamido)but-3-en-2-yl) phosphate (4c). The product was synthesized according to General Procedure D for 13 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 1:1). Yield 55% (22.3 mg). White solid. mp 62-64 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 5.75 (ddd, *J* = 17.0, 10.6, 6.1 Hz, 1H), 5.67 (dd, *J* = 7.4, 4.6 Hz, 1H), 5.33 (d, *J* = 17.2 Hz, 1H), 5.25 (d, *J* = 10.5 Hz, 1H), 4.79 – 4.68 (m, 1H), 4.68 – 4.53 (m, 2H), 3.21 (ddd, *J* = 13.4, 7.4, 3.4 Hz, 1H), 3.09 (ddd, *J* = 12.8, 7.7, 4.5 Hz, 1H), 2.42 (s, 3H), 1.32 (d, *J* = 5.8 Hz, 6H), 1.30 (d, *J* = 5.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 136.9, 133.4 (d, *J*_{CP} = 5.3 Hz), 129.7, 127.0, 118.8, 77.3, 73.2 (d, *J*_{CP} = 5.6 Hz), 73.1 (d, *J*_{CP} = 5.7 Hz), 47.6 (d, *J*_{CP} = 4.4 Hz), 23.6 (d, *J*_{CP} = 3.4 Hz), 23.5 (d, *J*_{CP} = 2.9 Hz), 21.5. ³¹P NMR (162 MHz, CDCl₃) δ -2.96. HRMS (ESI+) m/z calcd. for [C₁₇H₂₉NO₆PS]⁺: 406.1448, found: 406.1456. X-ray crystallographic data of **4c** is provided in Appendix II.

dibutyl (1-((4-methylphenyl)sulfonamido)but-3-en-2-yl) phosphate (4d). The product was synthesized according to General Procedure D for 48 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 1:1). Yield 50% (20.9 mg). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.78 (ddd, *J* = 17.0, 10.5, 6.2 Hz, 1H), 5.54 (t, *J* = 6.1 Hz, 1H), 5.37 (d, *J* = 17.2 Hz,

1H), 5.29 (d, J = 10.5 Hz, 1H), 4.84 – 4.71 (m, 1H), 4.14 – 3.92 (m, 4H), 3.23 (dddd, J = 13.3, 7.2, 3.5, 1.3 Hz, 1H), 3.12 (ddd, J = 13.2, 7.5, 4.9 Hz, 1H), 2.44 (s, 3H), 1.72 – 1.58 (m, 4H), 1.40 (hd, J = 7.4, 1.4 Hz, 4H), 0.95 (td, J = 7.4, 1.5 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 143.4, 137.0, 133.3 (d, $J_{CP} = 4.8$ Hz), 129.7, 127.1, 119.1, 77.6 (d, $J_{CP} = 5.3$ Hz), 68.0 (d, $J_{CP} = 6.0$ Hz), 47.5 (d, $J_{CP} = 4.6$ Hz), 32.2 (d, $J_{CP} = 6.9$ Hz), 21.5, 18.6, 13.5. ³¹P NMR (243 MHz, CDCl₃) δ -1.29. HRMS (ESI+) m/z calcd. for [C₁₉H₃₃NO₆PS]⁺: 434.1761, found: 434.1767.

diisobutyl (1-((4-methylphenyl)sulfonamido)but-3-en-2-yl) phosphate (4e). The product was synthesized according to General Procedure D for 15 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 1:2). Yield 67% (29.1 mg). Dark yellowish solid. mp 51-55 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.75 (ddd, *J* = 16.9, 10.6, 6.2 Hz, 1H), 5.52 (t, *J* = 6.1 Hz, 1H), 5.34 (d, *J* = 17.2 Hz, 1H), 5.27 (d, *J* = 10.6 Hz, 1H), 4.75 (dt, *J* = 10.2, 6.7 Hz, 1H), 3.86 – 3.71 (m, 4H), 3.21 (ddd, *J* = 13.5, 7.1, 3.6 Hz, 1H), 3.10 (ddd, *J* = 13.1, 7.5, 5.0 Hz, 1H), 2.42 (s, 3H), 1.92 (dp, *J* = 13.3, 6.7 Hz, 2H), 0.92 (dd, *J* = 6.7, 1.6 Hz, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 143.4, 137.1, 133. (d, *J*_{CP} = 4.8 Hz), 129.7, 127.1, 119.1, 77.6 (d, *J*_{CP} = 5.5 Hz), 74.1 (d, *J*_{CP} = 6.4 Hz), 47.6 (d, *J*_{CP} = 4.7 Hz), 29.0 (d, *J*_{CP} = 7.3 Hz), 21.5, 18.6. ³¹P NMR (162 MHz, CDCl₃) δ -1.17. HRMS (FAB) m/z calcd. for [C₂₅H₂₈NO₃PS+H]⁺: 434.1766, found: 434.1769.

N-(2-((5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)oxy)but-3-en-1-yl)-4methylbenzenesulfonamide (4f). The product was synthesized according to General Procedure D for 6

h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 1:1). Yield 55% (20.4 mg). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 5.83 (ddd, J = 17.1, 10.5, 6.5 Hz, 1H), 5.61 – 5.51 (m, 1H), 5.39 (d, J = 17.2 Hz, 1H), 5.32 (d, J = 10.6 Hz, 1H), 4.86 – 4.73 (m, 1H), 4.14 (dd, J = 10.9, 3.4 Hz, 1H), 4.03 (dd, J = 10.9, 3.6 Hz, 1H), 3.99 – 3.81 (m, 2H), 3.32 – 3.20 (m, 1H), 3.23 – 3.12 (m, 1H), 2.43 (s, 3H), 1.25 (s, 3H), 0.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.5, 137.0, 133.1 (d, $J_{CP} = 4.9$ Hz), 129.7, 127.1, 119.7, 78.2 (d, $J_{CP} = 6.9$ Hz), 77.8 (d, $J_{CP} = 6.7$ Hz), 77.5 (d, $J_{CP} = 5.3$ Hz), 47.5 (d, $J_{CP} = 4.5$ Hz), 32.1 (d, $J_{CP} = 5.9$ Hz), 21.6, 21.5, 20.3. ³¹P NMR (162 MHz, CDCl₃) δ -8.30. HRMS (ESI+) m/z calcd. for [C₁₆H₂₅NO₆PS]⁺: 390.1135, found: 390.1137.

1-((4-methylphenyl)sulfonamido)but-3-en-2-yl di-p-tolylphosphinate (4g). The product was synthesized according to **General Procedure D** for 9 h and purified by flash chromatography (ethyl acetate/*n*-hexanes = 2:3). Yield 54% (25.5 mg). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.69 – 7.55 (m, 3H), 7.30 – 7.21 (m, 4H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.93 (br, 1H), 5.76 (ddd, *J* = 16.7, 10.4, 5.7 Hz, 1H), 5.27 – 5.16 (m, 2H), 4.50 (q, *J* = 7.7, 7.3 Hz, 1H), 3.37 – 3.25 (m, 1H), 3.09 (dd, *J* = 13.7, 8.3 Hz, 1H), 2.40 (s, 3H), 2.39 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2 (d, *J*_{CP} = 2.9 Hz), 142.9 (d, *J*_{CP} = 3.0 Hz), 142.8, 137.3, 133.7 (d, *J*_{CP} = 6.9 Hz), 132.1 (d, *J*_{CP} = 10.8 Hz), 131.2 (d, *J*_{CP} = 10.7 Hz), 129.5, 129.4 (d, *J*_{CP} = 10.8 Hz), 129.2 (d, *J*_{CP} = 11.2 Hz), 127.9 (d, *J*_{CP} = 146.7 Hz), 127.0, 125.7, 118.2, 76.4 (d, *J*_{CP} = 6.0 Hz), 48.0, 21.6, 21.4. ³¹P NMR (162 MHz, CDCl₃) δ 35.84. HRMS (ESI+) m/z calcd. for [C₂₅H₂₉NO₄PS]⁺: 470.1549, found: 470.1559.

methyl (2R,3S)-3-((dimethoxyphosphoryl)oxy)-2-((1,1-dimethylethyl)sulfonamido)pent-4-enoate (4h). The product was synthesized according to General Procedure E and purified by flash chromatography (ethyl acetate/*n*-hexanes = 1:1). Yield 60% (22.6 mg, ee >99%). White solid. mp 97-100 °C. ¹H NMR (600 MHz, CDCl₃) δ 5.91 – 5.81 (m, 1H), 5.47 (dd, *J* = 17.1, 1.2 Hz, 1H), 5.39 (dd, *J* = 10.6, 1.3 Hz, 1H), 5.13 – 5.08 (m, 1H), 5.07 (d, *J* = 10.0 Hz, 1H), 4.40 (dd, *J* = 10.1, 3.4 Hz, 1H), 3.80 (dd, *J* = 11.3, 1.2 Hz, 3H), 3.79 (s, 3H), 3.76 (dd, *J* = 11.3, 1.2 Hz, 3H), 1.39 (d, *J* = 1.2 Hz, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 169.1, 131.7 (d, *J*_{CP} = 4.0 Hz), 120.3, 79.2 (d, *J*_{CP} = 5.0 Hz), 60.7 (d, *J*_{CP} = 5.4 Hz), 60.4, 54.8 (d, *J*_{CP} = 6.1 Hz), 54.7 (d, *J*_{CP} = 6.2 Hz), 52.8, 24.1. ³¹P NMR (243 MHz, CDCl₃) δ 0.58. HRMS (ESI+) m/z calcd. for [C₁₂H₂₄NO₈PS+Na]⁺: 396.0852, found: 396.0851.

HPLC conditions: IA-3 column, 8% iPrOH/Hx, 0.7 ml/min, Rt: 61.916 min (4h), 77.716 min (minor).

Chiral HPLC-Chromatogram of the racemic mixture

Chiral HPLC-Chromatogram of 4h (ee >99%)

methyl (2S,3S)-3-((diethoxyphosphoryl)oxy)-2-((1,1-dimethylethyl)sulfonamido)pent-4-enoate (4i). The product was synthesized according to General Procedure E and purified by flash chromatography (ethyl acetate/*n*-hexanes = 3:2). Yield 52% (20.5 mg). Transparent oil. ¹H NMR (400 MHz, CDCl₃) δ 5.88 (ddd, J = 17.0, 10.6, 6.4 Hz, 1H), 5.46 (dt, J = 17.2, 1.3 Hz, 1H), 5.42 – 5.34 (m, 1H), 5.20 (d, J = 10.0 Hz, 1H), 5.14 – 5.03 (m, 2H), 4.39 (dd, J = 10.0, 3.1 Hz, 1H), 4.22 – 4.03 (m, 4H), 3.80 (s, 3H), 1.40 (s, 9H), 1.39 – 1.28 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 131.9 (d, $J_{CP} = 4.3$ Hz), 119.9, 79.2 (d, $J_{CP} = 5.2$ Hz), 64.4 (d, $J_{CP} = 4.5$ Hz), 60.9 (d, $J_{CP} = 5.3$ Hz), 60.4, 52.8, 24.1, 16.1 (d, J = 1.4 Hz), 16.0 (d, J = 1.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -1.70. HRMS (ESI+) m/z calcd. for [C₁₄H₂₉NO₈PS]⁺: 402.1346, found: 402.1350.

ethyl (2R)-3-((diethoxyphosphoryl)oxy)-2-((4-methylphenyl)sulfonamido)pent-4-enoate (4j). The product was synthesized according to General Procedure E and purified by flash chromatography (ethyl acetate/*n*-hexanes = 1:1). Yield 41% (18.2 mg). Transparent oil. ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, J = 6.7 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 5.80 (dddd, J = 17.2, 10.6, 6.7, 1.5 Hz, 1H), 5.67 (d, J = 9.5 Hz, 1H), 5.37 (dd, J = 17.0, 1.5 Hz, 1H), 5.32 (d, J = 10.0 Hz, 1H), 5.02 – 4.92 (m, 1H), 4.22 (ddd, J = 9.6, 3.6, 1.4 Hz, 1H), 4.17 – 4.08 (m, 2H), 4.05 (pd, J = 7.2, 1.5 Hz, 2H), 3.99 (qd, J = 7.1, 1.5 Hz, 2H), 2.40 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.7, 143.6, 137.1, 131.8 (d, $J_{CP} = 4.3$ Hz), 129.6, 127.2, 120.1, 78.6 (d, $J_{CP} = 5.1$ Hz), 64.4 (d, $J_{CP} = 5.8$ Hz), 64.2 (d, $J_{CP} = 6.1$ Hz), 62.1, 59.8 (d, $J_{CP} = 5.8$ Hz), 21.5, 16.1 (d, $J_{CP} = 7.1$ Hz), δ 16.0 (d, $J_{CP} = 7.0$ Hz), 13.9. ³¹P NMR (162 MHz, CDCl₃) δ -2.03. HRMS (ESI+) m/z calcd. for [C₁₈H₂₈NO₈PS+Na]⁺:

472.1165, found: 472.1164.
VII. Reference

[S1] S. I. Ali, M. D. Nikalje, A. Sudalai, Org. Lett. 1999, 1, 705.

[S2] a) P. Müller, C. Baud, Y. Jacquier, *Can. J. Chem.* 1998, **76**, 738; b) G. Wang, J. Franke, C. Q. Ngo, M. J. Krische, *J. Am. Chem. Soc.* **2015**, *137*, 7915.

[S3] L. Kong, B. Biletsky, D. Nuel, H. Clavier, Org. Chem. Front. 2018, 5, 1600.

[S4] M. Brichacek, D. Lee, J. T. Njardarson, Org. Lett. 2008, 10, 5023.

[S5] D. Sureshkumar, S. Maity, S. Chandrasekran, J. Org. Chem. 2006, 71, 1653.

[S6] a) A. Datta, G. Veeresa, J. Org. Chem. 2000, 65, 7609; b) T. Ibuka, N. Mimura, H. Aoyama, M. Akaji, H. Ohno, Y. Miwa, T. Taga, K. Nakai, H. Tamamura, N. Fujii, Y. Yamamoto, J. Org. Chem. 1997, 62, 999.

[S7] L. G. Arini, A. Sinclair, P. Szeto, R. A. Stockman, Tetrahedron Lett. 2004, 45, 1589.

[S8] M. Brichacek, M. N. Villalobos, A. Plitcha, J. T. Njardarson, Org. Lett. 2011, 13, 1110.

[S9] L. Mao, Y. Li, S. Yang, Chin. J. Chem. 2017, 35, 316.

[S10] D. Seo, J. Kim, Adv. Funct. Mater. 2010, 20, 1397.

[S11] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

[S12] (a) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211. (b) A. E. Reed, R. B. Weinstock,
F. Weinhold, J. Chem. Phys. 1985, 83, 735.

Appendix I

Spectral Copies of ¹H, ¹³C and ³¹P NMR Data Obtained in this Study

(E)-N-(4-(diphenylphosphoryl)but-2-en-1-yl)-4-methylbenzenesulfonamide (3a)

400 MHz, ¹H NMR in CDCl₃

S40

243 MHz, ³¹P NMR in CDCl₃

(E)-N-(4-(di-p-tolylphosphoryl)but-2-en-1-yl)-4-methylbenzenesulfonamide (3b)

600 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

190.	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	Ô	-10	-20	- 30	- 40
											f1 (p	opm)											

-- 30.95

243 MHz, ³¹P NMR in CDCl₃

¹⁵⁰ MHz, ¹³C NMR in CDCl₃

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

(E)-N-(4-(bis(4-methoxyphenyl)phosphoryl)but-2-en-1-yl)-4-methylbenzenesulfonamide (3d)

S47

(E)-N-(4-(di(naphthalen-2-yl)phosphoryl)but-2-en-1-yl)-4-methylbenzenesulfonamide (3e)

diethyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3f)

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 ff (ppm)

dimethyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3g)

600 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

243 MHz, ³¹P NMR in CDCl₃

dibutyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3h)

100 MHz, ¹³C NMR in CDCl₃

190	170	150	130	110	90	70	50	30	10 f1 (j	-10 opm)	-30	-50	-70	-90	-110	-130	-150	-170	-190

diisobutyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3i)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

162 MHz, ³¹P NMR in CDCl₃

diisopropyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3j)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

diphenyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)phosphonate (3k)

600 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

18,81 ----

190. 180 170 160 150 140 130 120 110 100 90. 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

243 MHz, ³¹P NMR in CDCl₃

Dibenzyl (E)-(4-((4-methylphenyl)sulfonamide)but-2-en-1yl)phosphonate (3l)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

								1		1 . 1 . 1		1 . 1 .	1		1 . 1 .	1 · · · ·	1 . 1 .	1 . 1 .	
190	170	150	130	110	90	70	50	30	10	-10	- 30	-50	- 70	- 90	-110	-130	-150	-170	-190
									f1 ((mag									

(E)-N-(4-(5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)but-2-en-1-yl)-4-methylbenzene sulfonamide (3m)

400 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

243 MHz, ³¹P NMR in CDCl₃

ethyl (E)-(4-((4-methylphenyl)sulfonamido)but-2-en-1-yl)(phenyl)phosphinate (3n)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

TsHN/

		and the second sec								1					1. 1. 1. 1.				
190	170	150	130	110	90	70	50	30	10	-10	- 30	- 50	- 70	- 90	-110	-130	-150	-170	-190
									f1 ((mqq									

(E)-4-methyl-N-(4-(6-oxidodibenzo[c,e][1,2]oxaphosphinin-6-yl)but-2-en-1-yl)benzenesulfonamide (30)

600 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

190	170	150	130	110	90	70	50	30	10 f1 (i	-10 	- 30	-50	-70	-90	-110	-130	-150	-170	-190

$(E)-N-(4-(diphenylphosphoryl) but-2-en-1-yl)-4-nitrobenzenesulfonamide\ (3p)$

S80

150 MHz, ¹³C NMR in CDCl₃

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	Ó	-10	-20	-30	- 40
											f1 (r	nmn)											

- 30,67

(E)-2-((4-(diphenylphosphoryl)but-2-en-1-yl)amino)isoindoline-1,3-dione (3q)

600 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

100	+ 70	150	100	110		70	50	00	10	1.10	00				110	100	150	170	100
190	170	150	130	TTU.	90	70	50	30.	IU.	-10	- 30	-50	- 7U	-90	-110	-130	-150	-170	-180
									f1 (ppm)									

(E)-N-(4-(diphenylphosphoryl)-2,3-dimethylbut-2-en-1-yl)-4-methylbenzenesulfonamide (3r)

400 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

N-(4-(diphenylphosphoryl)cyclohex-2-en-1yl)-4-methylbenzenesulfonamide (trans-3s)

400 MHz, ¹H NMR in Acetone-*d*₆

100 MHz, ¹³C NMR in CDCl₃

140 120 100 80 60 40 20 0 -20 -40 -60 f1(ppm)

-80 -100 -120 -140 -160 -180 -200 -220 -240

N-(4-(diphenylphosphoryl)cyclohex-2-en-1yl)-4-methylbenzenesulfonamide (*cis*-3s)

400 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

100	170	150	100	110		70			10	10					110	100	150	170	100
190	170	150	130	LLU.	90	70	50	30	10	-10	- 30	-50	- 70	-90	-110	-130	-150	-170	-130
									f1 (p	ipm)									

(E)-N-(5-(diphenylphosphoryl)-1-phenylpent-3-en-2-yl)-4-methylbenzenesulfonamide (3t)

400 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

190	170	150	130	110	90	70	50	30	10 f1 (-10 ppm)	- 30	-50	-70	-90	-110	-130	-150	-170	-190

(E)-N-(1-(diphenylphosphoryl)-6-methylhept-2-en-4-yl)-4-methylbenzenesulfonamide (3u)

600 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

		1. J.			1,1,1,1,1			1.1.1.1.1.1	1.1.1	1 . 1 . 1		1.1.1	1	- State	1 . 1 .	1.1.1.1		1	- <u></u>
190	170	150	130	110	90	70	50	30	10	-10	- 30	-50	-70	-90	-110	-130	-150	-170	-190
									f1 (opm)									

S101

tert-butyl (S,E)-2-((1,1-dimethylethyl)sulfonamido)-5-(diphenylphosphoryl)pent-3-enoate (3w)

162 MHz, ³¹P NMR in CDCl₃

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

- 30.05

methyl (R,E)-2-((1,1-dimethylethyl)sulfonamido)-5-(diphenylphosphoryl)pent-3-enoate (3x)

600 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

162 MHz, ³¹P NMR in CDCl₃

NHSO₂tBu O II Ph Ph

diethyl (1-((4-methylphenyl)sulfonamido)but-3-en-2-yl) phosphate (4a)

S108

162 MHz, ¹³C NMR in CDCl₃

dimethyl (1-((4-methylphenyl)sulfonamido)but-3-en-2-yl) phosphate (4b).

600 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 11 (apm)

243 MHz, ³¹P NMR in CDCl₃

42°0----

diisopropyl (1-((4-methylphenyl)sulfonamido)but-3-en-2-yl) phosphate (4c)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

NHTs [

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 fl (ppm)

dibutyl (1-((4-methylphenyl)sulfonamido)but-3-en-2-yl) phosphate (4d)

S117

diisobutyl (1-((4-methylphenyl)sulfonamido)but-3-en-2-yl) phosphate (4e)

400 MHz, ¹H NMR in CDCl₃

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (spm)

150 MHz, ¹³C NMR in CDCl₃

				1 1 1				1 . 1						T . T .	1 . 1 .				
140	120	100	80	60	40	20	0	-20	- 40	-60	- 80	-100	-120	-140	-160	-180	-200	-220	-240
									f1 (p	(ma									

-1.17

N-(2-((5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)oxy)but-3-en-1-yl)-4methylbenzenesulfonamide (4f)

400 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

¹⁰⁰ MHz, ¹³C NMR in CDCl₃

100	170	150	120	110	00	70	50		10	10	20	, <u>F</u> O	70	00	110	190	150	170	100
190	170	100	100.	110	30	70	00	au.	f1 (r	-10 nnm)	-30	-90	-70	-90	-110.	-130	-100	-170	-130

---.70

162 MHz, ³¹P NMR in CDCl₃

methyl (2R,3S)-3-((dimethoxyphosphoryl)oxy)-2-((1,1-dimethylethyl)sulfonamido)pent-4-enoate (4i)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

-0.58

162 MHz, ³¹P NMR in CDCl₃

ethyl (2R)-3-((diethoxyphosphoryl)oxy)-2-((4-methylphenyl)sulfonamido)pent-4-enoate (4j)

600 MHz, ¹H NMR in CDCl₃

150 MHz, ¹³C NMR in CDCl₃

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

162 MHz, ³¹P NMR in CDCl₃

Appendix II

Crystallographic Data

Crystallographic Data for 3a (CCDC 1873505)

Table 1. Crystal data and structure refinement for p21n_a_sq.

Identification code	p21n_a_sq				
Empirical formula	C23 H24 N O3 P S				
Formula weight	425.46				
Temperature	120(2) K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	P2 ₁ /n				
Unit cell dimensions	a = 14.4540(11) Å	α= 90°.			
	b = 14.7931(11) Å	β= 102.836(3)°.			
	c = 32.417(3) Å	$\gamma = 90^{\circ}$.			
Volume	6758.3(9) Å ³				
Z	12				
Density (calculated)	1.308 Mg/m ³				

Absorption coefficient	0.244 mm ⁻¹
F(000)	2808
Crystal size	0.250 x 0.210 x 0.180 mm ³
Theta range for data collection	2.923 to 26.000°.
Index ranges	-17<=h<=17, -17<=k<=18, -39<=l<=39
Reflections collected	321407
Independent reflections	13210 [R(int) = 0.0582]
Completeness to theta = 25.242°	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6804 and 0.6188
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	13210 / 0 / 787
Goodness-of-fit on F ²	1.074
Final R indices [I>2sigma(I)]	R1 = 0.0443, wR2 = 0.1149
R indices (all data)	R1 = 0.0527, wR2 = 0.1214
Extinction coefficient	n/a
Largest diff. peak and hole	0.955 and -0.733 e.Å ⁻³

	x	у	Z	U(eq)
C(1)	7168(1)	4277(1)	5571(1)	17(1)
C(2)	6961(2)	4082(2)	5142(1)	21(1)
C(3)	6041(2)	3864(2)	4942(1)	23(1)
C(4)	5321(2)	3838(1)	5163(1)	20(1)
C(5)	4315(2)	3621(2)	4944(1)	26(1)
C(6)	5548(2)	4029(2)	5594(1)	23(1)
C(7)	6462(2)	4250(2)	5800(1)	22(1)
C(8)	8242(2)	6180(2)	5386(1)	23(1)
C(9)	8225(2)	7190(2)	5411(1)	26(1)
C(10)	8362(2)	7656(2)	5761(1)	26(1)
C(11)	8286(2)	8673(2)	5784(1)	26(1)
C(12)	6217(2)	8829(1)	5559(1)	22(1)
C(13)	6231(2)	9016(2)	5137(1)	36(1)
C(14)	5414(3)	8905(2)	4827(1)	53(1)
C(15)	4592(2)	8615(2)	4932(1)	63(1)
C(16)	4568(2)	8431(2)	5351(1)	54(1)
C(17)	5387(2)	8538(2)	5665(1)	33(1)
C(18)	7353(1)	10182(1)	6082(1)	20(1)
C(19)	7562(2)	10785(2)	5785(1)	24(1)
C(20)	7650(2)	11704(2)	5876(1)	30(1)
C(21)	7523(2)	12022(2)	6260(1)	32(1)
C(22)	7304(2)	11431(2)	6556(1)	32(1)
C(23)	7224(2)	10509(2)	6468(1)	26(1)
C(24)	5392(2)	3593(1)	7344(1)	20(1)
C(25)	5942(2)	3283(2)	7723(1)	27(1)
C(26)	5515(2)	3093(2)	8056(1)	32(1)
C(27)	4551(2)	3212(2)	8019(1)	32(1)
C(28)	4097(3)	2984(2)	8383(1)	47(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **3a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(29)	4019(2)	3544(2)	7640(1)	36(1)
C(30)	4426(2)	3730(2)	7301(1)	29(1)
C(31)	6742(2)	5338(2)	7263(1)	23(1)
C(32)	6786(2)	6320(2)	7158(1)	22(1)
C(33)	6425(2)	6958(2)	7357(1)	20(1)
C(34)	6352(1)	7938(1)	7233(1)	19(1)
C(35)	3685(2)	7804(2)	7466(1)	31(1)
C(36)	4619(2)	8109(1)	7532(1)	21(1)
C(37)	3770(2)	7846(2)	8214(1)	42(1)
C(38)	3265(2)	7672(2)	7808(1)	41(1)
C(39)	4693(2)	8148(2)	8283(1)	39(1)
C(40)	5123(2)	8275(2)	7944(1)	29(1)
C(41)	5101(1)	9456(1)	6964(1)	18(1)
C(42)	4608(2)	9758(2)	6569(1)	23(1)
C(43)	4561(2)	10676(2)	6479(1)	31(1)
C(44)	5008(2)	11293(2)	6776(1)	34(1)
C(45)	5512(2)	10996(2)	7170(1)	29(1)
C(46)	5555(2)	10083(2)	7263(1)	23(1)
C(47)	1364(2)	10067(1)	5891(1)	18(1)
C(48)	407(2)	10279(2)	5819(1)	24(1)
C(49)	20(2)	10505(2)	6161(1)	28(1)
C(50)	562(2)	10512(2)	6572(1)	27(1)
C(51)	104(2)	10727(2)	6934(1)	39(1)
C(52)	1517(2)	10303(2)	6633(1)	31(1)
C(53)	1923(2)	10078(2)	6298(1)	25(1)
C(54)	823(2)	8251(1)	5310(1)	22(1)
C(55)	941(2)	7255(1)	5251(1)	19(1)
C(56)	776(1)	6647(1)	5521(1)	17(1)
C(57)	961(1)	5651(1)	5496(1)	16(1)
C(58)	2134(2)	4118(1)	5835(1)	16(1)
C(59)	1375(2)	3528(2)	5702(1)	24(1)
C(60)	1545(2)	2610(2)	5674(1)	29(1)
C(61)	2460(2)	2278(2)	5776(1)	29(1)

C(62)	3213(2)	2858(2)	5911(1)	29(1)
C(63)	3055(2)	3777(2)	5941(1)	24(1)
C(64)	786(2)	5394(2)	6468(1)	26(1)
C(65)	1703(2)	5473(1)	6404(1)	17(1)
C(66)	2442(2)	5662(2)	6747(1)	30(1)
C(67)	2264(2)	5757(2)	7146(1)	41(1)
C(68)	1351(2)	5680(2)	7207(1)	38(1)
C(69)	615(2)	5504(2)	6867(1)	34(1)
N(1)	8287(1)	5752(1)	5802(1)	23(1)
N(2)	6107(1)	4889(1)	6904(1)	20(1)
N(3)	1778(1)	8661(1)	5416(1)	19(1)
O(1)	7172(1)	8447(1)	6361(1)	26(1)
O(2)	4587(1)	7743(1)	6703(1)	23(1)
O(3)	2875(1)	5823(1)	5873(1)	17(1)
O(4)	8977(1)	4347(1)	5591(1)	25(1)
O(5)	8450(1)	4426(1)	6266(1)	30(1)
O(6)	6832(1)	3376(1)	7008(1)	26(1)
O(7)	5245(1)	3605(1)	6533(1)	25(1)
O(8)	2871(1)	9938(1)	5589(1)	26(1)
O(9)	1313(1)	10151(1)	5090(1)	30(1)
P(1)	7242(1)	8983(1)	5978(1)	18(1)
P(2)	5122(1)	8262(1)	7075(1)	16(1)
P(3)	1990(1)	5316(1)	5896(1)	14(1)
S(1)	8303(1)	4652(1)	5828(1)	20(1)
S(2)	5925(1)	3818(1)	6915(1)	18(1)
S(3)	1874(1)	9746(1)	5467(1)	19(1)

C(1)-C(2)	1.387(3)
C(1)-C(7)	1.389(3)
C(1)-S(1)	1.757(2)
C(2)-C(3)	1.383(3)
C(2)-H(2)	0.9500
C(3)-C(4)	1.389(3)
C(3)-H(3)	0.9500
C(4)-C(6)	1.390(3)
C(4)-C(5)	1.505(3)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.381(3)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-N(1)	1.476(3)
C(8)-C(9)	1.497(3)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(10)	1.305(3)
C(9)-H(9)	0.9500
C(10)-C(11)	1.512(3)
C(10)-H(10)	0.9500
C(11)-P(1)	1.819(2)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(17)	1.390(3)
C(12)-C(13)	1.398(3)
C(12)-P(1)	1.789(2)
C(13)-C(14)	1.379(4)
C(13)-H(13)	0.9500

Table 3. Bond lengths [Å] and angles $[\circ]$ for **3a**.

C(14)-C(15)	1.375(6)
C(14)-H(14)	0.9500
C(15)-C(16)	1.391(6)
C(15)-H(15)	0.9500
C(16)-C(17)	1.389(4)
C(16)-H(16)	0.9500
С(17)-Н(17)	0.9500
C(18)-C(23)	1.391(3)
C(18)-C(19)	1.393(3)
C(18)-P(1)	1.806(2)
C(19)-C(20)	1.390(3)
C(19)-H(19)	0.9500
C(20)-C(21)	1.381(4)
C(20)-H(20)	0.9500
C(21)-C(22)	1.387(4)
С(21)-Н(21)	0.9500
C(22)-C(23)	1.393(3)
C(22)-H(22)	0.9500
C(23)-H(23)	0.9500
C(24)-C(30)	1.387(3)
C(24)-C(25)	1.385(3)
C(24)-S(2)	1.764(2)
C(25)-C(26)	1.385(3)
C(25)-H(25)	0.9500
C(26)-C(27)	1.382(4)
C(26)-H(26)	0.9500
C(27)-C(29)	1.385(4)
C(27)-C(28)	1.511(3)
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
C(29)-C(30)	1.384(3)
C(29)-H(29)	0.9500

C(30)-H(30)	0.9500
C(31)-N(2)	1.471(3)
C(31)-C(32)	1.497(3)
C(31)-H(31A)	0.9900
C(31)-H(31B)	0.9900
C(32)-C(33)	1.314(3)
C(32)-H(32)	0.9500
C(33)-C(34)	1.502(3)
С(33)-Н(33)	0.9500
C(34)-P(2)	1.803(2)
C(34)-H(34A)	0.9900
C(34)-H(34B)	0.9900
C(35)-C(38)	1.389(4)
C(35)-C(36)	1.395(3)
C(35)-H(35)	0.9500
C(36)-C(40)	1.394(3)
C(36)-P(2)	1.803(2)
C(37)-C(39)	1.377(4)
C(37)-C(38)	1.380(4)
C(37)-H(37)	0.9500
C(38)-H(38)	0.9500
C(39)-C(40)	1.388(3)
C(39)-H(39)	0.9500
C(40)-H(40)	0.9500
C(41)-C(42)	1.393(3)
C(41)-C(46)	1.395(3)
C(41)-P(2)	1.801(2)
C(42)-C(43)	1.389(3)
C(42)-H(42)	0.9500
C(43)-C(44)	1.377(4)
C(43)-H(43)	0.9500
C(44)-C(45)	1.394(4)
C(44)-H(44)	0.9500
C(45)-C(46)	1.383(3)
--------------	----------
C(45)-H(45)	0.9500
C(46)-H(46)	0.9500
C(47)-C(53)	1.385(3)
C(47)-C(48)	1.388(3)
C(47)-S(3)	1.763(2)
C(48)-C(49)	1.387(3)
C(48)-H(48)	0.9500
C(49)-C(50)	1.388(4)
C(49)-H(49)	0.9500
C(50)-C(52)	1.386(3)
C(50)-C(51)	1.503(3)
C(51)-H(51A)	0.9800
C(51)-H(51B)	0.9800
C(51)-H(51C)	0.9800
C(52)-C(53)	1.385(3)
C(52)-H(52)	0.9500
C(53)-H(53)	0.9500
C(54)-N(3)	1.476(3)
C(54)-C(55)	1.500(3)
C(54)-H(54A)	0.9900
C(54)-H(54B)	0.9900
C(55)-C(56)	1.313(3)
C(55)-H(55)	0.9500
C(56)-C(57)	1.502(3)
C(56)-H(56)	0.9500
C(57)-P(3)	1.813(2)
C(57)-H(57A)	0.9900
C(57)-H(57B)	0.9900
C(58)-C(59)	1.392(3)
C(58)-C(63)	1.393(3)
C(58)-P(3)	1.801(2)
C(59)-C(60)	1.387(3)

C(59)-H(59)	0.9500
C(60)-C(61)	1.381(4)
С(60)-Н(60)	0.9500
C(61)-C(62)	1.379(3)
C(61)-H(61)	0.9500
C(62)-C(63)	1.385(3)
C(62)-H(62)	0.9500
С(63)-Н(63)	0.9500
C(64)-C(69)	1.379(3)
C(64)-C(65)	1.391(3)
C(64)-H(64)	0.9500
C(65)-C(66)	1.389(3)
C(65)-P(3)	1.799(2)
C(66)-C(67)	1.381(3)
C(66)-H(66)	0.9500
C(67)-C(68)	1.381(4)
C(67)-H(67)	0.9500
C(68)-C(69)	1.378(4)
C(68)-H(68)	0.9500
C(69)-H(69)	0.9500
N(1)-S(1)	1.6287(19)
N(1)-H(1)	0.8800
N(2)-S(2)	1.6081(18)
N(2)-H(2A)	0.8800
N(3)-S(3)	1.6167(18)
N(3)-H(3A)	0.8800
O(1)-P(1)	1.4941(16)
O(2)-P(2)	1.4926(15)
O(3)-P(3)	1.4983(14)
O(4)-S(1)	1.4430(16)
O(5)-S(1)	1.4281(17)
O(6)-S(2)	1.4354(16)
O(7)-S(2)	1.4342(16)

O(8)-S(3)	1.4349(17)
O(9)-S(3)	1.4396(17)
C(2)-C(1)-C(7)	120.70(19)
C(2)-C(1)-S(1)	120.74(16)
C(7)-C(1)-S(1)	118.37(16)
C(3)-C(2)-C(1)	119.33(19)
C(3)-C(2)-H(2)	120.3
C(1)-C(2)-H(2)	120.3
C(2)-C(3)-C(4)	121.1(2)
C(2)-C(3)-H(3)	119.5
C(4)-C(3)-H(3)	119.5
C(3)-C(4)-C(6)	118.45(19)
C(3)-C(4)-C(5)	121.1(2)
C(6)-C(4)-C(5)	120.4(2)
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(7)-C(6)-C(4)	121.5(2)
C(7)-C(6)-H(6)	119.3
C(4)-C(6)-H(6)	119.3
C(6)-C(7)-C(1)	118.9(2)
C(6)-C(7)-H(7)	120.5
C(1)-C(7)-H(7)	120.5
N(1)-C(8)-C(9)	112.17(18)
N(1)-C(8)-H(8A)	109.2
C(9)-C(8)-H(8A)	109.2
N(1)-C(8)-H(8B)	109.2
C(9)-C(8)-H(8B)	109.2
H(8A)-C(8)-H(8B)	107.9

C(10)-C(9)-C(8)	125.0(2)
C(10)-C(9)-H(9)	117.5
C(8)-C(9)-H(9)	117.5
C(9)-C(10)-C(11)	124.7(2)
C(9)-C(10)-H(10)	117.7
С(11)-С(10)-Н(10)	117.7
C(10)-C(11)-P(1)	109.98(15)
С(10)-С(11)-Н(11А)	109.7
P(1)-C(11)-H(11A)	109.7
C(10)-C(11)-H(11B)	109.7
P(1)-C(11)-H(11B)	109.7
H(11A)-C(11)-H(11B)	108.2
C(17)-C(12)-C(13)	120.3(2)
C(17)-C(12)-P(1)	117.75(19)
C(13)-C(12)-P(1)	121.93(19)
C(14)-C(13)-C(12)	119.5(3)
С(14)-С(13)-Н(13)	120.2
С(12)-С(13)-Н(13)	120.2
C(15)-C(14)-C(13)	120.2(3)
C(15)-C(14)-H(14)	119.9
C(13)-C(14)-H(14)	119.9
C(14)-C(15)-C(16)	120.9(3)
C(14)-C(15)-H(15)	119.6
C(16)-C(15)-H(15)	119.6
C(17)-C(16)-C(15)	119.4(3)
C(17)-C(16)-H(16)	120.3
C(15)-C(16)-H(16)	120.3
C(16)-C(17)-C(12)	119.7(3)
С(16)-С(17)-Н(17)	120.2
С(12)-С(17)-Н(17)	120.2
C(23)-C(18)-C(19)	119.4(2)
C(23)-C(18)-P(1)	118.97(17)
C(19)-C(18)-P(1)	121.59(17)

C(20)-C(19)-C(18)	120.2(2)
С(20)-С(19)-Н(19)	119.9
С(18)-С(19)-Н(19)	119.9
C(21)-C(20)-C(19)	120.0(2)
С(21)-С(20)-Н(20)	120.0
С(19)-С(20)-Н(20)	120.0
C(20)-C(21)-C(22)	120.4(2)
C(20)-C(21)-H(21)	119.8
С(22)-С(21)-Н(21)	119.8
C(21)-C(22)-C(23)	119.8(2)
С(21)-С(22)-Н(22)	120.1
С(23)-С(22)-Н(22)	120.1
C(18)-C(23)-C(22)	120.2(2)
C(18)-C(23)-H(23)	119.9
C(22)-C(23)-H(23)	119.9
C(30)-C(24)-C(25)	120.2(2)
C(30)-C(24)-S(2)	120.02(17)
C(25)-C(24)-S(2)	119.79(18)
C(26)-C(25)-C(24)	119.4(2)
C(26)-C(25)-H(25)	120.3
С(24)-С(25)-Н(25)	120.3
C(27)-C(26)-C(25)	121.4(2)
С(27)-С(26)-Н(26)	119.3
С(25)-С(26)-Н(26)	119.3
C(26)-C(27)-C(29)	118.2(2)
C(26)-C(27)-C(28)	120.5(3)
C(29)-C(27)-C(28)	121.3(3)
C(27)-C(28)-H(28A)	109.5
C(27)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
C(27)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5

C(30)-C(29)-C(27)	121.5(2)
С(30)-С(29)-Н(29)	119.2
C(27)-C(29)-H(29)	119.2
C(29)-C(30)-C(24)	119.2(2)
C(29)-C(30)-H(30)	120.4
C(24)-C(30)-H(30)	120.4
N(2)-C(31)-C(32)	108.01(17)
N(2)-C(31)-H(31A)	110.1
C(32)-C(31)-H(31A)	110.1
N(2)-C(31)-H(31B)	110.1
C(32)-C(31)-H(31B)	110.1
H(31A)-C(31)-H(31B)	108.4
C(33)-C(32)-C(31)	122.9(2)
C(33)-C(32)-H(32)	118.5
С(31)-С(32)-Н(32)	118.5
C(32)-C(33)-C(34)	125.0(2)
С(32)-С(33)-Н(33)	117.5
C(34)-C(33)-H(33)	117.5
C(33)-C(34)-P(2)	109.86(14)
C(33)-C(34)-H(34A)	109.7
P(2)-C(34)-H(34A)	109.7
C(33)-C(34)-H(34B)	109.7
P(2)-C(34)-H(34B)	109.7
H(34A)-C(34)-H(34B)	108.2
C(38)-C(35)-C(36)	120.2(2)
C(38)-C(35)-H(35)	119.9
C(36)-C(35)-H(35)	119.9
C(40)-C(36)-C(35)	119.0(2)
C(40)-C(36)-P(2)	123.07(17)
C(35)-C(36)-P(2)	117.91(18)
C(39)-C(37)-C(38)	120.3(2)
С(39)-С(37)-Н(37)	119.9
С(38)-С(37)-Н(37)	119.9

C(37)-C(38)-C(35)	120.1(3)
C(37)-C(38)-H(38)	120.0
C(35)-C(38)-H(38)	120.0
C(37)-C(39)-C(40)	120.2(3)
С(37)-С(39)-Н(39)	119.9
C(40)-C(39)-H(39)	119.9
C(39)-C(40)-C(36)	120.2(2)
C(39)-C(40)-H(40)	119.9
C(36)-C(40)-H(40)	119.9
C(42)-C(41)-C(46)	119.4(2)
C(42)-C(41)-P(2)	118.70(16)
C(46)-C(41)-P(2)	121.89(17)
C(43)-C(42)-C(41)	119.8(2)
C(43)-C(42)-H(42)	120.1
C(41)-C(42)-H(42)	120.1
C(44)-C(43)-C(42)	120.5(2)
C(44)-C(43)-H(43)	119.7
C(42)-C(43)-H(43)	119.7
C(43)-C(44)-C(45)	120.1(2)
C(43)-C(44)-H(44)	120.0
C(45)-C(44)-H(44)	120.0
C(46)-C(45)-C(44)	119.8(2)
C(46)-C(45)-H(45)	120.1
C(44)-C(45)-H(45)	120.1
C(45)-C(46)-C(41)	120.4(2)
C(45)-C(46)-H(46)	119.8
C(41)-C(46)-H(46)	119.8
C(53)-C(47)-C(48)	120.4(2)
C(53)-C(47)-S(3)	119.31(16)
C(48)-C(47)-S(3)	120.26(17)
C(49)-C(48)-C(47)	119.0(2)
C(49)-C(48)-H(48)	120.5
C(47)-C(48)-H(48)	120.5

C(48)-C(49)-C(50)	121.8(2)
C(48)-C(49)-H(49)	119.1
C(50)-C(49)-H(49)	119.1
C(52)-C(50)-C(49)	117.9(2)
C(52)-C(50)-C(51)	122.2(2)
C(49)-C(50)-C(51)	119.9(2)
C(50)-C(51)-H(51A)	109.5
C(50)-C(51)-H(51B)	109.5
H(51A)-C(51)-H(51B)	109.5
C(50)-C(51)-H(51C)	109.5
H(51A)-C(51)-H(51C)	109.5
H(51B)-C(51)-H(51C)	109.5
C(50)-C(52)-C(53)	121.5(2)
C(50)-C(52)-H(52)	119.3
С(53)-С(52)-Н(52)	119.3
C(47)-C(53)-C(52)	119.4(2)
С(47)-С(53)-Н(53)	120.3
С(52)-С(53)-Н(53)	120.3
N(3)-C(54)-C(55)	107.84(17)
N(3)-C(54)-H(54A)	110.1
C(55)-C(54)-H(54A)	110.1
N(3)-C(54)-H(54B)	110.1
C(55)-C(54)-H(54B)	110.1
H(54A)-C(54)-H(54B)	108.5
C(56)-C(55)-C(54)	123.0(2)
C(56)-C(55)-H(55)	118.5
C(54)-C(55)-H(55)	118.5
C(55)-C(56)-C(57)	125.17(19)
C(55)-C(56)-H(56)	117.4
C(57)-C(56)-H(56)	117.4
C(56)-C(57)-P(3)	110.89(14)
C(56)-C(57)-H(57A)	109.5
P(3)-C(57)-H(57A)	109.5

C(56)-C(57)-H(57B)	109.5
P(3)-C(57)-H(57B)	109.5
H(57A)-C(57)-H(57B)	108.0
C(59)-C(58)-C(63)	119.57(19)
C(59)-C(58)-P(3)	123.24(16)
C(63)-C(58)-P(3)	117.15(16)
C(60)-C(59)-C(58)	119.7(2)
C(60)-C(59)-H(59)	120.2
С(58)-С(59)-Н(59)	120.2
C(61)-C(60)-C(59)	120.4(2)
C(61)-C(60)-H(60)	119.8
C(59)-C(60)-H(60)	119.8
C(62)-C(61)-C(60)	120.0(2)
C(62)-C(61)-H(61)	120.0
C(60)-C(61)-H(61)	120.0
C(61)-C(62)-C(63)	120.2(2)
C(61)-C(62)-H(62)	119.9
C(63)-C(62)-H(62)	119.9
C(62)-C(63)-C(58)	120.1(2)
C(62)-C(63)-H(63)	120.0
C(58)-C(63)-H(63)	120.0
C(69)-C(64)-C(65)	120.4(2)
C(69)-C(64)-H(64)	119.8
C(65)-C(64)-H(64)	119.8
C(66)-C(65)-C(64)	119.0(2)
C(66)-C(65)-P(3)	117.83(17)
C(64)-C(65)-P(3)	123.11(16)
C(67)-C(66)-C(65)	120.1(2)
C(67)-C(66)-H(66)	119.9
C(65)-C(66)-H(66)	119.9
C(66)-C(67)-C(68)	120.5(2)
C(66)-C(67)-H(67)	119.7
C(68)-C(67)-H(67)	119.7

C(69)-C(68)-C(67)	119.6(2)
C(69)-C(68)-H(68)	120.2
C(67)-C(68)-H(68)	120.2
C(64)-C(69)-C(68)	120.4(2)
C(64)-C(69)-H(69)	119.8
C(68)-C(69)-H(69)	119.8
C(8)-N(1)-S(1)	118.31(15)
C(8)-N(1)-H(1)	120.8
S(1)-N(1)-H(1)	120.8
C(31)-N(2)-S(2)	120.23(14)
C(31)-N(2)-H(2A)	119.9
S(2)-N(2)-H(2A)	119.9
C(54)-N(3)-S(3)	119.07(14)
C(54)-N(3)-H(3A)	120.5
S(3)-N(3)-H(3A)	120.5
O(1)-P(1)-C(12)	111.46(10)
O(1)-P(1)-C(18)	112.74(10)
C(12)-P(1)-C(18)	106.91(10)
O(1)-P(1)-C(11)	111.63(10)
C(12)-P(1)-C(11)	108.35(11)
C(18)-P(1)-C(11)	105.42(10)
O(2)-P(2)-C(41)	111.11(9)
O(2)-P(2)-C(34)	113.11(9)
C(41)-P(2)-C(34)	106.83(10)
O(2)-P(2)-C(36)	111.65(10)
C(41)-P(2)-C(36)	107.21(10)
C(34)-P(2)-C(36)	106.58(10)
O(3)-P(3)-C(65)	110.72(9)
O(3)-P(3)-C(58)	111.50(9)
C(65)-P(3)-C(58)	106.54(9)
O(3)-P(3)-C(57)	113.64(9)
C(65)-P(3)-C(57)	107.46(10)
C(58)-P(3)-C(57)	106.61(9)

O(5)-S(1)-O(4)	119.27(10)
O(5)-S(1)-N(1)	106.53(10)
O(4)-S(1)-N(1)	106.69(10)
O(5)-S(1)-C(1)	108.33(10)
O(4)-S(1)-C(1)	108.57(10)
N(1)-S(1)-C(1)	106.81(10)
O(7)-S(2)-O(6)	119.99(10)
O(7)-S(2)-N(2)	106.32(9)
O(6)-S(2)-N(2)	107.89(10)
O(7)-S(2)-C(24)	107.64(10)
O(6)-S(2)-C(24)	106.67(10)
N(2)-S(2)-C(24)	107.84(10)
O(8)-S(3)-O(9)	119.44(10)
O(8)-S(3)-N(3)	106.39(10)
O(9)-S(3)-N(3)	107.92(10)
O(8)-S(3)-C(47)	107.51(10)
O(9)-S(3)-C(47)	107.28(10)
N(3)-S(3)-C(47)	107.82(10)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	13(1)	14(1)	23(1)	0(1)	3(1)	-1(1)
C(2)	19(1)	21(1)	24(1)	-3(1)	9(1)	-3(1)
C(3)	25(1)	25(1)	18(1)	-4(1)	5(1)	-4(1)
C(4)	18(1)	16(1)	23(1)	2(1)	2(1)	-2(1)
C(5)	19(1)	29(1)	30(1)	0(1)	0(1)	-3(1)
C(6)	18(1)	31(1)	23(1)	2(1)	8(1)	-2(1)
C(7)	21(1)	28(1)	16(1)	-1(1)	4(1)	-3(1)
C(8)	20(1)	21(1)	31(1)	-3(1)	9(1)	0(1)
C(9)	26(1)	27(1)	29(1)	3(1)	11(1)	1(1)
C(10)	23(1)	26(1)	30(1)	3(1)	7(1)	-2(1)
C(11)	24(1)	19(1)	37(1)	-2(1)	14(1)	-4(1)
C(12)	25(1)	15(1)	25(1)	-4(1)	3(1)	-1(1)
C(13)	52(2)	26(1)	26(1)	0(1)	-1(1)	-7(1)
C(14)	72(2)	32(2)	38(2)	-2(1)	-24(2)	1(2)
C(15)	49(2)	37(2)	77(3)	-16(2)	-40(2)	16(2)
C(16)	20(1)	33(2)	104(3)	-21(2)	-2(2)	4(1)
C(17)	24(1)	24(1)	53(2)	-9(1)	11(1)	1(1)
C(18)	16(1)	17(1)	24(1)	-4(1)	1(1)	1(1)
C(19)	23(1)	22(1)	26(1)	-2(1)	0(1)	3(1)
C(20)	27(1)	21(1)	38(1)	4(1)	-4(1)	0(1)
C(21)	28(1)	19(1)	44(2)	-9(1)	-5(1)	3(1)
C(22)	30(1)	31(1)	34(1)	-15(1)	2(1)	2(1)
C(23)	25(1)	25(1)	28(1)	-6(1)	4(1)	-1(1)
C(24)	26(1)	17(1)	15(1)	0(1)	2(1)	-2(1)
C(25)	29(1)	29(1)	21(1)	4(1)	2(1)	2(1)
C(26)	47(2)	30(1)	18(1)	6(1)	5(1)	-1(1)
C(27)	48(2)	24(1)	26(1)	-3(1)	16(1)	-13(1)
C(28)	74(2)	37(2)	40(2)	-2(1)	33(2)	-16(1)

Table 4.Anisotropic displacement parameters (Ųx 10³) for p21n_a_sq. The anisotropic displacement factorexponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C(29)	28(1)	46(2)	35(1)	-5(1)	11(1)	-10(1)
C(30)	25(1)	39(1)	23(1)	1(1)	2(1)	-2(1)
C(31)	22(1)	22(1)	22(1)	-1(1)	-2(1)	1(1)
C(32)	19(1)	23(1)	22(1)	0(1)	2(1)	-3(1)
C(33)	17(1)	23(1)	18(1)	2(1)	0(1)	-1(1)
C(34)	16(1)	20(1)	19(1)	-2(1)	1(1)	-2(1)
C(35)	22(1)	34(1)	37(1)	9(1)	6(1)	0(1)
C(36)	22(1)	15(1)	25(1)	1(1)	7(1)	0(1)
C(37)	58(2)	33(1)	47(2)	1(1)	36(2)	-1(1)
C(38)	26(1)	44(2)	57(2)	14(1)	21(1)	2(1)
C(39)	62(2)	32(1)	28(1)	-7(1)	20(1)	-13(1)
C(40)	37(1)	24(1)	27(1)	-5(1)	10(1)	-10(1)
C(41)	16(1)	16(1)	23(1)	-1(1)	7(1)	-1(1)
C(42)	20(1)	21(1)	26(1)	1(1)	3(1)	0(1)
C(43)	30(1)	26(1)	37(1)	9(1)	3(1)	1(1)
C(44)	34(1)	17(1)	51(2)	5(1)	12(1)	-1(1)
C(45)	32(1)	19(1)	38(1)	-7(1)	10(1)	-7(1)
C(46)	24(1)	21(1)	25(1)	-3(1)	7(1)	-3(1)
C(47)	20(1)	12(1)	22(1)	-1(1)	4(1)	-2(1)
C(48)	22(1)	18(1)	30(1)	2(1)	0(1)	-1(1)
C(49)	18(1)	20(1)	48(2)	-1(1)	9(1)	2(1)
C(50)	27(1)	18(1)	39(1)	-8(1)	16(1)	-3(1)
C(51)	40(2)	33(1)	52(2)	-12(1)	29(1)	-3(1)
C(52)	26(1)	44(2)	23(1)	-10(1)	5(1)	-3(1)
C(53)	17(1)	35(1)	24(1)	-5(1)	5(1)	2(1)
C(54)	22(1)	16(1)	25(1)	1(1)	-2(1)	-1(1)
C(55)	21(1)	16(1)	17(1)	-2(1)	1(1)	-1(1)
C(56)	15(1)	17(1)	18(1)	-2(1)	2(1)	1(1)
C(57)	15(1)	15(1)	16(1)	0(1)	1(1)	-1(1)
C(58)	21(1)	13(1)	16(1)	0(1)	5(1)	-1(1)
C(59)	21(1)	19(1)	31(1)	-1(1)	3(1)	-2(1)
C(60)	33(1)	16(1)	36(1)	-3(1)	4(1)	-7(1)
C(61)	39(1)	14(1)	32(1)	0(1)	7(1)	2(1)

C(62)	27(1)	20(1)	40(1)	3(1)	6(1)	7(1)
C(63)	21(1)	17(1)	32(1)	-1(1)	5(1)	-1(1)
C(64)	23(1)	33(1)	23(1)	-2(1)	6(1)	-9(1)
C(65)	21(1)	13(1)	18(1)	0(1)	5(1)	-2(1)
C(66)	23(1)	45(2)	20(1)	0(1)	3(1)	-6(1)
C(67)	38(2)	66(2)	17(1)	0(1)	2(1)	-14(1)
C(68)	50(2)	48(2)	21(1)	-3(1)	18(1)	-13(1)
C(69)	33(1)	43(2)	31(1)	-1(1)	17(1)	-10(1)
N(1)	23(1)	18(1)	28(1)	-9(1)	5(1)	-4(1)
N(2)	24(1)	16(1)	18(1)	3(1)	-1(1)	1(1)
N(3)	22(1)	13(1)	23(1)	-1(1)	4(1)	0(1)
O(1)	34(1)	23(1)	21(1)	1(1)	8(1)	-2(1)
O(2)	22(1)	19(1)	23(1)	-5(1)	-5(1)	0(1)
O(3)	16(1)	16(1)	20(1)	-1(1)	4(1)	-4(1)
O(4)	15(1)	22(1)	40(1)	-5(1)	7(1)	1(1)
O(5)	23(1)	35(1)	27(1)	2(1)	-3(1)	-2(1)
O(6)	29(1)	24(1)	27(1)	1(1)	7(1)	9(1)
O(7)	35(1)	24(1)	15(1)	-1(1)	1(1)	-4(1)
O(8)	27(1)	23(1)	31(1)	-5(1)	14(1)	-8(1)
O(9)	48(1)	20(1)	19(1)	7(1)	4(1)	-2(1)
P(1)	20(1)	15(1)	19(1)	-2(1)	7(1)	-2(1)
P(2)	15(1)	14(1)	17(1)	-2(1)	1(1)	-1(1)
P(3)	14(1)	11(1)	15(1)	0(1)	3(1)	-2(1)
S(1)	14(1)	18(1)	26(1)	-2(1)	2(1)	-1(1)
S(2)	23(1)	16(1)	15(1)	0(1)	2(1)	1(1)
S(3)	26(1)	14(1)	17(1)	1(1)	6(1)	-3(1)

	x	у	Z	U(eq)
H(2)	7448	4098	4988	25
H(3)	5898	3730	4648	27
H(5A)	4016	4159	4796	40
H(5B)	3961	3428	5153	40
H(5C)	4315	3133	4739	40
H(6)	5064	4007	5749	28
H(7)	6606	4381	6095	26
H(8A)	7664	5969	5184	28
H(8B)	8799	5988	5277	28
H(9)	8106	7516	5152	32
H(10)	8521	7333	6021	31
H(11A)	8241	8936	5499	31
H(11B)	8862	8919	5975	31
H(13)	6799	9217	5065	43
H(14)	5420	9029	4540	64
H(15)	4034	8540	4717	75
H(16)	3996	8234	5421	65
H(17)	5379	8413	5952	40
H(19)	7646	10567	5520	29
H(20)	7797	12112	5673	36
H(21)	7586	12650	6321	39
H(22)	7210	11654	6819	39
H(23)	7081	10102	6672	32
H(25)	6606	3202	7755	32
H(26)	5892	2875	8315	39
H(28A)	4190	2340	8452	71
H(28B)	3417	3116	8303	71

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **3a**.

H(28C)	4390	3347	8630	71
H(29)	3359	3647	7613	43
H(30)	4048	3949	7043	35
H(31A)	7384	5068	7313	28
H(31B)	6497	5263	7523	28
H(32)	7089	6490	6938	26
H(33)	6193	6786	7598	24
H(34A)	6669	8039	6995	23
H(34B)	6675	8314	7475	23
H(35)	3334	7685	7187	37
H(37)	3480	7759	8446	51
H(38)	2629	7461	7762	49
H(39)	5037	8268	8563	47
H(40)	5762	8477	7994	34
H(42)	4304	9336	6362	27
H(43)	4219	10882	6210	37
H(44)	4972	11920	6711	40
H(45)	5825	11420	7374	35
H(46)	5896	9881	7532	28
H(48)	22	10270	5541	29
H(49)	-633	10660	6112	34
H(51A)	-100	10165	7047	58
H(51B)	-447	11118	6834	58
H(51C)	562	11038	7157	58
H(52)	1903	10315	6912	37
H(53)	2578	9933	6347	30
H(54A)	445	8522	5047	26
H(54B)	489	8359	5541	26
H(55)	1144	7056	5007	22
H(56)	520	6853	5750	20
H(57A)	1066	5502	5212	19
H(57B)	398	5309	5536	19
H(59)	745	3754	5631	29

H(60)	1028	2207	5583	35
H(61)	2571	1649	5752	34
H(62)	3841	2627	5984	35
H(63)	3575	4175	6035	28
H(64)	275	5265	6235	32
H(66)	3070	5727	6708	36
H(67)	2774	5875	7381	49
H(68)	1232	5750	7482	45
H(69)	-15	5456	6907	41
H(1)	8305	6082	6029	27
H(2A)	5826	5208	6682	24
H(3A)	2288	8319	5452	23

Table 6. Torsion angles [°] for **3a**.

C(7)-C(1)-C(2)-C(3)	0.4(3)
S(1)-C(1)-C(2)-C(3)	-174.44(17)
C(1)-C(2)-C(3)-C(4)	0.0(3)
C(2)-C(3)-C(4)-C(6)	-0.6(3)
C(2)-C(3)-C(4)-C(5)	178.7(2)
C(3)-C(4)-C(6)-C(7)	0.7(3)
C(5)-C(4)-C(6)-C(7)	-178.6(2)
C(4)-C(6)-C(7)-C(1)	-0.3(3)
C(2)-C(1)-C(7)-C(6)	-0.3(3)
S(1)-C(1)-C(7)-C(6)	174.67(17)
N(1)-C(8)-C(9)-C(10)	8.7(3)
C(8)-C(9)-C(10)-C(11)	-176.1(2)
C(9)-C(10)-C(11)-P(1)	109.9(2)
C(17)-C(12)-C(13)-C(14)	-0.3(4)
P(1)-C(12)-C(13)-C(14)	-178.5(2)
C(12)-C(13)-C(14)-C(15)	0.2(4)
C(13)-C(14)-C(15)-C(16)	0.1(5)
C(14)-C(15)-C(16)-C(17)	-0.3(4)
C(15)-C(16)-C(17)-C(12)	0.2(4)
C(13)-C(12)-C(17)-C(16)	0.1(4)
P(1)-C(12)-C(17)-C(16)	178.41(19)
C(23)-C(18)-C(19)-C(20)	0.5(3)
P(1)-C(18)-C(19)-C(20)	-179.54(17)
C(18)-C(19)-C(20)-C(21)	-0.4(3)
C(19)-C(20)-C(21)-C(22)	-0.3(4)
C(20)-C(21)-C(22)-C(23)	0.8(4)
C(19)-C(18)-C(23)-C(22)	0.0(3)
P(1)-C(18)-C(23)-C(22)	-179.95(18)
C(21)-C(22)-C(23)-C(18)	-0.6(4)
C(30)-C(24)-C(25)-C(26)	1.5(4)
S(2)-C(24)-C(25)-C(26)	-178.86(19)

C(24)-C(25)-C(26)-C(27)	-0.6(4)
C(25)-C(26)-C(27)-C(29)	-1.0(4)
C(25)-C(26)-C(27)-C(28)	178.8(2)
C(26)-C(27)-C(29)-C(30)	1.8(4)
C(28)-C(27)-C(29)-C(30)	-178.1(3)
C(27)-C(29)-C(30)-C(24)	-0.9(4)
C(25)-C(24)-C(30)-C(29)	-0.8(4)
S(2)-C(24)-C(30)-C(29)	179.6(2)
N(2)-C(31)-C(32)-C(33)	111.9(2)
C(31)-C(32)-C(33)-C(34)	-172.67(19)
C(32)-C(33)-C(34)-P(2)	115.5(2)
C(38)-C(35)-C(36)-C(40)	0.3(4)
C(38)-C(35)-C(36)-P(2)	179.8(2)
C(39)-C(37)-C(38)-C(35)	-0.3(4)
C(36)-C(35)-C(38)-C(37)	0.3(4)
C(38)-C(37)-C(39)-C(40)	-0.1(4)
C(37)-C(39)-C(40)-C(36)	0.7(4)
C(35)-C(36)-C(40)-C(39)	-0.7(4)
P(2)-C(36)-C(40)-C(39)	179.7(2)
C(46)-C(41)-C(42)-C(43)	-0.9(3)
P(2)-C(41)-C(42)-C(43)	178.44(18)
C(41)-C(42)-C(43)-C(44)	0.7(4)
C(42)-C(43)-C(44)-C(45)	0.1(4)
C(43)-C(44)-C(45)-C(46)	-0.6(4)
C(44)-C(45)-C(46)-C(41)	0.3(4)
C(42)-C(41)-C(46)-C(45)	0.4(3)
P(2)-C(41)-C(46)-C(45)	-178.92(18)
C(53)-C(47)-C(48)-C(49)	0.2(3)
S(3)-C(47)-C(48)-C(49)	178.24(17)
C(47)-C(48)-C(49)-C(50)	-1.0(3)
C(48)-C(49)-C(50)-C(52)	1.4(4)
C(48)-C(49)-C(50)-C(51)	-177.7(2)
C(49)-C(50)-C(52)-C(53)	-1.2(4)

C(51)-C(50)-C(52)-C(53)	177.9(2)
C(48)-C(47)-C(53)-C(52)	0.1(4)
S(3)-C(47)-C(53)-C(52)	-178.00(19)
C(50)-C(52)-C(53)-C(47)	0.4(4)
N(3)-C(54)-C(55)-C(56)	108.8(2)
C(54)-C(55)-C(56)-C(57)	-174.58(19)
C(55)-C(56)-C(57)-P(3)	106.5(2)
C(63)-C(58)-C(59)-C(60)	-0.6(3)
P(3)-C(58)-C(59)-C(60)	-178.23(18)
C(58)-C(59)-C(60)-C(61)	0.0(4)
C(59)-C(60)-C(61)-C(62)	0.7(4)
C(60)-C(61)-C(62)-C(63)	-0.7(4)
C(61)-C(62)-C(63)-C(58)	0.0(4)
C(59)-C(58)-C(63)-C(62)	0.7(3)
P(3)-C(58)-C(63)-C(62)	178.38(18)
C(69)-C(64)-C(65)-C(66)	0.0(4)
C(69)-C(64)-C(65)-P(3)	178.58(19)
C(64)-C(65)-C(66)-C(67)	0.9(4)
P(3)-C(65)-C(66)-C(67)	-177.7(2)
C(65)-C(66)-C(67)-C(68)	-1.2(4)
C(66)-C(67)-C(68)-C(69)	0.4(5)
C(65)-C(64)-C(69)-C(68)	-0.8(4)
C(67)-C(68)-C(69)-C(64)	0.6(4)
C(9)-C(8)-N(1)-S(1)	179.62(15)
C(32)-C(31)-N(2)-S(2)	178.86(15)
C(55)-C(54)-N(3)-S(3)	175.85(14)
C(17)-C(12)-P(1)-O(1)	22.1(2)
C(13)-C(12)-P(1)-O(1)	-159.58(19)
C(17)-C(12)-P(1)-C(18)	-101.47(19)
C(13)-C(12)-P(1)-C(18)	76.8(2)
C(17)-C(12)-P(1)-C(11)	145.35(18)
C(13)-C(12)-P(1)-C(11)	-36.4(2)
C(23)-C(18)-P(1)-O(1)	-9.4(2)

C(19)-C(18)-P(1)-O(1)	170.71(17)
C(23)-C(18)-P(1)-C(12)	113.45(18)
C(19)-C(18)-P(1)-C(12)	-66.5(2)
C(23)-C(18)-P(1)-C(11)	-131.39(18)
C(19)-C(18)-P(1)-C(11)	48.7(2)
C(10)-C(11)-P(1)-O(1)	47.0(2)
C(10)-C(11)-P(1)-C(12)	-76.11(19)
C(10)-C(11)-P(1)-C(18)	169.72(16)
C(42)-C(41)-P(2)-O(2)	0.9(2)
C(46)-C(41)-P(2)-O(2)	-179.78(17)
C(42)-C(41)-P(2)-C(34)	124.67(17)
C(46)-C(41)-P(2)-C(34)	-56.0(2)
C(42)-C(41)-P(2)-C(36)	-121.38(18)
C(46)-C(41)-P(2)-C(36)	58.0(2)
C(33)-C(34)-P(2)-O(2)	-60.95(17)
C(33)-C(34)-P(2)-C(41)	176.49(14)
C(33)-C(34)-P(2)-C(36)	62.11(17)
C(40)-C(36)-P(2)-O(2)	159.65(18)
C(35)-C(36)-P(2)-O(2)	-19.9(2)
C(40)-C(36)-P(2)-C(41)	-78.4(2)
C(35)-C(36)-P(2)-C(41)	102.03(19)
C(40)-C(36)-P(2)-C(34)	35.7(2)
C(35)-C(36)-P(2)-C(34)	-143.85(18)
C(66)-C(65)-P(3)-O(3)	-26.8(2)
C(64)-C(65)-P(3)-O(3)	154.60(18)
C(66)-C(65)-P(3)-C(58)	94.56(19)
C(64)-C(65)-P(3)-C(58)	-84.0(2)
C(66)-C(65)-P(3)-C(57)	-151.49(18)
C(64)-C(65)-P(3)-C(57)	30.0(2)
C(59)-C(58)-P(3)-O(3)	-157.61(17)
C(63)-C(58)-P(3)-O(3)	24.75(19)
C(59)-C(58)-P(3)-C(65)	81.5(2)
C(63)-C(58)-P(3)-C(65)	-96.15(18)

C(59)-C(58)-P(3)-C(57)	-33.1(2)
C(63)-C(58)-P(3)-C(57)	149.31(17)
C(56)-C(57)-P(3)-O(3)	-56.84(16)
C(56)-C(57)-P(3)-C(65)	66.02(16)
C(56)-C(57)-P(3)-C(58)	179.93(14)
C(8)-N(1)-S(1)-O(5)	173.91(15)
C(8)-N(1)-S(1)-O(4)	45.49(18)
C(8)-N(1)-S(1)-C(1)	-70.48(18)
C(2)-C(1)-S(1)-O(5)	-154.98(18)
C(7)-C(1)-S(1)-O(5)	30.1(2)
C(2)-C(1)-S(1)-O(4)	-24.1(2)
C(7)-C(1)-S(1)-O(4)	160.96(17)
C(2)-C(1)-S(1)-N(1)	90.62(19)
C(7)-C(1)-S(1)-N(1)	-84.34(19)
C(31)-N(2)-S(2)-O(7)	177.09(16)
C(31)-N(2)-S(2)-O(6)	-52.99(19)
C(31)-N(2)-S(2)-C(24)	61.88(19)
C(30)-C(24)-S(2)-O(7)	-33.7(2)
C(25)-C(24)-S(2)-O(7)	146.69(18)
C(30)-C(24)-S(2)-O(6)	-163.65(19)
C(25)-C(24)-S(2)-O(6)	16.7(2)
C(30)-C(24)-S(2)-N(2)	80.7(2)
C(25)-C(24)-S(2)-N(2)	-98.98(19)
C(54)-N(3)-S(3)-O(8)	177.41(15)
C(54)-N(3)-S(3)-O(9)	-53.27(18)
C(54)-N(3)-S(3)-C(47)	62.32(18)
C(53)-C(47)-S(3)-O(8)	-25.9(2)
C(48)-C(47)-S(3)-O(8)	156.07(17)
C(53)-C(47)-S(3)-O(9)	-155.51(18)
C(48)-C(47)-S(3)-O(9)	26.4(2)
C(53)-C(47)-S(3)-N(3)	88.48(19)
C(48)-C(47)-S(3)-N(3)	-89.58(19)

Crystallographic Data for 3c (CCDC 1872886)

Table 1. Crystal data and structure refinement for **3c**.

Empirical formula	$C_{27}H_{34}NO_4PS$	
Formula weight	499.58	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 8.159(2) Å	$\alpha = 116.598(8)^{\circ}$
	b = 13.097(4) Å	$\beta = 92.096(8)^{\circ}$
	c = 14.363(4) Å	$\gamma = 102.099(8)^{\circ}$
Volume	1326.9(6) Å ³	
Z	2	
Density (calculated)	1.250 Mg/m ³	
Absorption coefficient	0.215 mm ⁻¹	
F(000)	532	
Crystal size	0.332 x 0.325 x 0.198 mm ³	

Theta range for data collection	2.914 to 29.187°.
Index ranges	$-11 <\!\!=\!\!h <\!\!=\!\!11, -17 <\!\!=\!\!k <\!\!=\!\!17, -19 <\!\!=\!\!l <\!\!=\!\!19$
Reflections collected	44926
Independent reflections	7043 [R(int) = 0.0577]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7458 and 0.7005
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7043 / 2 / 322
Goodness-of-fit on F ²	1.045
Final R indices [I>2sigma(I)]	R1 = 0.0483, wR2 = 0.1160
R indices (all data)	R1 = 0.0727, wR2 = 0.1355
Extinction coefficient	0.0123(17)
Largest diff. peak and hole	0.433 and $-0.385 e^{-A^{-3}}$

				I I()
	Х	у	Z	U(eq)
C(1)	3888(4)	11344(2)	11111(2)	66(1)
C(2)	2899(3)	10389(2)	10062(2)	45(1)
C(3)	3164(3)	10475(2)	9158(2)	52(1)
C(4)	2262(3)	9619(2)	8181(2)	48(1)
C(5)	1086(3)	8648(2)	8111(2)	35(1)
C(6)	802(3)	8537(2)	9007(2)	47(1)
C(7)	1708(3)	9410(2)	9971(2)	54(1)
S(1)	-12(1)	7529(1)	6870(1)	38(1)
O(1)	-1773(2)	7220(2)	6949(2)	58(1)
O(2)	483(3)	7932(2)	6119(1)	56(1)
N(1)	673(2)	6390(2)	6628(1)	36(1)
C(8)	2484(3)	6445(2)	6549(2)	36(1)
C(9)	2799(2)	5762(2)	5443(1)	32(1)
C(10)	3843(2)	6207(2)	4967(1)	31(1)
C(11)	4226(2)	5493(2)	3882(1)	30(1)
P(1)	3121(1)	5683(1)	2877(1)	25(1)
O(3)	1227(2)	5336(1)	2788(1)	31(1)
C(12)	3909(2)	7205(2)	3165(1)	26(1)
C(13)	5610(2)	7793(2)	3574(1)	31(1)
C(14)	6222(2)	8965(2)	3793(2)	34(1)
C(15)	5110(3)	9535(2)	3584(2)	36(1)
C(16)	3418(3)	8962(2)	3156(2)	37(1)
C(17)	2820(2)	7791(2)	2956(2)	33(1)
C(18)	8049(3)	9596(2)	4249(2)	52(1)
C(19)	2263(3)	9608(3)	2924(3)	62(1)
C(20)	3810(2)	4798(2)	1658(1)	25(1)
C(21)	5504(2)	4759(2)	1590(1)	29(1)
C(22)	5981(2)	4077(2)	621(2)	32(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($Å^2 x \ 10^3$) for **3c**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(23)	4755(2)	3475(2)	-270(2)	33(1)
C(24)	3069(2)	3498(2)	-218(2)	33(1)
C(25)	2604(2)	4160(2)	755(1)	30(1)
C(26)	7797(3)	3999(2)	543(2)	48(1)
C(27)	1757(3)	2820(2)	-1195(2)	51(1)
O(1W)	8841(2)	6543(2)	3849(1)	56(1)

C(1)-C(2)	1.512(3)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(3)	1.374(3)
C(2)-C(7)	1.387(4)
C(3)-C(4)	1.391(3)
C(3)-H(3)	0.9500
C(4)-C(5)	1.383(3)
C(4)-H(4)	0.9500
C(5)-C(6)	1.381(3)
C(5)-S(1)	1.767(2)
C(6)-C(7)	1.387(3)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
S(1)-O(1)	1.4324(18)
S(1)-O(2)	1.4345(17)
S(1)-N(1)	1.5991(18)
N(1)-C(8)	1.475(3)
N(1)-H(1N)	0.83(3)
C(8)-C(9)	1.498(3)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(10)	1.314(3)
C(9)-H(9)	0.9500
C(10)-C(11)	1.501(2)
C(10)-H(10)	0.9500
C(11)-P(1)	1.8105(18)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
P(1)-O(3)	1.4999(13)

Table 3. Bond lengths [Å] and angles [°] for 3c.

P(1)-C(20)	1.8043(18)
P(1)-C(12)	1.8067(19)
C(12)-C(17)	1.394(2)
C(12)-C(13)	1.397(2)
C(13)-C(14)	1.392(3)
С(13)-Н(13)	0.9500
C(14)-C(15)	1.391(3)
C(14)-C(18)	1.504(3)
C(15)-C(16)	1.391(3)
С(15)-Н(15)	0.9500
C(16)-C(17)	1.398(3)
C(16)-C(19)	1.510(3)
С(17)-Н(17)	0.9500
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-C(25)	1.393(2)
C(20)-C(21)	1.399(2)
C(21)-C(22)	1.400(3)
C(21)-H(21)	0.9500
C(22)-C(23)	1.390(3)
C(22)-C(26)	1.510(3)
C(23)-C(24)	1.386(3)
C(23)-H(23)	0.9500
C(24)-C(25)	1.393(3)
C(24)-C(27)	1.510(3)
C(25)-H(25)	0.9500
C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800

C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800
O(1W)-H(1W)	0.896(10)
O(1W)-H(2W)	0.896(10)
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(3)-C(2)-C(7)	117.8(2)
C(3)-C(2)-C(1)	120.0(2)
C(7)-C(2)-C(1)	122.2(2)
C(2)-C(3)-C(4)	121.5(2)
C(2)-C(3)-H(3)	119.2
C(4)-C(3)-H(3)	119.2
C(5)-C(4)-C(3)	119.6(2)
C(5)-C(4)-H(4)	120.2
C(3)-C(4)-H(4)	120.2
C(6)-C(5)-C(4)	120.1(2)
C(6)-C(5)-S(1)	119.91(16)
C(4)-C(5)-S(1)	119.99(17)
C(5)-C(6)-C(7)	119.1(2)
C(5)-C(6)-H(6)	120.5
C(7)-C(6)-H(6)	120.5
C(2)-C(7)-C(6)	122.0(2)
C(2)-C(7)-H(7)	119.0
C(6)-C(7)-H(7)	119.0
O(1)-S(1)-O(2)	119.28(12)
O(1)-S(1)-N(1)	106.40(10)
O(2)-S(1)-N(1)	108.65(10)

O(1)-S(1)-C(5)	108.93(10)
O(2)-S(1)-C(5)	106.42(10)
N(1)-S(1)-C(5)	106.53(10)
C(8)-N(1)-S(1)	119.67(14)
C(8)-N(1)-H(1N)	119.1(19)
S(1)-N(1)-H(1N)	114.2(19)
N(1)-C(8)-C(9)	112.93(16)
N(1)-C(8)-H(8A)	109.0
C(9)-C(8)-H(8A)	109.0
N(1)-C(8)-H(8B)	109.0
C(9)-C(8)-H(8B)	109.0
H(8A)-C(8)-H(8B)	107.8
C(10)-C(9)-C(8)	124.28(18)
С(10)-С(9)-Н(9)	117.9
C(8)-C(9)-H(9)	117.9
C(9)-C(10)-C(11)	123.60(17)
C(9)-C(10)-H(10)	118.2
С(11)-С(10)-Н(10)	118.2
C(10)-C(11)-P(1)	113.31(13)
C(10)-C(11)-H(11A)	108.9
P(1)-C(11)-H(11A)	108.9
C(10)-C(11)-H(11B)	108.9
P(1)-C(11)-H(11B)	108.9
H(11A)-C(11)-H(11B)	107.7
O(3)-P(1)-C(20)	110.77(8)
O(3)-P(1)-C(12)	112.08(8)
C(20)-P(1)-C(12)	106.75(8)
O(3)-P(1)-C(11)	113.79(8)
C(20)-P(1)-C(11)	106.07(8)
C(12)-P(1)-C(11)	106.94(8)
C(17)-C(12)-C(13)	119.57(17)
C(17)-C(12)-P(1)	119.78(13)
C(13)-C(12)-P(1)	120.63(14)

C(14)-C(13)-C(12)	120.80(17)
С(14)-С(13)-Н(13)	119.6
С(12)-С(13)-Н(13)	119.6
C(15)-C(14)-C(13)	118.61(17)
C(15)-C(14)-C(18)	121.01(19)
C(13)-C(14)-C(18)	120.38(19)
C(16)-C(15)-C(14)	121.80(18)
С(16)-С(15)-Н(15)	119.1
С(14)-С(15)-Н(15)	119.1
C(15)-C(16)-C(17)	118.76(18)
C(15)-C(16)-C(19)	120.0(2)
C(17)-C(16)-C(19)	121.2(2)
C(12)-C(17)-C(16)	120.44(17)
С(12)-С(17)-Н(17)	119.8
С(16)-С(17)-Н(17)	119.8
C(14)-C(18)-H(18A)	109.5
C(14)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(14)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(16)-C(19)-H(19A)	109.5
C(16)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(16)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(25)-C(20)-C(21)	119.65(16)
C(25)-C(20)-P(1)	118.03(13)
C(21)-C(20)-P(1)	122.30(13)
C(20)-C(21)-C(22)	120.15(17)
C(20)-C(21)-H(21)	119.9
C(22)-C(21)-H(21)	119.9

C(23)-C(22)-C(21)	118.75(17)
C(23)-C(22)-C(26)	120.61(18)
C(21)-C(22)-C(26)	120.65(18)
C(24)-C(23)-C(22)	121.94(17)
C(24)-C(23)-H(23)	119.0
C(22)-C(23)-H(23)	119.0
C(23)-C(24)-C(25)	118.71(17)
C(23)-C(24)-C(27)	120.87(18)
C(25)-C(24)-C(27)	120.42(18)
C(20)-C(25)-C(24)	120.75(17)
C(20)-C(25)-H(25)	119.6
C(24)-C(25)-H(25)	119.6
C(22)-C(26)-H(26A)	109.5
C(22)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(22)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(24)-C(27)-H(27A)	109.5
C(24)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
C(24)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
H(1W)-O(1W)-H(2W)	105(3)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	70(2)	55(2)	45(1)	-1(1)	-1(1)	18(1)
C(2)	49(1)	39(1)	38(1)	6(1)	3(1)	18(1)
C(3)	63(2)	30(1)	50(1)	13(1)	2(1)	0(1)
C(4)	65(2)	34(1)	41(1)	18(1)	6(1)	2(1)
C(5)	42(1)	27(1)	34(1)	12(1)	7(1)	11(1)
C(6)	51(1)	47(1)	42(1)	24(1)	6(1)	2(1)
C(7)	63(2)	60(2)	38(1)	23(1)	8(1)	11(1)
S(1)	42(1)	31(1)	37(1)	12(1)	2(1)	7(1)
O(1)	40(1)	47(1)	66(1)	8(1)	3(1)	11(1)
O(2)	86(1)	43(1)	39(1)	22(1)	-2(1)	9(1)
N(1)	40(1)	28(1)	38(1)	14(1)	15(1)	6(1)
C(8)	38(1)	40(1)	26(1)	14(1)	6(1)	8(1)
C(9)	35(1)	30(1)	27(1)	12(1)	4(1)	6(1)
C(10)	34(1)	32(1)	25(1)	13(1)	3(1)	5(1)
C(11)	30(1)	35(1)	27(1)	16(1)	5(1)	9(1)
P(1)	21(1)	30(1)	25(1)	14(1)	6(1)	5(1)
O(3)	21(1)	38(1)	36(1)	18(1)	9(1)	6(1)
C(12)	22(1)	32(1)	25(1)	14(1)	6(1)	7(1)
C(13)	24(1)	38(1)	32(1)	17(1)	4(1)	7(1)
C(14)	29(1)	37(1)	30(1)	14(1)	4(1)	1(1)
C(15)	41(1)	33(1)	37(1)	19(1)	9(1)	6(1)
C(16)	38(1)	41(1)	40(1)	25(1)	9(1)	13(1)
C(17)	25(1)	42(1)	35(1)	22(1)	4(1)	8(1)
C(18)	34(1)	51(1)	61(2)	26(1)	-5(1)	-7(1)
C(19)	56(2)	65(2)	88(2)	53(2)	6(1)	22(1)
C(20)	24(1)	28(1)	26(1)	15(1)	6(1)	6(1)
C(21)	24(1)	35(1)	31(1)	17(1)	4(1)	8(1)
C(22)	29(1)	35(1)	37(1)	19(1)	10(1)	12(1)

Table 4. Anisotropic displacement parameters ($Å^2 \ge 10^3$) for **3c**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(23)	39(1)	31(1)	31(1)	14(1)	12(1)	12(1)
C(24)	34(1)	32(1)	28(1)	12(1)	3(1)	5(1)
C(25)	24(1)	34(1)	31(1)	16(1)	3(1)	5(1)
C(26)	35(1)	64(2)	52(1)	26(1)	17(1)	26(1)
C(27)	45(1)	56(1)	32(1)	7(1)	-3(1)	5(1)
O(1W)	40(1)	74(1)	49(1)	20(1)	5(1)	26(1)

Table 5. Hydrogen bonds for 3c [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1N)O(3)#1	0.83(3)	2.10(3)	2.923(2)	173(3)
O(1W)-H(1W)O(2)#2	0.896(10)	2.118(11)	3.013(3)	176(3)
O(1W)-H(2W)O(3)#2	0.896(10)	1.925(10)	2.821(2)	178(3)

#1 -x,-y+1,-z+1 #2 x+1,y,z

Crystallographic Data for cis-3s (CCDC 1872730)

Table 1. Crystal data and structure refinement for *cis*-3s.

Empirical formula	$C_{25}H_{28}NO_4PS$	
Formula weight	469.51	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/n$	
Unit cell dimensions	a = 9.766(2) Å	$\alpha = 90^{\circ}$
	b = 16.136(4) Å	$\beta = 99.178(5)^{\circ}$
	c = 15.584(4) Å	$\gamma = 90^{\circ}$
Volume	2424.3(10) Å ³	

Z	4
Density (calculated)	1.286 Mg/m ³
Absorption coefficient	0.230 mm ⁻¹
F(000)	992
Crystal size	0.265 x 0.202 x 0.089 mm ³
Theta range for data collection	2.934 to 24.150°.
Index ranges	-11<=h<=11, -18<=k<=18, -17<=l<=17
Reflections collected	38563
Independent reflections	3862 [R(int) = 0.2497]
Completeness to theta = 24.150°	99.7 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3862 / 289 / 299
Goodness-of-fit on F ²	1.124
Final R indices [I>2sigma(I)]	R1 = 0.1293, $wR2 = 0.2287$
R indices (all data)	R1 = 0.2742, wR2 = 0.3253
Largest diff. peak and hole	0.632 and $-0.344 \text{ e} \cdot \text{Å}^{-3}$

	Х	У	Z	U(eq)	
P(1)	4614(3)	7192(2)	5299(2)	58(1)	
O(1)	4215(8)	6315(4)	5117(5)	70(2)	
C(1)	3107(12)	7783(7)	5377(6)	58(2)	
C(2)	3016(13)	8643(7)	5201(8)	71(3)	
C(3)	1802(16)	9046(10)	5276(9)	98(4)	
C(4)	721(17)	8663(13)	5526(9)	110(5)	
C(5)	769(16)	7834(13)	5693(9)	109(5)	
C(6)	1983(13)	7404(9)	5607(8)	84(4)	
C(7)	5444(11)	7630(7)	4472(7)	58(3)	
C(8)	6321(14)	8298(8)	4578(8)	80(4)	
C(9)	6983(15)	8565(10)	3906(10)	98(4)	
C(10)	6678(16)	8204(10)	3105(9)	103(5)	
C(11)	5779(15)	7532(9)	2999(9)	90(4)	
C(12)	5159(13)	7267(7)	3666(7)	69(3)	
C(13)	5780(11)	7323(6)	6321(6)	54(2)	
C(14)	7109(12)	6878(7)	6289(8)	68(3)	
C(15)	7769(14)	6443(9)	6916(9)	94(4)	
C(16)	7199(15)	6232(7)	7722(7)	82(4)	
C(17)	6139(17)	6842(8)	7866(8)	108(5)	
C(18)	5126(13)	7068(7)	7084(7)	72(3)	
N(1)	6628(12)	5377(6)	7715(6)	76(3)	
S(1)	7595(5)	4616(2)	8089(2)	89(1)	
O(2)	6729(11)	3902(5)	8004(7)	109(3)	
O(3)	8296(11)	4822(5)	8924(5)	103(3)	
C(19)	8836(15)	4470(7)	7443(8)	73(3)	
C(20)	8421(15)	4253(9)	6579(9)	91(4)	
C(21)	9367(17)	4155(11)	6066(12)	117(5)	
C(22)	10742(18)	4203(11)	6303(13)	117(5)	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($Å^2 x \ 10^3$) for *cis*-3s. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(23)	11169(18)	4451(11)	7165(13)	123(5)
C(24)	10181(16)	4574(8)	7719(10)	97(4)
C(25)	11773(19)	4112(14)	5718(14)	179(9)
O(1W)	4975(15)	4924(6)	6105(7)	119(4)

P(1)-O(1)	1.483(7)
P(1)-C(1)	1.774(12)
P(1)-C(7)	1.775(11)
P(1)-C(13)	1.816(10)
C(1)-C(6)	1.354(15)
C(1)-C(2)	1.414(15)
C(2)-C(3)	1.374(17)
C(2)-H(2)	0.9500
C(3)-C(4)	1.33(2)
C(3)-H(3)	0.9500
C(4)-C(5)	1.36(2)
C(4)-H(4)	0.9500
C(5)-C(6)	1.399(19)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(7)-C(8)	1.370(15)
C(7)-C(12)	1.374(14)
C(8)-C(9)	1.385(17)
C(8)-H(8)	0.9500
C(9)-C(10)	1.366(18)
C(9)-H(9)	0.9500
C(10)-C(11)	1.389(18)
C(10)-H(10)	0.9500
C(11)-C(12)	1.352(16)
C(11)-H(11)	0.9500
C(12)-H(12)	0.9500
C(13)-C(14)	1.491(15)
C(13)-C(18)	1.495(15)
C(13)-H(13)	1.0000
C(14)-C(15)	1.291(15)
C(14)-H(14)	0.9500

Table 3. Bond lengths [Å] and angles [°] for *cis*-3s.

C(15)-C(16)	1.492(18)
C(15)-H(15)	0.9500
C(16)-C(17)	1.470(17)
C(16)-N(1)	1.488(15)
C(16)-H(16)	1.0000
C(17)-C(18)	1.487(16)
C(17)-H(17A)	0.9900
C(17)-H(17B)	0.9900
C(18)-H(18A)	0.9900
C(18)-H(18B)	0.9900
N(1)-S(1)	1.601(10)
N(1)-H(1N)	0.93(13)
S(1)-O(3)	1.410(9)
S(1)-O(2)	1.423(10)
S(1)-C(19)	1.710(15)
C(19)-C(24)	1.325(17)
C(19)-C(20)	1.388(16)
C(20)-C(21)	1.323(18)
C(20)-H(20)	0.9500
C(21)-C(22)	1.34(2)
C(21)-H(21)	0.9500
C(22)-C(23)	1.40(2)
C(22)-C(25)	1.47(2)
C(23)-C(24)	1.41(2)
С(23)-Н(23)	0.9500
C(24)-H(24)	0.9500
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
O(1W)-H(1W1)	0.831(10)
O(1W)-H(2W1)	0.831(10)
O(1)-P(1)-C(1)	109.3(5)

O(1)-P(1)-C(7)	112.1(5)
C(1)-P(1)-C(7)	108.4(5)
O(1)-P(1)-C(13)	112.9(5)
C(1)-P(1)-C(13)	106.7(5)
C(7)-P(1)-C(13)	107.2(5)
C(6)-C(1)-C(2)	117.8(12)
C(6)-C(1)-P(1)	119.4(10)
C(2)-C(1)-P(1)	122.8(10)
C(3)-C(2)-C(1)	118.4(13)
C(3)-C(2)-H(2)	120.8
C(1)-C(2)-H(2)	120.8
C(4)-C(3)-C(2)	122.7(16)
C(4)-C(3)-H(3)	118.7
C(2)-C(3)-H(3)	118.7
C(3)-C(4)-C(5)	120.4(17)
C(3)-C(4)-H(4)	119.8
C(5)-C(4)-H(4)	119.8
C(4)-C(5)-C(6)	118.3(16)
C(4)-C(5)-H(5)	120.9
C(6)-C(5)-H(5)	120.9
C(1)-C(6)-C(5)	122.4(15)
C(1)-C(6)-H(6)	118.8
C(5)-C(6)-H(6)	118.8
C(8)-C(7)-C(12)	118.5(11)
C(8)-C(7)-P(1)	125.0(9)
C(12)-C(7)-P(1)	116.5(9)
C(7)-C(8)-C(9)	120.8(12)
C(7)-C(8)-H(8)	119.6
C(9)-C(8)-H(8)	119.6
C(10)-C(9)-C(8)	119.9(14)
С(10)-С(9)-Н(9)	120.1
C(8)-C(9)-H(9)	120.1
C(9)-C(10)-C(11)	118.9(14)
	110.7(11)

120.5
120.5
120.5(13)
119.8
119.8
121.2(12)
119.4
119.4
112.3(10)
110.0(7)
112.2(8)
107.4
107.4
107.4
124.7(13)
117.6
117.6
123.6(14)
118.2
118.2
110.4(13)
110.0(11)
113.3(10)
107.6
107.6
107.6
115.6(11)
108.4
108.4
108.4
108.4
107.4
114.0(12)

C(17)-C(18)-H(18A)	108.8
C(13)-C(18)-H(18A)	108.8
C(17)-C(18)-H(18B)	108.8
C(13)-C(18)-H(18B)	108.8
H(18A)-C(18)-H(18B)	107.6
C(16)-N(1)-S(1)	120.7(9)
C(16)-N(1)-H(1N)	117(8)
S(1)-N(1)-H(1N)	116(8)
O(3)-S(1)-O(2)	118.1(6)
O(3)-S(1)-N(1)	109.0(5)
O(2)-S(1)-N(1)	106.2(6)
O(3)-S(1)-C(19)	106.9(7)
O(2)-S(1)-C(19)	107.4(6)
N(1)-S(1)-C(19)	109.0(6)
C(24)-C(19)-C(20)	117.9(15)
C(24)-C(19)-S(1)	123.3(12)
C(20)-C(19)-S(1)	118.7(11)
C(21)-C(20)-C(19)	119.4(15)
С(21)-С(20)-Н(20)	120.3
C(19)-C(20)-H(20)	120.3
C(20)-C(21)-C(22)	126.5(18)
C(20)-C(21)-H(21)	116.8
C(22)-C(21)-H(21)	116.8
C(21)-C(22)-C(23)	114.4(17)
C(21)-C(22)-C(25)	125.6(19)
C(23)-C(22)-C(25)	119.7(18)
C(22)-C(23)-C(24)	120.1(17)
C(22)-C(23)-H(23)	120.0
С(24)-С(23)-Н(23)	120.0
C(19)-C(24)-C(23)	121.5(16)
C(19)-C(24)-H(24)	119.2
C(23)-C(24)-H(24)	119.2
C(22)-C(25)-H(25A)	109.5

C(22)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(22)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
H(1W1)-O(1W)-H(2W1)	106(10)

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	77(2)	43(2)	49(2)	-3(1)	-5(2)	-4(2)
O(1)	94(6)	42(4)	66(5)	-4(3)	-11(4)	-11(4)
C(1)	62(5)	67(5)	43(6)	-1(5)	0(4)	-10(5)
C(2)	73(7)	66(6)	72(8)	-4(6)	8(6)	10(6)
C(3)	93(10)	111(10)	90(10)	-9(8)	15(9)	34(7)
C(4)	76(9)	184(13)	70(9)	13(11)	16(8)	45(10)
C(5)	68(8)	182(13)	78(9)	10(11)	19(8)	-4(9)
C(6)	63(7)	112(9)	75(8)	9(8)	7(7)	-19(6)
C(7)	60(7)	63(6)	47(5)	-3(5)	-1(5)	4(5)
C(8)	95(10)	80(8)	61(7)	-3(6)	3(6)	-18(6)
C(9)	100(11)	111(11)	85(8)	0(7)	19(8)	-31(8)
C(10)	114(12)	130(12)	69(7)	15(8)	27(8)	-16(8)
C(11)	115(11)	96(10)	66(7)	-10(7)	31(7)	-1(7)
C(12)	86(9)	64(7)	53(6)	-3(5)	4(6)	-3(6)
C(13)	68(6)	42(6)	50(5)	-7(4)	3(4)	2(5)
C(14)	68(7)	75(8)	57(6)	-8(5)	-7(5)	10(6)
C(15)	75(9)	95(9)	101(9)	29(7)	-17(6)	-3(6)
C(16)	136(10)	47(5)	50(6)	-8(5)	-26(6)	11(6)
C(17)	189(14)	67(7)	62(7)	8(7)	-3(7)	44(9)
C(18)	99(8)	60(7)	55(5)	-8(6)	4(5)	-6(6)
N(1)	106(8)	49(4)	67(7)	2(5)	-4(5)	7(5)
S(1)	134(3)	51(2)	74(2)	12(2)	-2(2)	11(2)
O(2)	147(9)	56(5)	127(8)	19(5)	28(6)	1(5)
O(3)	168(9)	73(6)	59(5)	13(4)	-3(5)	30(6)
C(19)	94(6)	44(6)	69(6)	10(5)	-22(5)	10(6)
C(20)	70(8)	102(10)	98(8)	-32(8)	0(6)	13(8)
C(21)	86(8)	146(13)	121(10)	-27(11)	22(7)	11(11)
C(22)	82(8)	132(13)	140(11)	-11(11)	23(8)	30(10)

Table 4. Anisotropic displacement parameters (Å² x 10³) for *cis*-3s. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

C(23)	90(9)	122(13)	148(11)	-3(12)	-3(7)	14(10)
C(24)	101(7)	76(9)	101(9)	-6(8)	-23(6)	22(9)
C(25)	106(13)	220(20)	225(18)	-33(18)	75(13)	47(15)
O(1W)	184(11)	60(6)	93(7)	3(5)	-37(8)	-6(7)

Table 5. Hydrogen bonds for *cis*-3s [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1N)O(1W)	0.93(13)	1.97(13)	2.854(14)	159(12)
O(1W)-H(1W1)O(1)	0.831(10)	2.10(13)	2.756(12)	136(17)
O(1W)-H(2W1)O(1)#1	0.831(10)	2.56(18)	2.954(14)	110(16)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1

Crystallographic Data for 3v (CCDC 1872880)

Table 1. Crystal data and structure refinement for **3v**.

Identification code	p212121_a	
Empirical formula	C25 H34 N O5 P S	
Formula weight	491.56	
Temperature	120(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2 ₁ 2 ₁ 2 ₁	
Unit cell dimensions	a = 5.8707(2) Å	<i>α</i> = 90°.
	b = 17.4003(8) Å	β= 90°.
	c = 24.7047(12) Å	$\gamma = 90^{\circ}$.

Volume	2523.63(19) Å ³
Ζ	4
Density (calculated)	1.294 Mg/m ³
Absorption coefficient	0.227 mm ⁻¹
F(000)	1048
Crystal size	0.260 x 0.210 x 0.150 mm ³
Theta range for data collection	3.299 to 33.390°.
Index ranges	-8<=h<=9, -26<=k<=26, -38<=l<=38
Reflections collected	107206
Independent reflections	9681 [R(int) = 0.0454]
Completeness to theta = 25.242°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6804 and 0.6188
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9681 / 0 / 304
Goodness-of-fit on F ²	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0343, wR2 = 0.0768
R indices (all data)	R1 = 0.0446, wR2 = 0.0815
Absolute structure parameter	0.008(10)
Extinction coefficient	n/a
Largest diff. peak and hole	0.295 and -0.381 e.Å ⁻³

	X	у	Z	U(eq)
C(1)	4387(3)	5350(1)	4553(1)	14(1)
C(2)	2480(3)	4912(1)	4685(1)	21(1)
C(3)	2496(4)	4452(1)	5147(1)	28(1)
C(4)	4398(4)	4418(1)	5474(1)	26(1)
C(5)	6310(4)	4845(1)	5343(1)	27(1)
C(6)	6310(3)	5308(1)	4882(1)	22(1)
C(7)	5021(3)	6918(1)	4140(1)	13(1)
C(8)	3417(3)	7501(1)	4070(1)	18(1)
C(9)	3957(3)	8253(1)	4215(1)	22(1)
C(10)	6073(3)	8421(1)	4433(1)	22(1)
C(11)	7689(3)	7845(1)	4496(1)	20(1)
C(12)	7185(3)	7097(1)	4342(1)	16(1)
C(13)	6298(3)	5622(1)	3484(1)	14(1)
C(14)	6249(3)	6113(1)	2984(1)	14(1)
C(15)	8022(3)	6524(1)	2817(1)	14(1)
C(16)	8013(3)	7030(1)	2318(1)	12(1)
C(17)	9176(3)	7789(1)	2473(1)	14(1)
C(18)	8418(3)	9120(1)	2755(1)	18(1)
C(19)	9904(3)	9074(1)	3256(1)	25(1)
C(20)	6166(3)	9511(1)	2884(1)	28(1)
C(21)	9612(4)	9500(1)	2280(1)	28(1)
C(22)	5585(3)	7724(1)	1054(1)	14(1)
C(23)	4749(3)	7515(1)	489(1)	24(1)
C(24)	8140(3)	7889(1)	1051(1)	20(1)
C(25)	4258(3)	8409(1)	1283(1)	21(1)
N(1)	5740(2)	7126(1)	2092(1)	14(1)
O(1)	1801(2)	5934(1)	3737(1)	20(1)
O(2)	6557(2)	6289(1)	1306(1)	20(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **3v**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(3)	2634(2)	6760(1)	1482(1)	19(1)
O(4)	11230(2)	7844(1)	2502(1)	21(1)
O(5)	7672(2)	8337(1)	2587(1)	16(1)
P(1)	4162(1)	5956(1)	3957(1)	12(1)
S(1)	5055(1)	6892(1)	1481(1)	12(1)

C(1)-C(6)	1.393(2)
C(1)-C(2)	1.393(2)
C(1)-P(1)	1.8144(16)
C(2)-C(3)	1.396(3)
C(2)-H(2)	0.9500
C(3)-C(4)	1.379(3)
C(3)-H(3)	0.9500
C(4)-C(5)	1.384(3)
C(4)-H(4)	0.9500
C(5)-C(6)	1.395(3)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(7)-C(8)	1.395(2)
C(7)-C(12)	1.400(2)
C(7)-P(1)	1.8061(16)
C(8)-C(9)	1.394(3)
C(8)-H(8)	0.9500
C(9)-C(10)	1.386(3)
C(9)-H(9)	0.9500
C(10)-C(11)	1.388(3)
C(10)-H(10)	0.9500
C(11)-C(12)	1.388(2)
C(11)-H(11)	0.9500
C(12)-H(12)	0.9500
C(13)-C(14)	1.502(2)
C(13)-P(1)	1.8095(16)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)-C(15)	1.329(2)
C(14)-H(14)	0.9500
C(15)-C(16)	1.514(2)

Table 3. Bond lengths [Å] and angles [°] for $\mathbf{3v}.$

C(15)-H(15)	0.9500
C(16)-N(1)	1.4558(19)
C(16)-C(17)	1.536(2)
С(16)-Н(16)	1.0000
C(17)-O(4)	1.212(2)
C(17)-O(5)	1.329(2)
C(18)-O(5)	1.491(2)
C(18)-C(21)	1.518(3)
C(18)-C(19)	1.518(3)
C(18)-C(20)	1.521(3)
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
С(19)-Н(19С)	0.9800
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-C(23)	1.524(2)
C(22)-C(24)	1.527(2)
C(22)-C(25)	1.533(2)
C(22)-S(1)	1.8172(16)
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
N(1)-S(1)	1.6147(13)

N(1)-H(1)	0.8800
O(1)-P(1)	1.4898(12)
O(2)-S(1)	1.4387(13)
O(3)-S(1)	1.4399(12)
C(6)-C(1)-C(2)	119.10(15)
C(6)-C(1)-P(1)	124.27(12)
C(2)-C(1)-P(1)	116.63(13)
C(1)-C(2)-C(3)	120.01(18)
C(1)-C(2)-H(2)	120.0
C(3)-C(2)-H(2)	120.0
C(4)-C(3)-C(2)	120.57(18)
C(4)-C(3)-H(3)	119.7
C(2)-C(3)-H(3)	119.7
C(3)-C(4)-C(5)	119.81(17)
C(3)-C(4)-H(4)	120.1
C(5)-C(4)-H(4)	120.1
C(4)-C(5)-C(6)	120.08(19)
C(4)-C(5)-H(5)	120.0
C(6)-C(5)-H(5)	120.0
C(1)-C(6)-C(5)	120.42(17)
C(1)-C(6)-H(6)	119.8
C(5)-C(6)-H(6)	119.8
C(8)-C(7)-C(12)	119.67(15)
C(8)-C(7)-P(1)	117.02(13)
C(12)-C(7)-P(1)	123.31(12)
C(9)-C(8)-C(7)	119.82(16)
C(9)-C(8)-H(8)	120.1
C(7)-C(8)-H(8)	120.1
C(10)-C(9)-C(8)	120.16(16)
C(10)-C(9)-H(9)	119.9
C(8)-C(9)-H(9)	119.9
C(9)-C(10)-C(11)	120.24(16)

C(9)-C(10)-H(10)	119.9
С(11)-С(10)-Н(10)	119.9
C(10)-C(11)-C(12)	120.04(16)
C(10)-C(11)-H(11)	120.0
С(12)-С(11)-Н(11)	120.0
C(11)-C(12)-C(7)	120.00(16)
С(11)-С(12)-Н(12)	120.0
C(7)-C(12)-H(12)	120.0
C(14)-C(13)-P(1)	109.57(11)
C(14)-C(13)-H(13A)	109.8
P(1)-C(13)-H(13A)	109.8
C(14)-C(13)-H(13B)	109.8
P(1)-C(13)-H(13B)	109.8
H(13A)-C(13)-H(13B)	108.2
C(15)-C(14)-C(13)	123.19(14)
C(15)-C(14)-H(14)	118.4
C(13)-C(14)-H(14)	118.4
C(14)-C(15)-C(16)	124.31(14)
С(14)-С(15)-Н(15)	117.8
C(16)-C(15)-H(15)	117.8
N(1)-C(16)-C(15)	112.42(12)
N(1)-C(16)-C(17)	113.87(13)
C(15)-C(16)-C(17)	107.20(12)
N(1)-C(16)-H(16)	107.7
C(15)-C(16)-H(16)	107.7
C(17)-C(16)-H(16)	107.7
O(4)-C(17)-O(5)	126.37(16)
O(4)-C(17)-C(16)	121.60(15)
O(5)-C(17)-C(16)	111.97(13)
O(5)-C(18)-C(21)	108.56(14)
O(5)-C(18)-C(19)	110.36(14)
C(21)-C(18)-C(19)	112.87(16)
O(5)-C(18)-C(20)	102.26(14)

C(21)-C(18)-C(20)	111.71(16)
C(19)-C(18)-C(20)	110.55(16)
C(18)-C(19)-H(19A)	109.5
C(18)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(18)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(18)-C(20)-H(20A)	109.5
C(18)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(18)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(18)-C(21)-H(21A)	109.5
C(18)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(18)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(23)-C(22)-C(24)	110.91(14)
C(23)-C(22)-C(25)	111.08(14)
C(24)-C(22)-C(25)	110.78(14)
C(23)-C(22)-S(1)	106.72(11)
C(24)-C(22)-S(1)	108.70(11)
C(25)-C(22)-S(1)	108.50(11)
C(22)-C(23)-H(23A)	109.5
C(22)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(22)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(22)-C(24)-H(24A)	109.5

C(22)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(22)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(22)-C(25)-H(25A)	109.5
C(22)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(22)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(16)-N(1)-S(1)	123.89(11)
C(16)-N(1)-H(1)	118.1
S(1)-N(1)-H(1)	118.1
C(17)-O(5)-C(18)	121.28(13)
O(1)-P(1)-C(7)	111.99(8)
O(1)-P(1)-C(13)	113.63(8)
C(7)-P(1)-C(13)	105.39(7)
O(1)-P(1)-C(1)	110.48(8)
C(7)-P(1)-C(1)	108.33(7)
C(13)-P(1)-C(1)	106.69(7)
O(2)-S(1)-O(3)	119.30(8)
O(2)-S(1)-N(1)	108.22(8)
O(3)-S(1)-N(1)	106.48(7)
O(2)-S(1)-C(22)	107.52(8)
O(3)-S(1)-C(22)	107.30(7)
N(1)-S(1)-C(22)	107.50(7)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	15(1)	12(1)	14(1)	0(1)	2(1)	-1(1)
C(2)	19(1)	18(1)	25(1)	1(1)	4(1)	-4(1)
C(3)	32(1)	18(1)	33(1)	6(1)	12(1)	-5(1)
C(4)	41(1)	18(1)	20(1)	5(1)	8(1)	1(1)
C(5)	34(1)	26(1)	20(1)	6(1)	-6(1)	-2(1)
C(6)	22(1)	23(1)	21(1)	7(1)	-3(1)	-5(1)
C(7)	14(1)	13(1)	12(1)	1(1)	0(1)	0(1)
C(8)	17(1)	17(1)	20(1)	0(1)	-1(1)	4(1)
C(9)	27(1)	17(1)	23(1)	-1(1)	0(1)	6(1)
C(10)	31(1)	16(1)	19(1)	-2(1)	1(1)	-3(1)
C(11)	21(1)	20(1)	18(1)	-1(1)	-1(1)	-5(1)
C(12)	15(1)	16(1)	18(1)	1(1)	-2(1)	-1(1)
C(13)	16(1)	13(1)	13(1)	1(1)	1(1)	1(1)
C(14)	16(1)	13(1)	12(1)	0(1)	-1(1)	1(1)
C(15)	14(1)	14(1)	13(1)	1(1)	-2(1)	2(1)
C(16)	12(1)	14(1)	11(1)	1(1)	0(1)	1(1)
C(17)	14(1)	15(1)	12(1)	4(1)	0(1)	-1(1)
C(18)	19(1)	13(1)	22(1)	0(1)	-1(1)	-3(1)
C(19)	24(1)	32(1)	20(1)	-6(1)	-3(1)	-2(1)
C(20)	25(1)	21(1)	40(1)	-6(1)	-2(1)	6(1)
C(21)	38(1)	21(1)	26(1)	7(1)	3(1)	-9(1)
C(22)	13(1)	15(1)	12(1)	2(1)	0(1)	-2(1)
C(23)	27(1)	30(1)	14(1)	4(1)	-2(1)	-7(1)
C(24)	14(1)	26(1)	21(1)	6(1)	1(1)	-4(1)
C(25)	21(1)	16(1)	25(1)	3(1)	2(1)	2(1)
N(1)	11(1)	19(1)	11(1)	0(1)	0(1)	2(1)
O(1)	13(1)	23(1)	24(1)	0(1)	-5(1)	-1(1)
O(2)	26(1)	16(1)	19(1)	-4(1)	3(1)	4(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **3v**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

O(3)	15(1)	23(1)	19(1)	-1(1)	-1(1)	-7(1)
O(4)	12(1)	24(1)	27(1)	-4(1)	1(1)	-1(1)
O(5)	13(1)	13(1)	21(1)	0(1)	-1(1)	-1(1)
P(1)	11(1)	13(1)	13(1)	1(1)	-1(1)	-1(1)
S(1)	13(1)	13(1)	11(1)	0(1)	0(1)	-2(1)

	Х	У	Z	U(eq)
H(2)	1168	4928	4460	25
H(3)	1186	4158	5237	33
H(4)	4396	4104	5788	31
H(5)	7624	4821	5566	32
H(6)	7630	5598	4793	26
H(8)	1960	7385	3923	22
H(9)	2872	8651	4164	27
H(10)	6420	8932	4541	26
H(11)	9140	7963	4644	23
H(12)	8310	6707	4373	20
H(13A)	7823	5649	3654	17
H(13B)	5993	5080	3386	17
H(14)	4884	6131	2778	16
H(15)	9386	6498	3023	16
H(16)	8977	6775	2037	15
H(19A)	9121	8773	3535	38
H(19B)	10199	9593	3393	38
H(19C)	11351	8825	3165	38
H(20A)	5196	9511	2562	43
H(20B)	6452	10042	2998	43
H(20C)	5400	9232	3177	43
H(21A)	10990	9209	2189	42
H(21B)	10030	10027	2377	42
H(21C)	8588	9508	1967	42
H(23A)	3138	7369	506	35
H(23B)	5643	7083	349	35
H(23C)	4928	7959	248	35
H(24A)	8465	8305	795	30

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **3v**.

H(24B)	8967	7425	941	30
H(24C)	8627	8042	1415	30
H(25A)	4453	8854	1045	31
H(25B)	4834	8533	1645	31
H(25C)	2638	8277	1306	31
H(1)	4676	7322	2302	17

Table 6. Torsion angles [°] for 3v.

C(6)-C(1)-C(2)-C(3)	1.3(3)
P(1)-C(1)-C(2)-C(3)	-177.95(14)
C(1)-C(2)-C(3)-C(4)	-0.7(3)
C(2)-C(3)-C(4)-C(5)	-0.1(3)
C(3)-C(4)-C(5)-C(6)	0.3(3)
C(2)-C(1)-C(6)-C(5)	-1.1(3)
P(1)-C(1)-C(6)-C(5)	178.03(15)
C(4)-C(5)-C(6)-C(1)	0.4(3)
C(12)-C(7)-C(8)-C(9)	-1.8(2)
P(1)-C(7)-C(8)-C(9)	178.55(14)
C(7)-C(8)-C(9)-C(10)	-0.6(3)
C(8)-C(9)-C(10)-C(11)	1.7(3)
C(9)-C(10)-C(11)-C(12)	-0.3(3)
C(10)-C(11)-C(12)-C(7)	-2.2(3)
C(8)-C(7)-C(12)-C(11)	3.3(2)
P(1)-C(7)-C(12)-C(11)	-177.17(13)
P(1)-C(13)-C(14)-C(15)	119.54(15)
C(13)-C(14)-C(15)-C(16)	-179.32(14)
C(14)-C(15)-C(16)-N(1)	10.0(2)
C(14)-C(15)-C(16)-C(17)	135.82(16)
N(1)-C(16)-C(17)-O(4)	-156.35(15)
C(15)-C(16)-C(17)-O(4)	78.65(19)
N(1)-C(16)-C(17)-O(5)	26.03(18)
C(15)-C(16)-C(17)-O(5)	-98.97(15)
C(15)-C(16)-N(1)-S(1)	-121.66(13)
C(17)-C(16)-N(1)-S(1)	116.17(14)
O(4)-C(17)-O(5)-C(18)	1.7(3)
C(16)-C(17)-O(5)-C(18)	179.17(13)
C(21)-C(18)-O(5)-C(17)	66.54(19)
C(19)-C(18)-O(5)-C(17)	-57.6(2)
C(20)-C(18)-O(5)-C(17)	-175.28(15)

C(8)-C(7)-P(1)-O(1)	1.58(15)
C(12)-C(7)-P(1)-O(1)	-178.01(13)
C(8)-C(7)-P(1)-C(13)	125.60(13)
C(12)-C(7)-P(1)-C(13)	-53.99(15)
C(8)-C(7)-P(1)-C(1)	-120.51(13)
C(12)-C(7)-P(1)-C(1)	59.90(15)
C(14)-C(13)-P(1)-O(1)	59.48(13)
C(14)-C(13)-P(1)-C(7)	-63.49(12)
C(14)-C(13)-P(1)-C(1)	-178.52(11)
C(6)-C(1)-P(1)-O(1)	-173.34(15)
C(2)-C(1)-P(1)-O(1)	5.84(15)
C(6)-C(1)-P(1)-C(7)	-50.34(17)
C(2)-C(1)-P(1)-C(7)	128.85(13)
C(6)-C(1)-P(1)-C(13)	62.69(16)
C(2)-C(1)-P(1)-C(13)	-118.12(13)
C(16)-N(1)-S(1)-O(2)	26.67(15)
C(16)-N(1)-S(1)-O(3)	156.07(12)
C(16)-N(1)-S(1)-C(22)	-89.19(14)
C(23)-C(22)-S(1)-O(2)	68.22(13)
C(24)-C(22)-S(1)-O(2)	-51.46(14)
C(25)-C(22)-S(1)-O(2)	-172.01(12)
C(23)-C(22)-S(1)-O(3)	-61.27(13)
C(24)-C(22)-S(1)-O(3)	179.05(12)
C(25)-C(22)-S(1)-O(3)	58.51(13)
C(23)-C(22)-S(1)-N(1)	-175.47(11)
C(24)-C(22)-S(1)-N(1)	64.85(13)
C(25)-C(22)-S(1)-N(1)	-55.69(13)

Crystallographic Data for 3w (CCDC 1872887)

Table 1. Crystal data and structure refinement for **3w**.

Empirical formula	$C_{25}H_{34}NO_5PS$	
Formula weight	491.56	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	$P2_{1}2_{1}2_{1}$	
Unit cell dimensions	a = 5.9129(4) Å	$\alpha = 90^{\circ}$
	b = 17.4156(13) Å	3 = 90°
	c = 24.861(2) Å	y = 90°
Volume	2560.1(3) Å ³	
Z	4	
Density (calculated)	1.275 Mg/m ³	
Absorption coefficient	0.224 mm ⁻¹	
F(000)	1048	

Crystal size	0.725 x 0.075 x 0.058 mm ³
Theta range for data collection	2.339 to 27.930°.
Index ranges	$-7 \!\!<\!\!=\!\!h \!\!<\!\!=\!\!7, -22 \!\!<\!\!=\!\!k \!\!<\!\!=\!\!22, -32 \!\!<\!\!=\!\!l \!\!<\!\!=\!\!32$
Reflections collected	39795
Independent reflections	6078 [R(int) = 0.1036]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6823
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6078 / 0 / 308
Goodness-of-fit on F ²	1.044
Final R indices [I>2sigma(I)]	R1 = 0.0549, wR2 = 0.0781
R indices (all data)	R1 = 0.1027, wR2 = 0.0871
Absolute structure parameter	0.00(4)
Extinction coefficient	0.0047(7)
Largest diff. peak and hole	0.358 and $-0.311 \text{ e} \cdot \text{Å}^{-3}$

	X	у	Z	U(eq)
C(1)	1977(5)	7027(2)	2325(1)	24(1)
C(2)	1991(5)	6523(2)	2818(1)	24(1)
C(3)	3716(6)	6118(2)	2988(1)	25(1)
C(4)	3693(5)	5631(2)	3484(1)	25(1)
P(1)	5824(1)	5956(1)	3952(1)	24(1)
O(1)	8147(4)	5929(1)	3731(1)	37(1)
C(5)	5599(5)	5351(2)	4546(1)	25(1)
C(6)	7481(7)	4926(2)	4679(2)	38(1)
C(7)	7479(8)	4466(2)	5135(2)	52(1)
C(8)	5597(8)	4431(2)	5457(2)	47(1)
C(9)	3733(8)	4844(2)	5326(2)	50(1)
C(10)	3708(7)	5302(2)	4870(2)	40(1)
C(11)	4994(6)	6916(2)	4138(1)	24(1)
C(12)	2859(6)	7099(2)	4339(1)	30(1)
C(13)	2381(6)	7843(2)	4493(2)	37(1)
C(14)	3970(8)	8408(2)	4432(1)	41(1)
C(15)	6040(7)	8240(2)	4217(2)	42(1)
C(16)	6570(6)	7494(2)	4070(1)	34(1)
C(17)	817(6)	7783(2)	2477(1)	26(1)
O(2)	2310(4)	8332(1)	2585(1)	29(1)
O(3)	-1204(4)	7838(1)	2506(1)	39(1)
C(18)	1584(6)	9113(2)	2756(2)	33(1)
C(19)	140(7)	9064(2)	3257(2)	49(1)
C(20)	3817(7)	9496(2)	2878(2)	54(1)
C(21)	378(8)	9491(2)	2292(2)	55(1)
N(1)	4218(5)	7119(2)	2094(1)	25(1)
S(1)	4901(1)	6881(1)	1489(1)	24(1)
O(4)	3409(4)	6283(1)	1321(1)	38(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($Å^2 x \ 10^3$) for **3w**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(5)	7288(4)	6746(1)	1491(1)	35(1)
C(22)	4388(5)	7709(2)	1063(1)	27(1)
C(23)	5713(6)	8388(2)	1285(2)	38(1)
C(24)	1865(5)	7875(2)	1059(2)	38(1)
C(25)	5210(6)	7493(2)	500(1)	44(1)

C(1)-N(1)	1.453(4)
C(1)-C(2)	1.509(4)
C(1)-C(17)	1.532(5)
C(1)-H(1)	1.0000
C(2)-C(3)	1.310(4)
C(2)-H(2)	0.9500
C(3)-C(4)	1.497(4)
C(3)-H(3)	0.9500
C(4)-P(1)	1.804(3)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
P(1)-O(1)	1.480(2)
P(1)-C(11)	1.803(3)
P(1)-C(5)	1.819(3)
C(5)-C(6)	1.377(5)
C(5)-C(10)	1.381(5)
C(6)-C(7)	1.388(6)
C(6)-H(6)	0.9500
C(7)-C(8)	1.372(6)
C(7)-H(7)	0.9500
C(8)-C(9)	1.356(5)
C(8)-H(8)	0.9500
C(9)-C(10)	1.387(5)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-C(16)	1.382(5)
C(11)-C(12)	1.395(5)
C(12)-C(13)	1.380(5)
C(12)-H(12)	0.9500
C(13)-C(14)	1.369(5)
C(13)-H(13)	0.9500

Table 3. Bond lengths [Å] and angles [°] for 3w.

C(14)-C(15)	1.368(5)
C(14)-H(14)	0.9500
C(15)-C(16)	1.384(5)
C(15)-H(15)	0.9500
С(16)-Н(16)	0.9500
C(17)-O(3)	1.201(4)
C(17)-O(2)	1.328(4)
O(2)-C(18)	1.488(4)
C(18)-C(21)	1.507(5)
C(18)-C(20)	1.510(5)
C(18)-C(19)	1.514(5)
С(19)-Н(19А)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
N(1)-S(1)	1.611(3)
N(1)-H(1N)	0.82(3)
S(1)-O(4)	1.428(2)
S(1)-O(5)	1.431(2)
S(1)-C(22)	1.815(3)
C(22)-C(24)	1.519(4)
C(22)-C(23)	1.523(5)
C(22)-C(25)	1.528(5)
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800

C(24)-H(24C)	0.9800
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
N(1)-C(1)-C(2)	112.4(3)
N(1)-C(1)-C(17)	114.2(3)
C(2)-C(1)-C(17)	107.5(3)
N(1)-C(1)-H(1)	107.5
C(2)-C(1)-H(1)	107.5
C(17)-C(1)-H(1)	107.5
C(3)-C(2)-C(1)	125.4(3)
C(3)-C(2)-H(2)	117.3
C(1)-C(2)-H(2)	117.3
C(2)-C(3)-C(4)	124.3(3)
C(2)-C(3)-H(3)	117.9
C(4)-C(3)-H(3)	117.9
C(3)-C(4)-P(1)	110.3(2)
C(3)-C(4)-H(4A)	109.6
P(1)-C(4)-H(4A)	109.6
C(3)-C(4)-H(4B)	109.6
P(1)-C(4)-H(4B)	109.6
H(4A)-C(4)-H(4B)	108.1
O(1)-P(1)-C(11)	112.13(15)
O(1)-P(1)-C(4)	113.53(15)
C(11)-P(1)-C(4)	105.42(15)
O(1)-P(1)-C(5)	110.55(15)
C(11)-P(1)-C(5)	107.98(14)
C(4)-P(1)-C(5)	106.88(14)
C(6)-C(5)-C(10)	118.7(3)
C(6)-C(5)-P(1)	116.6(3)
C(10)-C(5)-P(1)	124.7(3)
C(5)-C(6)-C(7)	120.5(4)
C(5)-C(6)-H(6)	119.8
-------------------	----------
C(7)-C(6)-H(6)	119.8
C(8)-C(7)-C(6)	120.1(4)
C(8)-C(7)-H(7)	119.9
C(6)-C(7)-H(7)	119.9
C(9)-C(8)-C(7)	119.7(4)
C(9)-C(8)-H(8)	120.2
C(7)-C(8)-H(8)	120.2
C(8)-C(9)-C(10)	120.7(4)
C(8)-C(9)-H(9)	119.7
C(10)-C(9)-H(9)	119.7
C(5)-C(10)-C(9)	120.3(4)
C(5)-C(10)-H(10)	119.9
C(9)-C(10)-H(10)	119.9
C(16)-C(11)-C(12)	119.1(3)
C(16)-C(11)-P(1)	117.5(3)
C(12)-C(11)-P(1)	123.4(2)
C(13)-C(12)-C(11)	120.0(3)
С(13)-С(12)-Н(12)	120.0
С(11)-С(12)-Н(12)	120.0
C(14)-C(13)-C(12)	120.2(3)
С(14)-С(13)-Н(13)	119.9
С(12)-С(13)-Н(13)	119.9
C(15)-C(14)-C(13)	120.2(3)
C(15)-C(14)-H(14)	119.9
C(13)-C(14)-H(14)	119.9
C(14)-C(15)-C(16)	120.4(3)
C(14)-C(15)-H(15)	119.8
C(16)-C(15)-H(15)	119.8
C(11)-C(16)-C(15)	119.9(3)
С(11)-С(16)-Н(16)	120.0
C(15)-C(16)-H(16)	120.0
O(3)-C(17)-O(2)	126.3(3)

O(3)-C(17)-C(1)	121.9(3)
O(2)-C(17)-C(1)	111.8(3)
C(17)-O(2)-C(18)	121.6(3)
O(2)-C(18)-C(21)	108.6(3)
O(2)-C(18)-C(20)	102.1(3)
C(21)-C(18)-C(20)	112.0(3)
O(2)-C(18)-C(19)	110.3(3)
C(21)-C(18)-C(19)	112.8(3)
C(20)-C(18)-C(19)	110.6(3)
C(18)-C(19)-H(19A)	109.5
C(18)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
С(18)-С(19)-Н(19С)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(18)-C(20)-H(20A)	109.5
C(18)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(18)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(18)-C(21)-H(21A)	109.5
C(18)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(18)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(1)-N(1)-S(1)	124.7(2)
C(1)-N(1)-H(1N)	118(2)
S(1)-N(1)-H(1N)	117(2)
O(4)-S(1)-O(5)	119.35(16)
O(4)-S(1)-N(1)	107.83(15)
O(5)-S(1)-N(1)	106.68(15)

O(4)-S(1)-C(22)	107.79(15)
O(5)-S(1)-C(22)	107.28(14)
N(1)-S(1)-C(22)	107.38(15)
C(24)-C(22)-C(23)	111.1(3)
C(24)-C(22)-C(25)	110.7(3)
C(23)-C(22)-C(25)	111.2(3)
C(24)-C(22)-S(1)	108.6(2)
C(23)-C(22)-S(1)	108.6(2)
C(25)-C(22)-S(1)	106.6(2)
C(22)-C(23)-H(23A)	109.5
C(22)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(22)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(22)-C(24)-H(24A)	109.5
C(22)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(22)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(22)-C(25)-H(25A)	109.5
C(22)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(22)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	22(2)	28(2)	22(2)	1(2)	-4(1)	0(2)
C(2)	25(2)	24(2)	22(2)	1(2)	4(2)	-4(2)
C(3)	29(2)	25(2)	22(2)	-2(1)	4(2)	-2(2)
C(4)	28(2)	23(2)	23(2)	1(1)	-1(2)	-2(1)
P(1)	22(1)	24(1)	24(1)	1(1)	3(1)	1(1)
O(1)	27(1)	43(2)	42(2)	-1(1)	10(1)	2(1)
C(5)	30(2)	23(2)	22(2)	-4(1)	-6(2)	1(2)
C(6)	38(2)	32(2)	44(2)	1(2)	-5(2)	4(2)
C(7)	59(3)	34(2)	62(3)	12(2)	-29(2)	5(2)
C(8)	77(3)	29(2)	34(2)	7(2)	-17(2)	-3(2)
C(9)	68(3)	44(2)	38(2)	16(2)	12(2)	4(2)
C(10)	38(2)	40(2)	42(2)	12(2)	6(2)	9(2)
C(11)	26(2)	24(2)	21(2)	2(1)	-2(1)	-1(2)
C(12)	30(2)	30(2)	31(2)	0(2)	4(2)	-1(2)
C(13)	36(2)	38(2)	36(2)	-3(2)	4(2)	10(2)
C(14)	61(3)	26(2)	35(2)	-4(2)	-2(2)	4(2)
C(15)	51(2)	32(2)	44(2)	0(2)	1(2)	-13(2)
C(16)	34(2)	33(2)	34(2)	-1(2)	2(2)	-3(2)
C(17)	28(2)	30(2)	19(2)	8(1)	-2(2)	0(2)
O(2)	26(1)	23(1)	38(2)	1(1)	1(1)	1(1)
O(3)	21(2)	45(2)	50(2)	-7(1)	0(1)	2(1)
C(18)	37(2)	24(2)	39(2)	0(2)	5(2)	5(2)
C(19)	51(2)	57(3)	40(2)	-9(2)	7(2)	5(3)
C(20)	50(3)	41(2)	72(3)	-12(2)	4(2)	-9(2)
C(21)	74(3)	36(2)	55(3)	11(2)	-4(2)	17(2)
N(1)	24(2)	32(2)	19(2)	-2(1)	0(1)	-5(1)
S(1)	29(1)	24(1)	21(1)	-1(1)	0(1)	3(1)
O(4)	49(2)	30(1)	34(2)	-7(1)	-5(1)	-6(1)

Table 4. Anisotropic displacement parameters (Å² x 10³) for **3w**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

O(5)	31(1)	43(2)	32(1)	-1(1)	2(1)	15(1)
C(22)	28(2)	32(2)	21(2)	5(2)	0(2)	2(1)
C(23)	41(2)	31(2)	43(2)	9(2)	-1(2)	-1(2)
C(24)	31(2)	46(2)	36(2)	9(2)	-1(2)	9(2)
C(25)	51(3)	58(2)	24(2)	9(2)	7(2)	11(2)

Table 5. Hydrogen bonds for 3w [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1N)O(3)#1	0.82(3)	2.38(3)	3.153(4)	158(3)

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z

NOMOVE FORCED Prob = 50 Temp = 173 > 44 C14 - (70316) 02 **S**1 05 C5 9 07:29:18 2018 06A C17B C15B 04 03 O C17A 06B C15A C8 C9 C16A C16B C10 PLATON-Oct C11 Ζ6 A1060_002 P -1 R = 0.08RES= 0 -18 X

Crystallographic Data for 4c (CCDC 1872732)

Table 1. Crystal data and structure refinement for 4c.

Empirical formula	$C_{17}H_{28}NO_6PS$	
Formula weight	405.43	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 10.3053(17) Å	$\alpha = 103.730(5)^\circ$
	b = 10.8278(19) Å	$\beta = 110.849(5)^{\circ}$
	c = 11.6058(19) Å	$\gamma = 104.371(5)^{\circ}$
Volume	1093.9(3) Å ³	

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F ²
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

2 1.231 Mg/m³ 0.250 mm⁻¹ 432 $0.345 \ x \ 0.185 \ x \ 0.112 \ mm^3$ 3.011 to 26.543°. -12<=h<=12, -13<=k<=13, -14<=l<=13 33600 4519 [R(int) = 0.0860] 99.5 % Semi-empirical from equivalents 0.7454 and 0.6683 Full-matrix least-squares on F² 4519 / 315 / 282 1.058 R1 = 0.0763, wR2 = 0.2365R1 = 0.1250, wR2 = 0.28570.690 and -0.511 e·Å-3

	X	у	Z	U(eq)
$\overline{C(1)}$	5523(0)	176(7)	_1770(7)	00(2)
C(2)	5525(5) 6005(6)	-170(7)	-1770(7)	66(1)
C(2)	5134(6)	1961(6)	-075(5)	60(1)
C(3)	5574(5)	3178(5)	-777(5)	59(1)
C(4)	6805(<i>1</i>)	3610(5)	1362(4)	<i>46</i> (1)
C(5)	7700(5)	3019(3)	1302(4)	40(1)
C(0)	7790(3)	2833(3)	1481(3)	02(1)
C(7)	7552(7)	1033(0) 5124(1)	433(0)	74(1)
S(1)	/413(1)	5(50(4)	2079(1)	51(1)
O(1)	9000(3)	50(7(4)	3391(3)	64(1)
O(2)	66/5(4)	5967(4)	2139(4)	69(1)
N(1)	6745(4)	4749(4)	3653(4)	50(1)
C(8)	7364(5)	4031(5)	4507(5)	52(1)
C(9)	7198(5)	4483(5)	5768(4)	52(1)
C(10)	7577(6)	3640(6)	6580(6)	74(2)
C(11)	6657(8)	3022(8)	6985(8)	110(3)
O(3)	8201(3)	5899(3)	6498(3)	54(1)
P(1)	7803(1)	7004(1)	7292(1)	53(1)
O(4)	6224(4)	6617(4)	6945(4)	69(1)
O(5)	8551(4)	8315(4)	7101(4)	77(1)
C(12)	8242(8)	8344(6)	5763(6)	81(2)
C(13)	9724(10)	8617(7)	5704(8)	106(2)
C(14)	7606(11)	9417(9)	5612(9)	116(3)
O(6A)	8839(15)	7564(13)	8805(9)	65(3)
C(15A)	8490(40)	7070(30)	9770(30)	66(4)
C(16A)	9640(20)	6620(30)	10490(20)	147(7)
C(17A)	8430(20)	8220(15)	10703(13)	108(5)
O(6B)	8860(30)	7040(30)	8690(20)	57(4)
C(15B)	8320(70)	7240(60)	9700(50)	62(6)
C(16B)	8600(70)	6150(40)	10160(40)	173(17)
C(17B)	9350(60)	8660(40)	10690(40)	178(15)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($Å^2 x \ 10^3$) for **4c**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.512(8)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(7)	1.381(8)
C(2)-C(3)	1.386(8)
C(3)-C(4)	1.380(7)
C(3)-H(3)	0.9500
C(4)-C(5)	1.383(6)
C(4)-H(4)	0.9500
C(5)-C(6)	1.379(6)
C(5)-S(1)	1.762(5)
C(6)-C(7)	1.390(8)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
S(1)-O(1)	1.427(3)
S(1)-O(2)	1.433(3)
S(1)-N(1)	1.600(4)
N(1)-C(8)	1.468(6)
N(1)-H(1N)	0.875(19)
C(8)-C(9)	1.514(6)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-O(3)	1.453(5)
C(9)-C(10)	1.483(7)
C(9)-H(9)	1.0000
C(10)-C(11)	1.310(8)
C(10)-H(10)	0.9500
C(11)-H(11A)	0.9500
C(11)-H(11B)	0.9500
O(3)-P(1)	1.562(3)

Table 3. Bond lengths [Å] and angles $[\circ]$ for **4c**.

P(1)-O(4)	1.449(3)
P(1)-O(5)	1.545(4)
P(1)-O(6A)	1.559(10)
P(1)-O(6B)	1.59(2)
O(5)-C(12)	1.479(6)
C(12)-C(14)	1.485(10)
C(12)-C(13)	1.512(10)
С(12)-Н(12)	1.0000
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
O(6A)-C(15A)	1.46(3)
C(15A)-C(16A)	1.45(3)
C(15A)-C(17A)	1.47(3)
C(15A)-H(15A)	1.0000
C(16A)-H(16D)	0.9800
C(16A)-H(16E)	0.9800
C(16A)-H(16F)	0.9800
C(17A)-H(17D)	0.9800
C(17A)-H(17E)	0.9800
C(17A)-H(17F)	0.9800
O(6B)-C(15B)	1.46(6)
C(15B)-C(16B)	1.46(5)
C(15B)-C(17B)	1.52(7)
C(15B)-H(15B)	1.0000
C(16B)-H(16A)	0.9800
C(16B)-H(16B)	0.9800
C(16B)-H(16C)	0.9800
C(17B)-H(17A)	0.9800
C(17B)-H(17B)	0.9800

C(17B)-H(17C)	0.9800
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(7)-C(2)-C(3)	118.2(5)
C(7)-C(2)-C(1)	120.8(6)
C(3)-C(2)-C(1)	121.0(6)
C(4)-C(3)-C(2)	120.7(5)
C(4)-C(3)-H(3)	119.6
C(2)-C(3)-H(3)	119.6
C(3)-C(4)-C(5)	120.3(5)
C(3)-C(4)-H(4)	119.9
C(5)-C(4)-H(4)	119.9
C(6)-C(5)-C(4)	120.1(4)
C(6)-C(5)-S(1)	119.7(4)
C(4)-C(5)-S(1)	120.1(3)
C(5)-C(6)-C(7)	118.8(5)
C(5)-C(6)-H(6)	120.6
C(7)-C(6)-H(6)	120.6
C(2)-C(7)-C(6)	121.9(5)
C(2)-C(7)-H(7)	119.0
C(6)-C(7)-H(7)	119.0
O(1)-S(1)-O(2)	119.6(2)
O(1)-S(1)-N(1)	107.6(2)
O(2)-S(1)-N(1)	106.1(2)
O(1)-S(1)-C(5)	107.4(2)
O(2)-S(1)-C(5)	107.4(2)
N(1)-S(1)-C(5)	108.2(2)
C(8)-N(1)-S(1)	121.6(3)

C(8)-N(1)-H(1N)	108(4)
S(1)-N(1)-H(1N)	120(4)
N(1)-C(8)-C(9)	109.2(4)
N(1)-C(8)-H(8A)	109.8
C(9)-C(8)-H(8A)	109.8
N(1)-C(8)-H(8B)	109.8
C(9)-C(8)-H(8B)	109.8
H(8A)-C(8)-H(8B)	108.3
O(3)-C(9)-C(10)	109.9(4)
O(3)-C(9)-C(8)	106.8(3)
C(10)-C(9)-C(8)	112.0(4)
O(3)-C(9)-H(9)	109.3
C(10)-C(9)-H(9)	109.3
C(8)-C(9)-H(9)	109.3
C(11)-C(10)-C(9)	122.3(6)
С(11)-С(10)-Н(10)	118.9
C(9)-C(10)-H(10)	118.9
С(10)-С(11)-Н(11А)	120.0
C(10)-C(11)-H(11B)	120.0
H(11A)-C(11)-H(11B)	120.0
C(9)-O(3)-P(1)	123.4(3)
O(4)-P(1)-O(5)	116.9(2)
O(4)-P(1)-O(6A)	114.6(5)
O(5)-P(1)-O(6A)	93.7(5)
O(4)-P(1)-O(3)	113.9(2)
O(5)-P(1)-O(3)	103.4(2)
O(6A)-P(1)-O(3)	112.3(6)
O(4)-P(1)-O(6B)	117.3(8)
O(5)-P(1)-O(6B)	108.0(10)
O(3)-P(1)-O(6B)	94.3(8)
C(12)-O(5)-P(1)	120.9(3)
O(5)-C(12)-C(14)	107.6(5)
O(5)-C(12)-C(13)	105.2(6)

C(14)-C(12)-C(13)	114.4(6)
O(5)-C(12)-H(12)	109.8
С(14)-С(12)-Н(12)	109.8
С(13)-С(12)-Н(12)	109.8
С(12)-С(13)-Н(13А)	109.5
С(12)-С(13)-Н(13В)	109.5
H(13A)-C(13)-H(13B)	109.5
С(12)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(15A)-O(6A)-P(1)	125.2(15)
C(16A)-C(15A)-O(6A)	111(2)
C(16A)-C(15A)-C(17A)	109(2)
O(6A)-C(15A)-C(17A)	107.7(17)
C(16A)-C(15A)-H(15A)	109.7
O(6A)-C(15A)-H(15A)	109.7
C(17A)-C(15A)-H(15A)	109.7
C(15A)-C(16A)-H(16D)	109.5
С(15А)-С(16А)-Н(16Е)	109.5
H(16D)-C(16A)-H(16E)	109.5
C(15A)-C(16A)-H(16F)	109.5
H(16D)-C(16A)-H(16F)	109.5
H(16E)-C(16A)-H(16F)	109.5
C(15A)-C(17A)-H(17D)	109.5
С(15А)-С(17А)-Н(17Е)	109.5
H(17D)-C(17A)-H(17E)	109.5
C(15A)-C(17A)-H(17F)	109.5

H(17D)-C(17A)-H(17F)	109.5
H(17E)-C(17A)-H(17F)	109.5
C(15B)-O(6B)-P(1)	116(3)
O(6B)-C(15B)-C(16B)	99(4)
O(6B)-C(15B)-C(17B)	104(4)
C(16B)-C(15B)-C(17B)	113(4)
O(6B)-C(15B)-H(15B)	113.2
C(16B)-C(15B)-H(15B)	113.2
C(17B)-C(15B)-H(15B)	113.2
C(15B)-C(16B)-H(16A)	109.5
C(15B)-C(16B)-H(16B)	109.5
H(16A)-C(16B)-H(16B)	109.5
С(15В)-С(16В)-Н(16С)	109.5
H(16A)-C(16B)-H(16C)	109.5
H(16B)-C(16B)-H(16C)	109.5
C(15B)-C(17B)-H(17A)	109.5
C(15B)-C(17B)-H(17B)	109.5
H(17A)-C(17B)-H(17B)	109.5
C(15B)-C(17B)-H(17C)	109.5
H(17A)-C(17B)-H(17C)	109.5
H(17B)-C(17B)-H(17C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	133(6)	75(4)	90(4)	16(3)	69(4)	24(4)
C(2)	77(3)	61(3)	64(3)	20(2)	44(3)	15(2)
C(3)	65(3)	80(3)	47(3)	19(2)	19(2)	18(3)
C(4)	57(3)	73(3)	51(2)	26(2)	23(2)	30(2)
C(5)	40(2)	63(2)	42(2)	25(2)	22(2)	20(2)
C(6)	46(2)	68(3)	73(3)	27(2)	24(2)	26(2)
C(7)	75(3)	70(3)	90(4)	29(3)	44(3)	37(3)
S(1)	45(1)	62(1)	47(1)	24(1)	19(1)	22(1)
O(1)	41(2)	76(2)	64(2)	21(2)	20(2)	11(2)
O(2)	87(3)	73(2)	61(2)	34(2)	30(2)	45(2)
N(1)	35(2)	78(3)	43(2)	27(2)	16(2)	27(2)
C(8)	47(2)	66(3)	52(2)	27(2)	25(2)	24(2)
C(9)	40(2)	68(3)	48(2)	28(2)	20(2)	13(2)
C(10)	67(3)	90(4)	70(3)	51(3)	25(3)	25(3)
C(11)	92(5)	137(6)	125(6)	95(5)	51(5)	29(4)
O(3)	34(1)	71(2)	55(2)	22(2)	23(1)	12(1)
P(1)	43(1)	72(1)	41(1)	23(1)	17(1)	13(1)
O(4)	44(2)	83(2)	73(2)	25(2)	21(2)	22(2)
O(5)	85(3)	67(2)	56(2)	18(2)	26(2)	0(2)
C(12)	120(5)	58(3)	56(3)	22(2)	40(3)	14(3)
C(13)	148(6)	87(4)	121(6)	52(4)	93(6)	40(4)
C(14)	143(7)	115(6)	107(6)	59(5)	54(5)	57(5)
O(6A)	56(4)	88(6)	39(3)	20(4)	16(3)	15(4)
C(15A)	68(10)	82(8)	51(5)	32(5)	27(6)	22(5)
C(16A)	131(13)	234(19)	141(14)	129(14)	62(11)	111(14)
C(17A)	110(10)	100(8)	91(8)	2(6)	58(7)	14(7)
O(6B)	38(6)	103(12)	49(5)	33(7)	29(5)	36(9)
C(15B)	59(11)	100(13)	39(8)	30(9)	27(8)	33(10)
C(16B)	210(30)	171(19)	120(20)	118(18)	40(20)	50(20)
C(17B)	190(30)	130(15)	130(20)	-45(15)	90(20)	0(20)

Table 4. Anisotropic displacement parameters ($Å^2 \ge 10^3$) for **4c**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

Table 5. Hydrogen bonds for 4c [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1N)O(4)#1	0.875(19)	1.95(3)	2.790(5)	162(5)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1