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Supplemental material

Appendix A - Derivations of MLE

The partial derivatives of the log-likelihood function are:
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From the above equations (1) to (9), there is no analytic form for the MLE é, thus a numeric method is needed.

Applying the Newton-Raphson method, we have the following iterative procedure:

. (t41)

0 (®)

=" —m10")s8"), t=o0,1,- -, (10)

where H () denotes the Hessian matrix of second derivatives of the log-likelihood function,

9’10) 85(0).

H©) = 250e™ ~ 6

D

When the convergence is attained, the observed Fisher information, i.e. fH(é) becomes the inverse of the estimated
covariance matrix. Note that for equations (7) to (9), we can write them concisely using the matrix form. If we define

a = (a1,a2)T and b = (b1, b2)”, we have
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a(z) z Yy Zz (log(y:) —a — bx; 8)(log(y:) —a—bx; )"~ (12)

From (10), the MLE of X is
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. . . . . . . . oo s s .
which is a consistent estimator of X, and is asymptotically independent with (o, 3 , a1, b1, a2, b2). Since our
primary interest is not on 32, we will use this result directly in the next part, more discussions can be found in Mardia

and Marshall (1984) and Hamilton (1994) (Page 300).
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Appendix B - Form of Igcor

11
Let P,Q1,Q2,Qf, Q3 and Qo be n x n diagonal matrices, for i = 1, - - - , n, the ith diagonal elements of these

five matrices are given by
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(1+exp(ao +x{B))?" 07 (1 — p?)(1 + exp(ao +x{ B))  of(1 — p)(1 + exp(ao + x{ B))’
exp(ao + x7B) exp(ao + x7'B)
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For Is;, we have
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For Ipc2, we have
Ic2 = (ars) (p+5)x (p+5)> (15)

where a,s can be scalars, vectors or block matrices. Since Izc2 is symmetric, we have a,s = aSTT.

Appendix C - Form of Fisher Information Matrix 1gc-

The elements a,s of Ipc2 are given by (upper triangular parts):

an =Iya, =J " PJ,ajs = 1,3 = J PX,
a13 =loga; = 0,214 = Logp; = 0,215 = Laga, = 0,216 = Lagp, = 0,
T T2 2 T A3
azo 2155 =X"PX+X (b1Q1 + ngg — 2pb1b2Q1 Q2 )X,
1 1 1 1
azs =Iga, = X' (01Q1 — pb2Q7 Q3 )T, 821 = Igp, = X" (b1Q1 — pb2QF Q3 )X,
1 1 1 1
azs =Iga, = X7 (b2Q2 — pb1Q7 Q3 )J, 426 = Igp, = X (b2Q2 — ph1 Q7 Q3 )X 3,
1 1
agz =Ig 0, = JTQI'L azs = Ioyp, = JTQ1X137 ass = lojay, = _pJTQf Q3 J,
TA3AS T~T
aze =lap, = —pJ Q7 Q7 XB,a44 = Iy, = B X Q1X}3,
1 1 1 1
ass =Ipa, = —pB" X' Q7 Q7 J,a16 = Inys, = —pB" X' Q7 Q3 X,
ass =laya, = 37 QaJ, 856 = Loy, = J7 Q2XB, a6s = Ly, = B X' QX3
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Appendix D - Proof of Theorem 1

For the proof of Theorem 1, note that the MLE is a special case of the GEE estimator, we will apply the theorems
from GEE theory. The proof of consistency is similar to Proposition 5.5 in Shao (2003). Note that the assumption
of h;(X;) and equicontinuity of the score function can be satisfied under the compactness assumption Al and the
differentiability of likelihood function, the identifiability assumption can be satisfied by assumption A2. To prove
the 4/n consistency and asymptotic normality, we use Theorem 1 in Ma and Kosorok (2005). Application of this
theorem requires the following conditions to hold: (a) consistent sequence of GEE estimators, which is established
before; (b) finite asymptotic variance, which is shown below; (c) equicontinuity of the gradient of the score function,
which can be established using the assumption A1, the the consistency result and the differentiability of likelihood

function.

Thus, we only need to establish the non-singularity of the information matrix, that is, to show Igcar is PD. To

this end, we first show that I in (14) is PD. Note that J¥ QJ is PD, and we define the leading principal minors of

the matrix
2—-p? —p? =p
20‘1; 20%023 o%
—p 2—p =L
20’%0’% 20’% o'%
—p —p 24297
o'% a% 1—p2
as D1, D5 and D3. Direct computation shows that
2 —p? 1—1p° 2
Di=" 2 50Dy=-—"2 >0Ds=— >0
207 0105 0105

Thus Is is PD.

Next we will show that Igc2 is also PD. The matrix given by (15) is complicated, however, we can rearrange
it using simpler notations. If we let a = (a1, ag)T and b = (b1, bg)T, it can be shown that the Fisher information

matrix WRT (ao, 3, a, b) is given by

JTPJ JTPX 0 0
. XTpJ XTPX +XTBTQ*BX XTBTQ*J* XTBTQ*T
IBCQ = * T ~* * T ~* T* * T ~* ’
0 J*TQ*BX JTQ*J QT
0 TTQ*BX T7'Q*J* TTQ*T

where Q™ is a block diagonal matrix with diagonal element

explao +xIB)
1+ exp(ao + %7 B)
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and

by 0 xfB 0

b 0 0 xiB
I
0 b 0 x¥B 0 ;
2

B=I1,2b=|0 b 0, T=xBeoL=| 0 xB8|,J=JcL=| |,

: : .
b1 XZ:ﬂ 0 2

0 0 - by 0 x.8

where I,, and I are identity matrices of size n and 2, respectively, J, X are defined as before. To show that the I5 o

is PD, one can see that I o = I + IT, where

J'PJ J'PX 0 0O 0 0 0 0
- XTpJ XTPX 0 0 - 0 XTBTQ*BX XTBTQ*J* XTBTQ*T

0 0 o o’ 0 J7TQ'BX JTQ I JTQ*T

0 0 00 0 TTQ'BX TTQ*J* TT'Q*T

Note that both I and IT are PSD, if we assume there exists a vector & = (a1, aa, a3, @q), such that a” T o = 0,
we must have (a1, az) = (0, 0) (since I is PSD), and (a3, as) = (0, 0) (since IT is PSD). It yields that I, is
PD.

Appendix E - Proof of Theorem 2

To prove (i) and (ii) in Theorem 2, we need to use the fact given in Lemma 2.1 (Han and Kronmal 2006). We also
introduce an intermediate model “BC'1”, where the proportional constraints only appear in the response Y; 1. The

model BC'1 is given by,

logit(pi;) =ao + x; 5,
Vij1 =a1 +bix;B +ey1 for Yij1 >0,

Vij2 =a2 + Xg}é + €2 forYi;o > 0.

Our idea is to first show the efficiency of BC'1 over BC0 and UC'1, then show the efficiency of BC2 over BC1.

To this end, it is suffice to show the following statements: In Loewner ordering,

(a) the asymptotic covariance matrix of the MLE of (ao, 3), Cov(éo, @) is no larger in BC'1 than in BCO. The

result also holds for (@1, d) and (a2, £);
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(b) the asymptotic covariance matrix of the MLE of (ao, 3), Cov(ao, B) is no larger in BC1 than in UC1. The

result also holds for (a1, 9);
(c) the asymptotic covariance matrix of the MLE of (do, 3), Cov(éo, @) is no larger in BC?2 than in BC'1. The

result also holds for (a1, d) and (az, &).

In Theorem 2, it is easy to see that (i) follows from (a) and (c), and (ii) follows from (b) and (c). Before showing
(a), (b) and (c), we need the following facts, the computation details are similar to those for BC2 and are

skipped here. Under BCO, the expected Fisher information matrix WRT (ao, 3, a1, 8, a2, €, 0?02, p) is given by

I 0
peo . . Under BC'1, the expected Fisher information matrix WRT (ao, 3, a1, b1, az, &, 01,03, p) is given
0 =
Igc: O . . . ..
by . Is; is the same as that defined in (14), Ipco is given by,
0 Is
JTpJ JTPX 0 0 0 0
XTPJ XTPX 0 0 0 0
11 11
0 0 JTQiJ JTQ:X -pd"Q2Q2I  -pITQIQ:X
11 11 )
0 0 X'QuJ X"Qix —-pX'Q7Q3;J —pXTQIQ;X
11 11
0 0 -p3TQiQ3I  —-pITQIQiX J7Q0J JTQ:X
11 11
0 0 -pX'QIQIJ -pX'QFQiX  X"Q.J X"Q.X
and

Isci = (brs)(2p+4)x (2p+4)

where b, s can be scalars, vectors or block matrices. Since Iz¢1 is symmetrical, we have b,s = b2 . The elements

b, are given by (upper triangular parts):

bi1 =lagay = I PI,b1o =I5 = I PX b1z = Lyya; = 0,b1s = L5, =0,
bis =Laga, = 0,b1s = Iuye = 0,bay = Igg = X" PX + b1 X" Q, X,
1 1
bos =Iga, = b1 X" Q1J, bas = Igy, = b1 X" Q1XB,bos = Ig., = —pb1 X Q2 Q2J,
1 1

bas =Ige = —ph1 X" Q7 Q2 X, bas = Lo, = I Qud, bas = I, = ITQ1X3,

T 1 1 T 1 1 T< T
bss :Ia1a2 = —pJ le Q22J7b36 = Ia1£ = —pJ Q12 Q22 X’ bas = Iblbl = B X QlX/B’

TxTO202 T~TA35A2
ba4s :Ib1a2 = _plB X Ql Q2 J7b46 = Ib1£ = _pIB X Q1 Q2 X’

bss =Layay = I Q2J,bsg = Luye = J7 QoX, bes = Iee = X' Q2X.
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Armed with these results, we can now prove the statements (a), (b) and (c). To show (a), it is suffice to show a more
. . . ~ T AT . . .
general result: the asymptotic covariance matrix of the MLE of (o, 3 ,a1,ds2, & )T is no larger in BC'1 than in

BCO0. Applying Lemma 2.1 to both Ipc1 and Ipco, we have,

Covien (0, B ,ar,a2,8")") — Covibo((ao, B 1,2, € )7)
JTPJ JTPX 0 0 0
XTPJ XTPX +v2XTQ:X b XTQ.J fpb1XTQ1%Q2%J fplnXTQ%QQ%X
= o b1ITQiX I7Q.J —p37QIQFT —pITQEQEX
0 —hITQIQIX  —pI"QIQEI JTQuI ITQ.X
0 —hXTQIQIX —pX"QIQII  XTQuJ XT QX
0
hXTQiXg3
- J'QiX8 B XTQixB)"!
—pI"Q; Qi X
~pX"Q7 Qi XS
x(0 bATXTQIX BTXTQI —pBTXTQFQIT —pBTXTQFQIX)
JTPJ JTPX 0 0 0
XTPJ XTPX 0 0 0
-1 o 0 QI —pI"QIQET —pITQFQIX
0 0 —pITQIQ:J  J7QuI ITQ.X
0 0 fpr(ﬁ QQ%J XTQ,J XTQ.X
0
0
| Tax  |[&ax (o o x'au Xx"qlels x"qleix)
-p3TQ7 QX
~pX7QIQEX
0 0 0 0 0
0 BXTQX  bXTQ —phX'QIQIT —phXTQIQEX
=]o0 b JTQ:X 0 0 0
0 fpleTQ%QQ%X 0 0 0
0 —phXTQIQIX 0 0 0
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0
b XTQ:X
— ITQ:X BETXTQ:xB) 8"
~pITQFQIX
—pX"Qi QX

1 1 1 1
x(0 BXTQX XTQI —pX"QIQEI —pX"QIQIX)

0
0
o Tex &X' (0 0 XTI —XTQ{QiT —»X"QiqiX)
—pITQFQIX
—pXTQI QX
0 0 0 0 0
0 BXTQX  bX'Q —phX'QIQII —phXTQIQIX
>|o b JTQ1X 0 0 0
0 fpleTQ%QQ%X 0 0 0
0 —phXTQIQIX 0 0 0
0
uXTQ:X
- QX X'Qix)™!
—p3TQIQEX
—pX"Q} Qi X

11 11
x(0 BXTQX XTQu —pX"QIQII —pX"QIQIX)
0
0
T T -1 T L1 rol 1
+| Tax  |X'eX) (0 0 XTQu —px"Qiqis —px"QiQiX)
11
-pITQI Qi X
11
-pX'QiQiX
=0.
Thus we have shown the asymptotic covariance matrix of the MLE of (o, ,BT, ai, Gz, éT)T is no larger in BC'1

than in BCO, by the delta method (Corollary 1.1 in Shao (2003)), the result of asymptotic efficiency must hold for

,3 and é To show the result also holds for &, we can reparameterize BC'1 by using (ao, c1, a1, 8, az, &) in place
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of (a0, B3, a1,b1,a2,€&), where ¢c1 = 1/b;. For the reparameterized model, we can compute the expected Fisher

information WRT (ao, ¢1, a1, 8, az, £), arguments similar to those used in the above proof.

Next we are going to show (b). Note that the parameters (a2, &) do not appear in the model UC'1. Thus, it is suffice
to show: the asymptotic covariance matrix of the MLE of (ao, ﬁT, an, El)T is no larger in BC'1 than in UC'1. (b)
then follows from the delta method. Applying Lemma 2.1 to Izc1, together with the form of Iyc1 from (8) (Han

and Kronmal 2006), we have,

_ N ~T . A _ R ~T A
COVBlCl((G‘OHB 7a17b1)T)_COVUlCl((a07ﬂ ’alvbl)T)

JTPJ JTPX 0 0
| XT"PI XTPX+0iXTQiX 0 XTQiJ 5 XTQiXg
0 5JTQ.X JTQ.J JTQ.Xp
0 b:87XTQ:X BTXTQ.J pBTXTQ:Xp
0 0
TAEAE TAsAS T T -
- XTQ Q2  —piXTQ2QIX JT'Q.J JTQ:X
- 1 1 1 1
-pJ"Q7Q3J -pJTQ7 QX X"Q2J X"Q:X

1

11 11
-pBTXTQ7IQ3I —pBTXTQIQIX

1 1 1 1 1 1
0 —phITQIQIX  —pITQIQII  —pITQIQIXA

X ot 1 SN PN ot 1
0 —phiX'Q7fQ;X —pX'Q7fQFJ —pX'Q7fQIXS
JTPJ JTPX 0 0
B XTPJ XTPX +bi(1—-p)XTQuX b:(1-p)XT'QiI  b0i(1 - pH)XTQ:1X3
0 bi(1-p*)ITQiX (1-p)3"QuJ (1-p")J"QX3
0 bi(1-p?)B"X"QiX (1-p)B"XTQI (1-p")B"X"Q:X3
(o o
0 P’V

where

XX uX'QuJ  uX'QiXp
V= 6J7Q:X JTQ.J J'QiXp
bBTXTQX BTXTQUI BTXTQiXA
1 1 1 1
bXT 3 5.] bXT 202X —1
XQQT XTQIRX N (roy ITQux
-1 37Q:Q:z3 J'QiQ:Xx T T
R 11 X' Q2J X' Q22X
BTXTQiQ3I BTXTQIQiX
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11 11 11

bJTQIQIX  JTQIQ3I JTQIQiXp
11 11 11

nX'Q7Q;X X'QrQiJ X'Q7QiXA

=A -BC'B”,
where A, B and C are defined accordingly. Hence, it is suffice to show that V is PSD. To this end, we need to show

A B
BT cC

is PSD, A is PSD and C is PD. The latter two are obvious because Q2 is PD and (J X) has full column rank. We

also have

A B
BT C
1
hX'Q?
1
I7Q;
_ | arvTA3 3 3 3 3 3
= |s7x7q? | (nQ@iX Q73 QX3 QiJ QiX
1
I7Q;
1
xT'Q:2

is PSD.

Last we will show (c), again we will show a more general result: the asymptotic covariance matrix of the MLE of
(ao, BT, ar, 51, dg)T is no larger in BC?2 than in BC'1. Applying Lemma 2.1 to Igc2 and Ipci, also notice that

from the form of Isc2 and Isc1, many elements can be cancelled, we have,

_ N ~T o~ _ R ~T . o~
COVB16‘2((a075 ualvbha?)T)_COVB},“I((G'OHB 7a17b17a2)T)

0 0 0 0 0

0 XT(HQ:— 20b:10:Q7 Q)X —pbsXTQPQIT  —ph:XTQIQIXB  5:XTQeJ
—|o —ph:3TQIQEX 0 0

0 —phB"X'QIQIX 0 0

0 5237 QX 0 0 0
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T(02Q2 - Plel Qz )X
—pITQ? Q;x BB X" QXB) "B
—pBTXTQI QEX
JTQ.X

1 1 1 1
x (0 XT(b2Q:— ph1Q2 Q)X —pX"QIQIT —pX"QIQIXB XTQuJ)

—pJTQl Q X | (X'Q:X)™

1 1 1 1
X(0 —phXTQIQIX  —pXTQFQFI —pX"Q7QIXB X'Q.J)

il 7

where the inequality comes from using the same technique as in proving (a). To show the result also holds for é,
we reparameterize BC?2 by using (ao, ¢2, a1, b1, az, €) in place of (ao, 3, a1, b1, az, ba), where ca = 1/bs. For the
reparameterized model, we can compute the expected Fisher information WRT (ao, c2, a1, b1, az, €), arguments

similar to those used in the above proof.

Appendix F - Simulation of ARE

We considered values of p between 0 and 0.9, and values of 31 between 0 and 1.5; other parameters were set to be
the same as in Table 1. Note that when p = 0, BC2 was not equivalent to UC'1 since mean values of log(Y} ;) and
log(Y;; o) were correlated. In BC2, the dependence need to be considered, while in UC1, the log(Y;} 4) part was
ignored. Although we had explicit forms of the Fisher information matrices, in practice, we computed the estimated
covariance matrices using the inverse of observed Fisher information, thus in the previous simulation, we increased
the number n; to 1000, and the sample size n = 3000. Table 1 shows the comparison between BC2 and UC1,
and Table 2 shows the comparison between BC2 and BC0. From the results in the table, one can see that, when p
changes, the ARE are not changing much, however, when 1 (41) increases, the ARE are uniformly going to 1. This
is not surprising, because when (1 (1) is large, it becomes more significant in the model, and all the three models can
detect it. However, when (31 (d1) is not so significant, the SE of the estimates in models UC'1 and BC'0 become larger
than those in the proposed model BC?2. This empirical evidence suggests that, when the proportionality structure
holds, the proposed model BC'2 is more powerful than models UC'1 and BCO in determining the significance of the

covariate effects.
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Table 1. ARE of 81 and §1 = b1 1, Values Represent Variances under Model BC2 over Model UC'1.
B1 01 =b11
p 0 0.4 0.8 1.5 0 0.24 048 0.9
0.00 | 043 071 091 098 | 043 0.73 0.88 0.95
020 | 048 074 091 098 | 048 0.75 089 0.95
040 | 051 076 092 098 | 052 0.77 090 0.96
070 | 052 075 092 098 | 052 0.77 090 0.96
090 | 0.39 0.68 090 095 | 040 0.70 0.87 0.95

Table 2. ARE of 81 and §1 = b1 1, Values Represent Variances under Model BC2 over Model BCO.
B1 01 =b11
p 0 0.4 0.8 1.5 0 0.24 048 0.9
0.00 | 027 052 076 094 | 0.17 043 071 091
020 | 029 054 077 094 | 0.19 045 071 092
040 | 031 056 077 094 | 020 046 0.72 092
070 | 031 055 077 094 | 021 045 0.72 092
090 | 024 050 076 094 | 0.16 041 070 091

Appendix G - Model Assumptions
Assumptions (A1)-(A4)

(A1) X is component-wise bounded. Denote the true value of 8 as O, @ is an interior point of an open set in the
parameter space, bq € |B]| R, -1 < p < 1.

(A2) The design matrix (J X) is assumed to have full column rank.

(A3) The model is correctly specified as in equation (6) of the main contents of the paper, and the error terms follow
the distribution in equation (5) of the main contents of the paper.

(A4) The matrix Rpcor = limy, oo 2BE2E exists.
Modified Assumptions (A3’)-(A4’) for mis-specified model

(A3’) The independent vectors Z; have a distribution with measurable (Radon-Nikodym) density h(-), and the

parametric family of distribution functions all have densities f(z, ), which is specified in equation (6) of the

main contents of the paper. The Kullback-Leibler info I(h : f,0) = E(In f?(zzg)) has a unique minimum at
6o.

(A4) E|(Inh(Z))| < oo |g;,lg9f | and |681;_f agg_f\ are dominated by functions integrable in z. | B(0)| # 0 , rank
:99, i 90

of A(0) is constant in a neighborhood of 8.
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