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Supplemental material

Appendix A - Derivations of MLE

The partial derivatives of the log-likelihood function are:

∂l(θ)

∂a0
=−

∑
dall

exp(a0 + xTi β)

1 + exp(a0 + xTi β)
+ n1, (1)

∂l(θ)

∂β
=−

∑
dall

exp(a0 + xTi β)

1 + exp(a0 + xTi β)
xi +

∑
d+

xi

+
b1

σ2
1(1− ρ2)

∑
d+

(log(yi,1)− a1 − b1xTi β)xi

+
b2

σ2
2(1− ρ2)

∑
d+

(log(yi,2)− a2 − b2xTi β)xi

− ρ

σ1σ2(1− ρ2)

∑
d+

(log(yi,1)− a1 − b1xTi β)b2xi

+
∑
d+

(log(yi,2)− a2 − b2xTi β)b1xi

 , (2)

∂l(θ)

∂a1
=

1

σ2
1(1− ρ2)

∑
d+

(log(yi,1)− a1 − b1xTi β)−
ρ

σ1σ2(1− ρ2)
∑
d+

(log(yi,2)− a2 − b2xTi β), (3)

∂l(θ)

∂b1
=

1

σ2
1(1− ρ2)

∑
d+

(log(yi,1)− a1 − b1xTi β)xTi β

− ρ

σ1σ2(1− ρ2)
∑
d+

(log(yi,2)− a2 − b2xTi β)xTi β, (4)

∂l(θ)

∂a2
=

1

σ2
2(1− ρ2)

∑
d+

(log(yi,2)− a2 − b2xTi β)−
ρ

σ1σ2(1− ρ2)
∑
d+

(log(yi,1)− a1 − b1xTi β), (5)

∂l(θ)

∂b2
=

1

σ2
2(1− ρ2)

∑
d+

(log(yi,2)− a2 − b2xTi β)xTi β

− ρ

σ1σ2(1− ρ2)
∑
d+

(log(yi,1)− a1 − b1xTi β)xTi β, (6)

∂l(θ)

∂σ2
1

=− n1

2σ2
1

+
1

2σ4
1(1− ρ2)

∑
d+

(log(yi,1)− a1 − b1xTi β)2

− ρ

2σ3
1σ2(1− ρ2)

∑
d+

(log(yi,1)− a1 − b1xTi β)(log(yi,2)− a2 − b2xTi β), (7)

Prepared using sagej.cls



2 Journal Title XX(X)

∂l(θ)

∂σ2
2

=− n1

2σ2
2

+
1

2σ4
2(1− ρ2)

∑
d+

(log(yi,2)− a2 − b2xTi β)2

− ρ

2σ1σ3
2(1− ρ2)

∑
d+

(log(yi,1)− a1 − b1xTi β)(log(yi,2)− a2 − b2xTi β), (8)

∂l(θ)

∂ρ
=

n1ρ

(1− ρ2) −
ρ

σ2
1(1− ρ2)2

∑
d+

(log(yi,1)− a1 − b1xTi β)2

− ρ

σ2
2(1− ρ2)2

∑
d+

(log(yi,2)− a2 − b2xTi β)2

+
1 + ρ2

σ1σ2(1− ρ2)2
∑
d+

(log(yi,1)− a1 − b1xTi β)(log(yi,2)− a2 − b2xTi β). (9)

From the above equations (1) to (9), there is no analytic form for the MLE θ̂, thus a numeric method is needed.

Applying the Newton-Raphson method, we have the following iterative procedure:

θ̂
(t+1)

= θ̂
(t)
−H−1(θ̂

(t)
)s(θ̂

(t)
), t = 0, 1, · · · , (10)

where H(θ) denotes the Hessian matrix of second derivatives of the log-likelihood function,

H(θ) =
∂2l(θ)

∂θ∂θT
=
∂s(θ)

∂θ
. (11)

When the convergence is attained, the observed Fisher information, i.e.−H(θ̂) becomes the inverse of the estimated

covariance matrix. Note that for equations (7) to (9), we can write them concisely using the matrix form. If we define

a = (a1, a2)
T and b = (b1, b2)

T , we have

∂l(θ)

∂Σ
= −n1

2
Σ−1 +

1

2

∑
d+

Σ−1(log(yi)− a− bxTi β)(log(yi)− a− bxTi β)
TΣ−1. (12)

From (10), the MLE of Σ is

Σ̂ =
1

n1

∑
d+

(log(yi)− â− b̂xTi β̂)(log(yi)− â− b̂xTi β̂)
T , (13)

which is a consistent estimator of Σ, and is asymptotically independent with (â0, β̂
T
, â1, b̂1, â2, b̂2). Since our

primary interest is not on Σ, we will use this result directly in the next part, more discussions can be found in Mardia

and Marshall (1984) and Hamilton (1994) (Page 300).
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Appendix B - Form of IBC2F

Let P,Q1,Q2,Q
1
2
1 ,Q

1
2
2 and Q0 be n× n diagonal matrices, for i = 1, · · · , n, the ith diagonal elements of these

five matrices are given by

exp(a0 + xTi β)

(1 + exp(a0 + xTi β))
2
,

exp(a0 + xTi β)

σ2
1(1− ρ2)(1 + exp(a0 + xTi β))

,
exp(a0 + xTi β)

σ2
1(1− ρ2)(1 + exp(a0 + xTi β))

,√
exp(a0 + xTi β)

σ2
1(1− ρ2)(1 + exp(a0 + xTi β))

,

√
exp(a0 + xTi β)

σ2
2(1− ρ2)(1 + exp(a0 + xTi β))

,

and
exp(a0 + xTi β)

(1− ρ2)(1 + exp(a0 + xTi β))
, respectively.

For IΣ, we have

IΣ =
JTQ0J

2


2−ρ2
2σ4

1

−ρ2
2σ2

1σ
2
2

−ρ
σ2
1

−ρ2
2σ2

1σ
2
2

2−ρ2
2σ4

2

−ρ
σ2
2

−ρ
σ2
1

−ρ
σ2
2

2+2ρ2

1−ρ2

 . (14)

For IBC2, we have

IBC2 = (ars)(p+5)×(p+5), (15)

where ars can be scalars, vectors or block matrices. Since IBC2 is symmetric, we have ars = aTsr .

Appendix C - Form of Fisher Information Matrix IBC2

The elements ars of IBC2 are given by (upper triangular parts):

a11 =Ia0a0 = JTPJ,a12 = Ia0β = JTPX,

a13 =Ia0a1 = 0,a14 = Ia0b1 = 0,a15 = Ia0a2 = 0,a16 = Ia0b2 = 0,

a22 =Iββ = XTPX + XT (b21Q1 + b22Q2 − 2ρb1b2Q
1
2
1 Q

1
2
2 )X,

a23 =Iβa1 = XT (b1Q1 − ρb2Q
1
2
1 Q

1
2
2 )J,a24 = Iβb1 = XT (b1Q1 − ρb2Q

1
2
1 Q

1
2
2 )Xβ,

a25 =Iβa2 = XT (b2Q2 − ρb1Q
1
2
1 Q

1
2
2 )J,a26 = Iβb2 = XT (b2Q2 − ρb1Q

1
2
1 Q

1
2
2 )Xβ,

a33 =Ia1a1 = JTQ1J,a34 = Ia1b1 = JTQ1Xβ,a35 = Ia1a2 = −ρJTQ
1
2
1 Q

1
2
2 J,

a36 =Ia1b2 = −ρJTQ
1
2
1 Q

1
2
2 Xβ,a44 = Ib1b1 = βTXTQ1Xβ,

a45 =Ib1a2 = −ρβTXTQ
1
2
1 Q

1
2
2 J,a46 = Ib1b2 = −ρβTXTQ

1
2
1 Q

1
2
2 Xβ,

a55 =Ia2a2 = JTQ2J,a56 = Ia2b2 = JTQ2Xβ,a66 = Ib2b2 = βTXTQ2Xβ.
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Appendix D - Proof of Theorem 1

For the proof of Theorem 1, note that the MLE is a special case of the GEE estimator, we will apply the theorems

from GEE theory. The proof of consistency is similar to Proposition 5.5 in Shao (2003). Note that the assumption

of hi(Xi) and equicontinuity of the score function can be satisfied under the compactness assumption A1 and the

differentiability of likelihood function, the identifiability assumption can be satisfied by assumption A2. To prove

the
√
n consistency and asymptotic normality, we use Theorem 1 in Ma and Kosorok (2005). Application of this

theorem requires the following conditions to hold: (a) consistent sequence of GEE estimators, which is established

before; (b) finite asymptotic variance, which is shown below; (c) equicontinuity of the gradient of the score function,

which can be established using the assumption A1, the the consistency result and the differentiability of likelihood

function.

Thus, we only need to establish the non-singularity of the information matrix, that is, to show IBC2F is PD. To

this end, we first show that IΣ in (14) is PD. Note that JTQ0J is PD, and we define the leading principal minors of

the matrix 
2−ρ2
2σ4

1

−ρ2
2σ2

1σ
2
2

−ρ
σ2
1

−ρ2
2σ2

1σ
2
2

2−ρ2
2σ4

2

−ρ
σ2
2

−ρ
σ2
1

−ρ
σ2
2

2+2ρ2

1−ρ2


as D1,D2 and D3. Direct computation shows that

D1 =
2− ρ2

2σ4
1

> 0,D2 =
1− 1ρ2

σ4
1σ

4
2

> 0,D3 =
2

σ4
1σ

4
2

> 0.

Thus IΣ is PD.

Next we will show that IBC2 is also PD. The matrix given by (15) is complicated, however, we can rearrange

it using simpler notations. If we let a = (a1, a2)
T and b = (b1, b2)

T , it can be shown that the Fisher information

matrix WRT (a0,β,a,b) is given by

I∗BC2 =


JTPJ JTPX 0 0

XTPJ XTPX + XTBTQ∗BX XTBTQ∗J∗ XTBTQ∗T

0 J∗TQ∗BX J∗TQ∗J∗ J∗TQ∗T

0 TTQ∗BX TTQ∗J∗ TTQ∗T

 ,

where Q∗ is a block diagonal matrix with diagonal element

exp(a0 + xTi β)

1 + exp(a0 + xTi β)
Σ−1,
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and

B = In ⊗ b =



b1 0 · · · 0

b2 0 · · · 0

0 b1 · · · 0

0 b2 · · · 0

...
...

...
...

0 0 · · · b1

0 0 · · · b2


,T = Xβ ⊗ I2 =



xT1 β 0

0 xT1 β

xT2 β 0

0 xT2 β

...
...

xTnβ 0

0 xTnβ


,J∗ = J⊗ I2 =


I2

I2
...

I2

 ,

where In and I2 are identity matrices of size n and 2, respectively, J,X are defined as before. To show that the I∗BC2

is PD, one can see that I∗BC2 = I + II, where

I =


JTPJ JTPX 0 0

XTPJ XTPX 0 0

0 0 0 0

0 0 0 0

 , II =


0 0 0 0

0 XTBTQ∗BX XTBTQ∗J∗ XTBTQ∗T

0 J∗TQ∗BX J∗TQ∗J∗ J∗TQ∗T

0 TTQ∗BX TTQ∗J∗ TTQ∗T

 .

Note that both I and II are PSD, if we assume there exists a vector α = (α1,α2,α3,α4), such that αT I∗BC2α = 0,

we must have (α1,α2) = (0,0) (since I is PSD), and (α3,α4) = (0,0) (since II is PSD). It yields that I∗BC2 is

PD.

Appendix E - Proof of Theorem 2

To prove (i) and (ii) in Theorem 2, we need to use the fact given in Lemma 2.1 (Han and Kronmal 2006). We also

introduce an intermediate model “BC1”, where the proportional constraints only appear in the response Yi,1. The

model BC1 is given by,

logit(pij) =a0 + xTijβ,

Vij,1 =a1 + b1x
T
ijβ + εij,1 for Yij,1 > 0,

Vij,2 =a2 + xTijξ + εij,2 for Yij,2 > 0.

Our idea is to first show the efficiency of BC1 over BC0 and UC1, then show the efficiency of BC2 over BC1.

To this end, it is suffice to show the following statements: In Loewner ordering,

(a) the asymptotic covariance matrix of the MLE of (â0, β̂), Cov(â0, β̂) is no larger in BC1 than in BC0. The

result also holds for (â1, δ̂) and (â2, ξ̂);
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(b) the asymptotic covariance matrix of the MLE of (â0, β̂), Cov(â0, β̂) is no larger in BC1 than in UC1. The

result also holds for (â1, δ̂);

(c) the asymptotic covariance matrix of the MLE of (â0, β̂), Cov(â0, β̂) is no larger in BC2 than in BC1. The

result also holds for (â1, δ̂) and (â2, ξ̂).

In Theorem 2, it is easy to see that (i) follows from (a) and (c), and (ii) follows from (b) and (c). Before showing

(a), (b) and (c), we need the following facts, the computation details are similar to those for BC2 and are

skipped here. Under BC0, the expected Fisher information matrix WRT (a0,β, a1, δ, a2, ξ, σ
2
1 , σ

2
2 , ρ) is given byIBC0 0

0 IΣ

 . Under BC1, the expected Fisher information matrix WRT (a0,β, a1, b1, a2, ξ, σ
2
1 , σ

2
2 , ρ) is given

by

IBC1 0

0 IΣ

 . IΣ is the same as that defined in (14), IBC0 is given by,



JTPJ JTPX 0 0 0 0

XTPJ XTPX 0 0 0 0

0 0 JTQ1J JTQ1X −ρJTQ
1
2
1 Q

1
2
2 J −ρJTQ

1
2
1 Q

1
2
2 X

0 0 XTQ1J XTQ1X −ρXTQ
1
2
1 Q

1
2
2 J −ρXTQ

1
2
1 Q

1
2
2 X

0 0 −ρJTQ
1
2
1 Q

1
2
2 J −ρJTQ

1
2
1 Q

1
2
2 X JTQ2J JTQ2X

0 0 −ρXTQ
1
2
1 Q

1
2
2 J −ρXTQ

1
2
1 Q

1
2
2 X XTQ2J XTQ2X


,

and

IBC1 = (brs)(2p+4)×(2p+4),

where brs can be scalars, vectors or block matrices. Since IBC1 is symmetrical, we have brs = bTsr . The elements

brs are given by (upper triangular parts):

b11 =Ia0a0 = JTPJ,b12 = Ia0β = JTPX,b13 = Ia0a1 = 0,b14 = Ia0b1 = 0,

b15 =Ia0a2 = 0,b16 = Ia0ξ = 0,b22 = Iββ = XTPX + b21X
TQ1X,

b23 =Iβa1 = b1X
TQ1J,b24 = Iβb1 = b1X

TQ1Xβ,b25 = Iβa2 = −ρb1XTQ
1
2
1 Q

1
2
2 J,

b26 =Iβξ = −ρb1XTQ
1
2
1 Q

1
2
2 X,b33 = Ia1a1 = JTQ1J,b34 = Ia1b1 = JTQ1Xβ,

b35 =Ia1a2 = −ρJTQ
1
2
1 Q

1
2
2 J,b36 = Ia1ξ = −ρJTQ

1
2
1 Q

1
2
2 X,b44 = Ib1b1 = βTXTQ1Xβ,

b45 =Ib1a2 = −ρβTXTQ
1
2
1 Q

1
2
2 J,b46 = Ib1ξ = −ρβTXTQ

1
2
1 Q

1
2
2 X,

b55 =Ia2a2 = JTQ2J,b56 = Ia2ξ = JTQ2X,b66 = Iξξ = XTQ2X.
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Armed with these results, we can now prove the statements (a), (b) and (c). To show (a), it is suffice to show a more

general result: the asymptotic covariance matrix of the MLE of (â0, β̂
T
, â1, â2, ξ̂

T
)T is no larger in BC1 than in

BC0. Applying Lemma 2.1 to both IBC1 and IBC0, we have,

Cov−1
BC1((â0, β̂

T
, â1, â2, ξ̂

T
)T )− Cov−1

BC0((â0, β̂
T
, â1, â2, ξ̂

T
)T )

=



JTPJ JTPX 0 0 0

XTPJ XTPX + b21X
TQ1X b1X

TQ1J −ρb1XTQ
1
2
1 Q

1
2
2 J −ρb1XTQ

1
2
1 Q

1
2
2 X

0 b1J
TQ1X JTQ1J −ρJTQ

1
2
1 Q

1
2
2 J −ρJTQ

1
2
1 Q

1
2
2 X

0 −ρb1JTQ
1
2
1 Q

1
2
2 X −ρJTQ

1
2
1 Q

1
2
2 J JTQ2J JTQ2X

0 −ρb1XTQ
1
2
1 Q

1
2
2 X −ρXTQ

1
2
1 Q

1
2
2 J XTQ2J XTQ2X



−



0

b1X
TQ1Xβ

JTQ1Xβ

−ρJTQ
1
2
1 Q

1
2
2 Xβ

−ρXTQ
1
2
1 Q

1
2
2 Xβ


(βTXTQ1Xβ)−1

×
(
0 b1β

TXTQ1X βTXTQ1J −ρβTXTQ
1
2
1 Q

1
2
2 J −ρβTXTQ

1
2
1 Q

1
2
2 X
)

−



JTPJ JTPX 0 0 0

XTPJ XTPX 0 0 0

0 0 JTQ1J −ρJTQ
1
2
1 Q

1
2
2 J −ρJTQ

1
2
1 Q

1
2
2 X

0 0 −ρJTQ
1
2
1 Q

1
2
2 J JTQ2J JTQ2X

0 0 −ρXTQ
1
2
1 Q

1
2
2 J XTQ2J XTQ2X



+



0

0

JTQ1X

−ρJTQ
1
2
1 Q

1
2
2 X

−ρXTQ
1
2
1 Q

1
2
2 X


(XTQ1X)−1

(
0 0 XTQ1J −ρXTQ

1
2
1 Q

1
2
2 J −ρXTQ

1
2
1 Q

1
2
2 X
)

=



0 0 0 0 0

0 b21X
TQ1X b1X

TQ1J −ρb1XTQ
1
2
1 Q

1
2
2 J −ρb1XTQ

1
2
1 Q

1
2
2 X

0 b1J
TQ1X 0 0 0

0 −ρb1JTQ
1
2
1 Q

1
2
2 X 0 0 0

0 −ρb1XTQ
1
2
1 Q

1
2
2 X 0 0 0


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−



0

b1X
TQ1X

JTQ1X

−ρJTQ
1
2
1 Q

1
2
2 X

−ρXTQ
1
2
1 Q

1
2
2 X


β(βTXTQ1Xβ)−1βT

×
(
0 b1X

TQ1X XTQ1J −ρXTQ
1
2
1 Q

1
2
2 J −ρXTQ

1
2
1 Q

1
2
2 X
)

+



0

0

JTQ1X

−ρJTQ
1
2
1 Q

1
2
2 X

−ρXTQ
1
2
1 Q

1
2
2 X


(XTQ1X)−1

(
0 0 XTQ1J −ρXTQ

1
2
1 Q

1
2
2 J −ρXTQ

1
2
1 Q

1
2
2 X
)

≥



0 0 0 0 0

0 b21X
TQ1X b1X

TQ1J −ρb1XTQ
1
2
1 Q

1
2
2 J −ρb1XTQ

1
2
1 Q

1
2
2 X

0 b1J
TQ1X 0 0 0

0 −ρb1JTQ
1
2
1 Q

1
2
2 X 0 0 0

0 −ρb1XTQ
1
2
1 Q

1
2
2 X 0 0 0



−



0

b1X
TQ1X

JTQ1X

−ρJTQ
1
2
1 Q

1
2
2 X

−ρXTQ
1
2
1 Q

1
2
2 X


(XTQ1X)−1

×
(
0 b1X

TQ1X XTQ1J −ρXTQ
1
2
1 Q

1
2
2 J −ρXTQ

1
2
1 Q

1
2
2 X
)

+



0

0

JTQ1X

−ρJTQ
1
2
1 Q

1
2
2 X

−ρXTQ
1
2
1 Q

1
2
2 X


(XTQ1X)−1

(
0 0 XTQ1J −ρXTQ

1
2
1 Q

1
2
2 J −ρXTQ

1
2
1 Q

1
2
2 X
)

=0.

Thus we have shown the asymptotic covariance matrix of the MLE of (â0, β̂
T
, â1, â2, ξ̂

T
)T is no larger in BC1

than in BC0, by the delta method (Corollary 1.1 in Shao (2003)), the result of asymptotic efficiency must hold for

β̂ and ξ̂. To show the result also holds for δ̂, we can reparameterize BC1 by using (a0, c1, a1, δ, a2, ξ) in place
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of (a0,β, a1, b1, a2, ξ), where c1 = 1/b1. For the reparameterized model, we can compute the expected Fisher

information WRT (a0, c1, a1, δ, a2, ξ), arguments similar to those used in the above proof.

Next we are going to show (b). Note that the parameters (a2, ξ) do not appear in the modelUC1. Thus, it is suffice

to show: the asymptotic covariance matrix of the MLE of (â0, β̂
T
, â1, b̂1)

T is no larger in BC1 than in UC1. (b)

then follows from the delta method. Applying Lemma 2.1 to IBC1, together with the form of IUC1 from (8) (Han

and Kronmal 2006), we have,

Cov−1
BC1((â0, β̂

T
, â1, b̂1)

T )− Cov−1
UC1((â0, β̂

T
, â1, b̂1)

T )

=


JTPJ JTPX 0 0

XTPJ XTPX + b21X
TQ1X b1X

TQ1J b1X
TQ1Xβ

0 b1J
TQ1X JTQ1J JTQ1Xβ

0 b1β
TXTQ1X βTXTQ1J βTXTQ1Xβ



−


0 0

−ρb1XTQ
1
2
1 Q

1
2
2 J −ρb1XTQ

1
2
1 Q

1
2
2 X

−ρJTQ
1
2
1 Q

1
2
2 J −ρJTQ

1
2
1 Q

1
2
2 X

−ρβTXTQ
1
2
1 Q

1
2
2 J −ρβTXTQ

1
2
1 Q

1
2
2 X


JTQ2J JTQ2X

XTQ2J XTQ2X

−1

×

0 −ρb1JTQ
1
2
1 Q

1
2
2 X −ρJTQ

1
2
1 Q

1
2
2 J −ρJTQ

1
2
1 Q

1
2
2 Xβ

0 −ρb1XTQ
1
2
1 Q

1
2
2 X −ρXTQ

1
2
1 Q

1
2
2 J −ρXTQ

1
2
1 Q

1
2
2 Xβ



−


JTPJ JTPX 0 0

XTPJ XTPX + b21(1− ρ2)XTQ1X b1(1− ρ2)XTQ1J b1(1− ρ2)XTQ1Xβ

0 b1(1− ρ2)JTQ1X (1− ρ2)JTQ1J (1− ρ2)JTQ1Xβ

0 b1(1− ρ2)βTXTQ1X (1− ρ2)βTXTQ1J (1− ρ2)βTXTQ1Xβ


=

0 0

0 ρ2V

 ,

where

V =


b21X

TQ1X b1X
TQ1J b1X

TQ1Xβ

b1J
TQ1X JTQ1J JTQ1Xβ

b1β
TXTQ1X βTXTQ1J βTXTQ1Xβ



−


b1X

TQ
1
2
1 Q

1
2
2 J b1X

TQ
1
2
1 Q

1
2
2 X

JTQ
1
2
1 Q

1
2
2 J JTQ

1
2
1 Q

1
2
2 X

βTXTQ
1
2
1 Q

1
2
2 J βTXTQ

1
2
1 Q

1
2
2 X


JTQ2J JTQ2X

XTQ2J XTQ2X

−1
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×

 b1JTQ
1
2
1 Q

1
2
2 X JTQ

1
2
1 Q

1
2
2 J JTQ

1
2
1 Q

1
2
2 Xβ

b1X
TQ

1
2
1 Q

1
2
2 X XTQ

1
2
1 Q

1
2
2 J XTQ

1
2
1 Q

1
2
2 Xβ


=A−BC−1BT ,

where A,B and C are defined accordingly. Hence, it is suffice to show that V is PSD. To this end, we need to show A B

BT C


is PSD, A is PSD and C is PD. The latter two are obvious because Q2 is PD and (J X) has full column rank. We

also have  A B

BT C



=



b1X
TQ

1
2
1

JTQ
1
2
1

βTXTQ
1
2
1

JTQ
1
2
2

XTQ
1
2
2


(
b1Q

1
2
1 X Q

1
2
1 J Q

1
2
1 Xβ Q

1
2
2 J Q

1
2
2 X
)

is PSD.

Last we will show (c), again we will show a more general result: the asymptotic covariance matrix of the MLE of

(â0, β̂
T
, â1, b̂1, â2)

T is no larger in BC2 than in BC1. Applying Lemma 2.1 to IBC2 and IBC1, also notice that

from the form of IBC2 and IBC1, many elements can be cancelled, we have,

Cov−1
BC2((â0, β̂

T
, â1, b̂1, â2)

T )− Cov−1
BC1((â0, β̂

T
, â1, b̂1, â2)

T )

=



0 0 0 0 0

0 XT (b22Q2 − 2ρb1b2Q
1
2
1 Q

1
2
2 )X −ρb2XTQ

1
2
1 Q

1
2
2 J −ρb2XTQ

1
2
1 Q

1
2
2 Xβ b2X

TQ2J

0 −ρb2JTQ
1
2
1 Q

1
2
2 X 0 0 0

0 −ρb2βTXTQ
1
2
1 Q

1
2
2 X 0 0 0

0 b2J
TQ2X 0 0 0


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−



0

XT (b2Q2 − ρb1Q
1
2
1 Q

1
2
2 )X

−ρJTQ
1
2
1 Q

1
2
2 X

−ρβTXTQ
1
2
1 Q

1
2
2 X

JTQ2X


β(βTXTQ2Xβ)−1βT

×
(
0 XT (b2Q2 − ρb1Q

1
2
1 Q

1
2
2 )X −ρXTQ

1
2
1 Q

1
2
2 J −ρXTQ

1
2
1 Q

1
2
2 Xβ XTQ2J

)

+



0

−ρb1XTQ
1
2
1 Q

1
2
2 X

−ρJTQ
1
2
1 Q

1
2
2 X

−ρβTXTQ
1
2
1 Q

1
2
2 X

JTQ2X


(XTQ2X)−1

×
(
0 −ρb1XTQ

1
2
1 Q

1
2
2 X −ρXTQ

1
2
1 Q

1
2
2 J −ρXTQ

1
2
1 Q

1
2
2 Xβ XTQ2J

)
≥0,

where the inequality comes from using the same technique as in proving (a). To show the result also holds for ξ̂,

we reparameterize BC2 by using (a0, c2, a1, b1, a2, ξ) in place of (a0,β, a1, b1, a2, b2), where c2 = 1/b2. For the

reparameterized model, we can compute the expected Fisher information WRT (a0, c2, a1, b1, a2, ξ), arguments

similar to those used in the above proof.

Appendix F - Simulation of ARE

We considered values of ρ between 0 and 0.9, and values of β1 between 0 and 1.5; other parameters were set to be

the same as in Table 1. Note that when ρ = 0, BC2 was not equivalent to UC1 since mean values of log(Y ∗ij,1) and

log(Y ∗ij,2) were correlated. In BC2, the dependence need to be considered, while in UC1, the log(Y ∗ij,d) part was

ignored. Although we had explicit forms of the Fisher information matrices, in practice, we computed the estimated

covariance matrices using the inverse of observed Fisher information, thus in the previous simulation, we increased

the number ni to 1000, and the sample size n = 3000. Table 1 shows the comparison between BC2 and UC1,

and Table 2 shows the comparison between BC2 and BC0. From the results in the table, one can see that, when ρ

changes, the ARE are not changing much, however, when β1 (δ1) increases, the ARE are uniformly going to 1. This

is not surprising, because when β1 (δ1) is large, it becomes more significant in the model, and all the three models can

detect it. However, when β1 (δ1) is not so significant, the SE of the estimates in modelsUC1 andBC0 become larger

than those in the proposed model BC2. This empirical evidence suggests that, when the proportionality structure

holds, the proposed modelBC2 is more powerful than models UC1 andBC0 in determining the significance of the

covariate effects.
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Table 1. ARE of β1 and δ1 = b1β1, Values Represent Variances under Model BC2 over Model UC1.
β1 δ1 = b1β1

ρ 0 0.4 0.8 1.5 0 0.24 0.48 0.9
0.00 0.43 0.71 0.91 0.98 0.43 0.73 0.88 0.95
0.20 0.48 0.74 0.91 0.98 0.48 0.75 0.89 0.95
0.40 0.51 0.76 0.92 0.98 0.52 0.77 0.90 0.96
0.70 0.52 0.75 0.92 0.98 0.52 0.77 0.90 0.96
0.90 0.39 0.68 0.90 0.95 0.40 0.70 0.87 0.95

Table 2. ARE of β1 and δ1 = b1β1, Values Represent Variances under Model BC2 over Model BC0.
β1 δ1 = b1β1

ρ 0 0.4 0.8 1.5 0 0.24 0.48 0.9
0.00 0.27 0.52 0.76 0.94 0.17 0.43 0.71 0.91
0.20 0.29 0.54 0.77 0.94 0.19 0.45 0.71 0.92
0.40 0.31 0.56 0.77 0.94 0.20 0.46 0.72 0.92
0.70 0.31 0.55 0.77 0.94 0.21 0.45 0.72 0.92
0.90 0.24 0.50 0.76 0.94 0.16 0.41 0.70 0.91

Appendix G - Model Assumptions

Assumptions (A1)-(A4)

(A1) X is component-wise bounded. Denote the true value of θ as θT , θT is an interior point of an open set in the

parameter space, bd ∈ ‖β‖ ·R, −1 < ρ < 1.

(A2) The design matrix (J X) is assumed to have full column rank.

(A3) The model is correctly specified as in equation (6) of the main contents of the paper, and the error terms follow

the distribution in equation (5) of the main contents of the paper.

(A4) The matrix RBC2F = limn→∞
IBC2F
n

exists.

Modified Assumptions (A3’)-(A4’) for mis-specified model

(A3’) The independent vectors Zi have a distribution with measurable (Radon-Nikodym) density h(·), and the

parametric family of distribution functions all have densities f(z,θ), which is specified in equation (6) of the

main contents of the paper. The Kullback-Leibler info I(h : f,θ) = E(ln h(Z)
f(Z,θ)

) has a unique minimum at

θ0.

(A4’) E|(lnh(Z))| <∞; | ∂
2 ln f

∂θi∂θj
| and | ∂ ln f

∂θi

∂ ln f
∂θi
| are dominated by functions integrable in z. |B(θ)| 6= 0 , rank

of A(θ) is constant in a neighborhood of θ0.
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