[Supplementary materials]

Performance evaluation of an on-site biocomplex textile as an alternative daily cover in a sanitary landfill, South Korea

Jeonghee Yun ${ }^{1}$, Hyekyeng Jung ${ }^{1}$, Hyungjoo Choi ${ }^{1}$, Kyung-Cheol Oh ${ }^{2}$, Jun-Min Jeon ${ }^{2}$, Hee Wook Ryu ${ }^{3}$, Kyung-Suk Cho ${ }^{1, *}$
${ }^{1}$ Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
${ }^{2}$ Green Environment Complex Center, Suncheon, 57992, Republic of Korea
${ }^{3}$ Department of Chemical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul, 06978, Republic of Korea

[^0]Supplementary Table S1. Metagenome analysis results of the biocomplex textile prototype

Sampling time (date)	Repl.	No. of reads ${ }^{\text {a }}$	No. of OTUs	Chao1 ${ }^{\text {b }}$	Diversity index		Good's coverage ${ }^{e}$
					Shannon ${ }^{\text {c }}$	Simpson ${ }^{\text {d }}$	
6 d	1	62,919	868	1041.91	4.32	0.77	0.997
	2	45,119	853	1018.19	4.93	0.83	0.996
39 d	1	83,307	559	680.69	4.78	0.89	0.999
	2	84,332	570	656.39	4.94	0.90	0.999
66 d	1	83,386	1,051	1172.40	6.11	0.94	0.998
	2	64,431	996	1073.41	5.80	0.92	0.998
89 d	1	65,393	981	1067.68	7.46	0.97	0.998
	2	74,858	947	1098.89	5.16	0.87	0.998
125 d	1	44,805	948	1055.10	6.28	0.94	0.997
	2	41,521	932	1040.39	6.15	0.94	0.996
151 d	1	52,270	1,065	1151.01	6.73	0.96	0.997
	2	82,315	1,100	1165.58	7.01	0.97	0.999

${ }^{a}$ No. of reads is the number of sequences after trimming.
${ }^{\mathrm{b}}$ Chao1 is an index of bacterial population richness.
${ }^{\text {c }}$ Shannon index of diversity within the bacterial population.
${ }^{\mathrm{d}}$ Simpson index represents probability that two randomly selected individuals in the habitat will belong to the same species.
${ }^{\mathrm{e}}$ Coverage is calculated as $\mathrm{C}=1-(\mathrm{s} / \mathrm{n})$, where s is the number of unique OTUs and n is the number of individuals in the sample. This index gives a relative measure of how well the sample represents the larger environment.

[^0]: * Corresponding author: Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea; Tel: +82-2-3277-2393; Fax: +82-2-3277-3275; E-mail address: kscho@ewha.ac.kr

