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Abstract

Streptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that causes otitis

media, sinusitis, pneumonia, meningitis and sepsis. The progression to this pathogenic life-

style is preceded by asymptomatic colonization of the nasopharynx. This colonization is

associated with biofilm formation; the competence pathway influences the structure and sta-

bility of biofilms. However, the molecules that link the competence pathway to biofilm forma-

tion are unknown. Here, we describe a new competence-induced gene, called briC, and

demonstrate that its product promotes biofilm development and stimulates colonization in a

murine model. We show that expression of briC is induced by the master regulator of com-

petence, ComE. Whereas briC does not substantially influence early biofilm development

on abiotic surfaces, it significantly impacts later stages of biofilm development. Specifically,

briC expression leads to increases in biofilm biomass and thickness at 72h. Consistent with

the role of biofilms in colonization, briC promotes nasopharyngeal colonization in the murine

model. The function of BriC appears to be conserved across pneumococci, as comparative

genomics reveal that briC is widespread across isolates. Surprisingly, many isolates, includ-

ing strains from clinically important PMEN1 and PMEN14 lineages, which are widely associ-

ated with colonization, encode a long briC promoter. This long form captures an instance of

genomic plasticity and functions as a competence-independent expression enhancer that

may serve as a precocious point of entry into this otherwise competence-regulated pathway.

Moreover, overexpression of briC by the long promoter fully rescues the comE-deletion

induced biofilm defect in vitro, and partially in vivo. These findings indicate that BriC may

bypass the influence of competence in biofilm development and that such a pathway may

be active in a subset of pneumococcal lineages. In conclusion, BriC is a part of the complex

molecular network that connects signaling of the competence pathway to biofilm develop-

ment and colonization.
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Author summary

Pneumococcal biofilms occur in chronic otitis media, chronic rhinosinusitis, and naso-

pharyngeal colonization. These biofilms are an important component of pneumococcal

epidemiology, particularly in influencing transmission, maintenance of asymptomatic col-

onization, and development of disease. The transcriptional program initiated via signaling

of the competence pathway is critical for productive biofilm formation and is a strong

contributor of pneumococcal infection and adaptation. In this study, we have identified

BriC, a previously uncharacterized peptide that serves as a bridge between the competence

pathway and biofilm development. We show that briC is induced by ComE, the master

regulator of competence, and promotes biofilm development. Moreover, our studies in

the murine model demonstrate that BriC is a novel colonization enhancer. Our studies of

briC regulation capture an instance of genomic plasticity, where natural variation in the

briC promoter sequence reveals the existence of an additional competence-independent

regulatory unit. This natural variation may be able to modify the extent to which compe-

tence contributes to biofilm development and to nasopharyngeal colonization across dif-

ferent pneumococcal lineages. In summary, this study introduces a colonization factor

and reveals a molecular link between competence and biofilm development.

Introduction

Bacteria form sessile communities termed biofilms, where they interact with each other to

engage in collaborative and/or competitive behaviors [1]. In Streptococcus pneumoniae (pneu-

mococcus), these cell-cell interactions are commonly mediated by secreted peptides that inter-

act with both producing and neighboring cells of the same species, and induce changes in gene

regulation that result in altered phenotypes [2]. These dynamic pneumococcal biofilms occur

in chronic otitis media, chronic rhinosinusitis and nasopharyngeal colonization [3–8].

The ability to form biofilms is a critical component of pneumococcal disease [9]. Biofilms

serve as reservoirs for acute infections [10]. In the middle ear, cells released from a biofilm are

thought to be responsible for recurrent episodes of infection [4]. Bacterial cells released from

nasopharyngeal biofilms can seed pneumococcal transmission between individuals by being

incorporated into nasal shedding. Alternatively, these cells can disseminate to tissues causing

mild to severe diseases, such as otitis media, pneumonia, and sepsis [10]. Pneumococcal cells

released from biofilms display increased virulence relative to their planktonic or biofilm coun-

terparts, suggesting that chronic biofilms set the stage for the stimulation of a virulence pro-

gram activated upon the dispersal of cells [11]. Moreover, pneumococci in a biofilm display

decreased susceptibility to antibiotics, and are recalcitrant to treatment [6]. Thus, biofilms are

an important component of pneumococcal epidemiology in transmission, maintenance of

asymptomatic colonization, and development of disease.

The transcriptional program required for the initiation and the growth of pneumococcal

biofilms has been the subject of numerous investigations. It is clear that at least two quorum

sensing (QS) signal transduction pathways are critical for biofilm development: competence

and Lux [7], [12–15]. The competence pathway has been the subject of intense investigation

for decades [16–28]. Competence is activated by a classic two-component system (TCS) where

the extracellular competence stimulating peptide (CSP, encoded by comC) binds to the surface

exposed ComD histidine kinase receptor, inducing its autophosphorylation and the subse-

quent transfer of the phosphate group to its cognate regulator, ComE [23], [29]. Activation of

the competence pathway leads to increased expression of 5–10% of the pneumococcal genome
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in two main waves of gene expression [21], [26]. The first wave of induction is carried out

directly by ComE; it upregulates a subset of competence genes (early genes) that include

comAB, comCDE, as well as the alternative sigma factor, comX. The second wave of compe-

tence induction is regulated by ComX; it leads to an increase in the levels of at least 80 genes

(late genes), that subsequently modulate important phenotypes such as transformation, metab-

olism, fratricide and biofilm formation [16], [26], [30]. This competence program is upregu-

lated during biofilm mode of growth in vitro, during interactions with human epithelial cells,

and in lungs and brain after intranasal and intracranial challenges respectively in murine infec-

tion models [7], [12], [31]. Importantly, in cell culture models, comC is required for biofilm

development [12], [14]. Thus, activation of the competence pathway is important for produc-

tive biofilm formation and critical for pneumococcal infection and adaptation.

The Lux QS system also plays a role in biofilm formation. In this system, Lux QS is con-

trolled by the AI-2 autoinducer, which is secreted and sensed by both Gram-positive and

Gram-negative species. LuxS is a node in the regulation of competence, fratricide, and bio-

film development [15], [32]. Lux upregulates competence via ComD and ComX [13]. It con-

tributes to bactericidal activity via upregulation of the choline binding murein hydrolase

(CbpD). Through lysis, this bactericidal activity increases the levels of extracellular DNA,

which is a key ingredient in the extracellular polymeric substance (EPS) that makes up the

biofilm. Thus, the competence and Lux systems provide the molecular framework to coor-

dinate multi-cellular bacterial communities to form and develop robust biofilms during

infection.

Whereas the role of competence signaling in biofilm development is well established, the

molecules that connect competence to biofilms are poorly understood [3], [7], [15], [33]. In

this study, we identify one such molecule that links competence and biofilms. We characterize

the gene encoding BriC (Biofilm regulating peptide induced by Competence), a novel coloni-

zation factor in the competence pathway. Levels of briC are regulated by ComE, and briC pro-

motes biofilm development and nasopharyngeal colonization. Further, genomic analysis of

briC reveals polymorphisms in its promoter, where a subset of strains encode a RUP (for

repeat unit of pneumococcus) sequence, which leads to additional and CSP-independent

expression of briC.

Results

Identification of a competence-regulated Gly-Gly peptide

We have identified the gene encoding a putative secreted peptide that is co-regulated with

competence (spd_0391 (D39); spr_0388 (R6); sp_0429 (TIGR4)). Based on the results presented

in this manuscript, we have termed it Biofilm-regulating peptide induced by Competence

(BriC). BriC was identified in our previously described in silico screen designed to capture cell-

cell communication peptides in the pneumococcal genome [34]. The known double glycine

(Gly-Gly) streptococcal peptides are exported and proteolytically processed by dedicated ABC

transporters that recognize N-terminal sequences with the Gly-Gly leader peptide (LSXXELX-

XIXGG)[23]. In our previous work, we identified novel secreted pneumococcal peptides using

computational analysis to search for proteins with N-termini that contain a Gly-Gly leader.

Our input set consisted of the alleles of two exported Gly-Gly peptides, the signaling molecule

CSP and the bacteriocin BIP [23], [35]. Our output consisted of a position dependent probabil-

ity matrix that captures the length and positional variability at each residue of the Gly-Gly

motif. When we searched for this motif in a database of sixty streptococcal genomes, we

defined a predicted secretome consisting of twenty-five sequence clusters, one of which corre-

sponds to BriC [34].

Competence-induced peptide regulates biofilms and in vivo colonization
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To identify genes co-regulated with briC, we performed transcriptional studies using a

NanoString probe set that reports on the abundance of the briC transcript as well as tran-

scripts encoding a subset of pneumococcal regulators and cell wall proteins. We assessed

the levels of briC transcript in vitro and in vivo. In vitro expression was measured by screen-

ing RNA extracted from mid-log planktonic cultures of a laboratory strain (R6-derivative

(R6D)). In vivo expression was evaluated by analysis of middle-ear effusions recovered from

chinchillas infected with a clinical PMEN1 strain. The mRNA levels of briC were positively

associated with comC and comE in vitro (strain R6D: R2 = 0.61 and 0.79, respectively) and in
vivo (strain PN4595-T23: R2 = 0.92 and 0.88, respectively). It is noteworthy that changes in

the expression of genes in this locus were observed in the studies that first documented the

competence regulon [21], [26]. Specifically, Peterson and colleagues observed changes in

briC levels, however the association between briC and CSP was below the statistical thresh-

old [26]. Further, Dagkessamanskaia and colleagues observed an upregulation in the gene

downstream of briC, predicted to be in the same operon [21]. Given that in strains R6, R6D,

and D39, this downstream gene is truncated, this study does not explore the function of the

downstream gene. In summary, our gene expression analysis suggests that briC is induced

by competence.

To directly test whether briC is a competence-regulated peptide, we employed a fusion of

the briC promoter to the lacZ reporter (R6 PbriC-lacZ). Stimulation of the signal transduc-

tion system that initiates competence by addition of CSP1 led to an induction of the β-galac-

tosidase activity by about twenty-five-fold (Fig 1). Induction of the briC promoter was

specific to the CSP pherotype encoded by strain R6. The β-galactosidase activity was

observed upon addition of CSP1, the CSP pherotype from strain R6, but not upon addition

of the non-cognate CSP2 pherotype (Fig 1). Thus, we conclude that briC is a competence-

responsive gene.

Fig 1. Expression of briC is induced by cognate CSP. β-galactosidase assay measuring PbriC-LacZ activity in

pneumococcal R6 cells grown to exponential phase in Columbia Broth at pH 6.6 followed by no treatment or

treatment with CSP1 or CSP2 for 30 minutes. Y-axis denotes PbriC-lacZ expression levels in Miller Units. Activity is

expressed in nmol p-nitrophenol/min/ml. Error bars represent standard error of the mean for biological replicates (at
least n = 3); “ns” denotes non-significant, ���� p<0.0001 using ANOVA followed by Tukey’s post-test.

https://doi.org/10.1371/journal.ppat.1007328.g001
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Levels of briC transcripts are directly regulated by ComE

Our in silico analysis of the briC promoter in strains R6 and R6D revealed the presence of a

ComE-binding site. ComE binds a well-defined sequence consisting of two imperfect direct

repeats of nine nucleotides separated by a gap of twelve or thirteen base pairs [36]. Our analysis

of the putative briC promoter across pneumococcal strains revealed an excellent match to the

ComE-binding box (Fig 2A). To further investigate the association between ComE and briC,

we tested whether CSP-induction of briC requires ComE. We compared the CSP-induction of

briC in a wild-type (R6D WT) strain to that of an isogenic comE-deletion mutant (R6DΔcomE),

using qRT-PCR analysis. In WT cells, the addition of CSP triggered a significant increase in lev-

els of briC at 10 minutes post-addition, with levels slowly decreasing by 15 minutes (Fig 2B).

This trend follows the temporal pattern observed for the levels of comE that has been associated

with genes under direct controls of ComE [21], [26]. In contrast, the transcript levels of briC
were unaffected by CSP addition in the ΔcomE strain, indicating that the expression of briC
requires ComE (Fig 2B). These results strongly suggest that briC is directly regulated by ComE.

In addition, ComE plays a critical role in controlling transformation, thus we investigated

whether briC impacts transformation efficiency (S1 Result and S1 Fig). We find that absence of

briC leads to only a minor decrease in transformation efficiency.

BriC plays a key role in biofilm development

To investigate whether expression of briC plays a role in biofilm development, we compared

biofilm formation across WT (R6D WT), briC deletion mutant (R6DΔbriC), and briC comple-

mented (R6DΔbriC::briC) strains grown on an abiotic surface at 24h and 72h post-seeding. No

difference was observed in biofilm biomass and thickness at 24h post-seeding, suggesting that

expression of briC does not contribute to early stages of biofilm formation (Fig 3A and 3B). In

contrast, at 72h post-seeding, ΔbriC biofilms displayed significantly reduced biomass and

thickness when compared to WT (Fig 4A and 4B). Further, biofilms with ΔbriC::briC cells

restored the WT phenotype at this time-point (Fig 4A and 4B). The indistinguishable biofilm

parameters of WT and ΔbriC cells at 24h post-seeding suggests that there is no fitness-related

growth difference between the strains and indicates that the biofilm defect is biologically rele-

vant. These findings suggest that briC contributes to late biofilm development.

briC is widely distributed across pneumococcal strains

To investigate the prevalence of briC, we investigated its distribution across the genomes of

pneumococcus and related streptococci. To place the distribution in the context of phylogeny,

we used a published species tree generated from a set of fifty-five genomes [34], [38] (S1

Table). The genomes encompass thirty-five pneumococcal genomes that span twenty-nine

multi-locus sequence types as well as eighteen serotypes and nontypeable strains; eighteen

genomes from related streptococcal species that also colonize the human upper respiratory

tract, namely S. pseudopneumoniae, S. mitis, and S. oralis; and finally, two distantly related S.

infantis strains as an outgroup. In this set, all the pneumococcal genomes encode briC, and

there are two highly similar alleles (labeled allele 1A and 1B, Figs 5 and 6). Further, we identi-

fied four additional alleles in the related streptococci (Fig 5, S1 File). Next, we extended this

analysis to a set of 4,034 pneumococcal genomes available in the pubMLST database (these

correspond to all the genomes with at least 2Mb of sequence) [39]. In total, 98.5% (3,976 out of

4,034) of these genomes encode a briC allele, suggesting briC is highly prevalent across pneu-

mococcal strains. We find that alleles 1A and 1B are prominent in this larger set, with 1,824

and 1,187 representatives respectively. After manual curation, we retrieved nineteen distinct

briC alleles across these pneumococcal genomes (Fig 6). Six of the polymorphic residues are
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Fig 2. CSP-induction of briC is ComE-dependent. (A) Genomic organization of the briC locus, displaying a ComE-binding box. Green: ComE-

binding box within the briC promoter region. The expanded region denotes a logo of ComE-binding box generated from thirty-four pneumococcal

genomes represented in Fig 5. This consensus is aligned with the published ComE-binding box consensus sequence [36]. The putative -10 region, the

transcription start site (TSS) as determined by Cappable-Seq [37], the ribosome binding site (RBS) and the transcriptional terminator are labeled. The

downstream gene is predicted to be a pseudogene in R6D, R6 and D39. In TIGR4, this region encodes two coding sequences (SP_0430 and SP_0431).

The R6D sequence corresponds to the C-terminal of SP_0430. (B) mRNA transcript levels of briC (solid black) and comE (dashed black lines) as

measured by qRT-PCR in R6D WT & R6DΔcomE cells. Cells were grown in Columbia broth at pH 6.6 to an OD600 of 0.3, and then treated with CSP1

for either 0’, 10’ or 15’. Data was normalized to 16S rRNA levels. Y-axis denotes normalized concentrations of mRNA levels in arbitrary fluorescence

units as calculated from LinRegPCR. Error bars represent standard error of the mean calculated for biological replicates (n = 3); “ns” denotes non-
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located in the putative leader sequence. The conserved region of the leader sequences corre-

sponds to the amino acids preceding the Gly-Gly [23], [34], thus the polymorphisms at the N-

terminal end of the BriC sequence are not predicted to influence export. One polymorphic res-

idue replaces the glycine in the Gly-Gly motif with a serine; it seems probable that this varia-

tion may influence processing and/or export. In addition, position -2 from the C-terminus

encodes either an alanine or a threonine. This variation is at the C-terminus, predicted to be

the functional end of the molecule, such that the difference in size and polarity at this residue

is likely to impact structure or binding of BriC to its targets. The briC gene is induced by com-

petence, so we investigated whether there is a correlation between CSP pherotypes and alleles

encoding BriC. However, we did not find these to be associated (S2 Table). Finally, to investi-

gate the distribution of briC in other species and genera, we used BLASTp to search the non-

redundant database [40]. We find that BriC homologs are present in strains of related strepto-

cocci, S. pseudopneumoniae, S. mitis and S. oralis, but we did not identify homologues in more

distant species. The phylogenetic distribution of briC supports a conserved role across pneu-

mococci and a subset of related streptococcal species.

Inter-strain differences in the briC promoter are associated with diverse

regulation of briC in clinically important lineages

Our analysis of the promoter region of briC in our curated set of genomes reveals that a subset

of strains encode for a 107bp insertion within the region upstream of briC (Fig 5). The

significant, � p<0.05 using ANOVA followed by Tukey’s post-test relative to the respective 0’ CSP treatment. Further, briC levels are also significantly

higher in WT relative to ΔcomE cells for the same time points post-CSP treatment (p<0.05).

https://doi.org/10.1371/journal.ppat.1007328.g002

Fig 3. BriC does not influence early biofilm development. (A) Representative confocal microscopy images showing top view of the reconstructed biofilm stacks of

WT, ΔbriC and ΔbriC::briC cells of strain R6D stained with SYTO59 dye at 24h. Images are pseudo-colored according to depth (scales shown). (B) COMSTAT2

quantification of 24h biofilm images. Y-axis denotes units of measurement: μm3/μm2 for biomass, and μm for maximum thickness and average thickness over biomass.

Error bars represent standard error of the mean calculated for biological replicates (n = 3); “ns” denotes non-significant comparisons, ���� p<0.0001 using ANOVA

followed by Tukey’s post-test.

https://doi.org/10.1371/journal.ppat.1007328.g003
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additional nucleotides are located after the ComE-binding site and before the transcriptional

start site, and correspond to a repeat unit in pneumococcus (RUP) sequence [41], [42]. RUP is

an insertion sequence derivative with two clear variants, which may still be mobile [42]. The

RUP sequence upstream of briC corresponds to RUPB1.

In our curated genomes, the long RUP-encoding promoter is present in multiple strains,

including those from the clinically important PMEN1 and PMEN14 lineages (Fig 5). Using

our expanded database of 4,034 pneumococcal genomes, we determined that the vast majority

of the PMEN1 and PMEN14 genomes encode a long promoter. Specifically, of the manually

curated subset, 99.4% of PMEN1 strains and 100% of PMEN14 strains encode the long pro-

moter. The high prevalence of the long promoter in these lineages suggests that this form was

present in the ancestral strains from these lineages and/or provides a fitness advantage in these

genomic backgrounds.

To investigate how this genomic difference influences briC expression, we generated a LacZ

reporter strain. The 263bp upstream of briC from the PMEN1 strain, PN4595-T23, were fused

to lacZ to produce the PbriClong-lacZ reporter, and its reporter activity was compared to that of

the PbriC-lacZ generated with the fusion of 159bp upstream of briC obtained from strain R6.

To control for the possibility that the influence of the RUP sequence might be strain-depen-

dent, we tested these reporter constructs in the R6 and the PMEN1 backgrounds, in both the

absence and presence of CSP treatment (Fig 7A and 7B). The presence of RUP dramatically

increased the basal levels of briC in the absence of CSP, and this increase was observed in both

R6 and PMEN1. Furthermore, both constructs were induced upon addition of the cognate

CSP. These findings suggest that the RUP sequence serves as an expression enhancer; it

Fig 4. BriC stimulates late biofilm development. (A) Representative confocal microscopy images showing top view of the reconstructed biofilm stacks of WT, ΔbriC
and ΔbriC::briC cells of strain R6D stained with SYTO59 dye at 72h. Images are pseudo-colored according to depth (scales shown). (B) COMSTAT2 quantification of

72h biofilm images. Y-axis denotes units of measurement: μm3/μm2 for biomass, and μm for maximum thickness and average thickness over biomass. Error bars

represent standard error of the mean calculated for biological replicates (n = 3); “ns” denotes non-significant comparisons, ���� p<0.0001 using ANOVA followed by

Tukey’s post-test.

https://doi.org/10.1371/journal.ppat.1007328.g004
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increases the levels of briC transcripts and this increase is CSP-independent. Thus, in some lin-

eages, briC appears to be under the control of both CSP-dependent and CSP-independent

regulation.

Expression of briC driven by the long promoter bypasses the impact of

competence induction in biofilm development

Next, we investigated the biological impact of the natural variations in the briC promoter on

biofilm development. It has been well established that competence promotes biofilm develop-

ment. Specifically, deletion of the comC (encodes CSP) and comD (encodes histidine kinase of

competence TCS) genes lead to a reduction in in vitro biofilms in strains D39 and TIGR4 [7],

[12]. In this study, we have established that briC also promotes biofilm development (Fig 4A

and 4B), and that the RUP-containing long promoter serves as an expression enhancer,

increasing basal expression of briC to levels higher than the CSP-dependent induction

observed with the short promoter (Fig 7). Thus, we hypothesized that expression of briC from

the long promoter may bypass the impact of competence in biofilm development.

In concurrence with previous work, we observed that a strain with a comE deletion

(R6DΔcomE) displays a reduction in biofilm biomass and thickness relative to the WT strain

(Fig 8A and 8B). ComE influences the expression of numerous genes. To determine whether

the biofilm defects were primarily due to its impact on briC induction, we tested a construct

with a disruption of the ComE-binding box in the briC promoter (R6DΔbriC::PbriCShuffled

ComE-box-briC). This strain displays a significant reduction in biofilm biomass and thickness

relative to the WT strain (Fig 8A and 8B). Moreover, no difference was observed in the biofilm

parameters for both of these mutants, suggesting that the absence of briC expression is a con-

tributor to the in vitro biofilm defect in the comE deletion mutant. Next, we determined that a

strain with increased basal levels of briC driven by the RUP-containing long promoter

Fig 5. Distribution of the genomic region encoding BriC across streptococcal strains. Distribution of briC alleles in fifty-five streptococcal

genomes. The briC alleles are visualized against a maximum likelihood tree of streptococcal genomes generated from the core genome, where the

numbers on the branches represent bootstrap values. Different species in the tree are color-coded as follows: S. pneumoniae (blue), S.

pseudopneumoniae (pink), S. mitis (green), S. oralis (beige), and S. infantis (grey). The shapes at the tip of the branches illustrate briC alleles. Types

1A and 1B represent variants of the alleles widespread across pneumococcal strains; types 3–5 denotes alleles outside the species. The red tick

denotes strains that have a long briC promoter due to a RUP insertion. In PMEN1 strains, this variant leads to an increase in basal levels of briC in a

CSP-independent manner.

https://doi.org/10.1371/journal.ppat.1007328.g005

Fig 6. Alignment of pneumococcal BriC alleles. Alignment of 19 BriC alleles identified in the database of 4,034

pneumococcal genomes. Alleles are labeled 1A-1S followed by the number of representatives in the database (total

3,976). Sequences are colored based on percent identity to highlight the variability between alleles. Black arrow denotes

the predicted cleavage site.

https://doi.org/10.1371/journal.ppat.1007328.g006
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(R6DΔcomE::PbriClong-briC) fully rescued the biofilm defect observed in R6DΔcomE (Fig 8A

and 8B). In addition, increased expression of briC in the wild type background (R6D WT::

PbriClong-briC) did not lead to a significant increase in biofilm biomass and thickness relative

to the wild type (Fig 8A and 8B). Together, these data strongly suggest that briC is a critical

molecular link between competence and biofilm formation, and that natural variations in the

briC promoter are physiologically relevant.

ComAB plays a role in secretion of the protein encoded by briC
Since BriC is associated with the competence pathway and is able to rescue the biofilm defects

associated with competence signaling, we investigated whether competence associated trans-

porters play a role in exporting BriC. In pneumococcus, the ComAB and BlpAB C39-peptidase

transporters export peptides with a Gly-Gly leader [43–45]. These transporters recognize the

N-terminal leader of target sequences, and cleave these sequences at the Gly-Gly motif [45],

[46]. In strains R6 and R6D, BlpAB is not functional due to a frameshift mutation that leads to

an early stop codon [47]. Thus, we hypothesized that as a Gly-Gly peptide co-expressed with

genes of the competence pathway, BriC may be exported via the ComAB transporter. We

tested this hypothesis in two ways. First, we measured whether deletion of comAB influences

the ability of a strain with competence-independent expression of briC to rescue the ΔcomE-

Fig 7. Long briC promoter is associated with an increase in the basal levels of briC. β-galactosidase assay comparing the LacZ activity of the R6 (short

promoter, PbriC-lacZ) and PN4595-T23 (long promoter with RUP, PbriClong-lacZ) promoters. Both promoter activities were tested in (A) strain R6 and (B)

strain PN4595-T23. Cells were grown in Columbia broth at pH 6.6 until mid-log phase, followed by either no treatment or treatment with CSP for 30 minutes.

Y-axis denotes promoter activity in Miller Units expressed in nmol p-nitrophenol/min/ml. Error bars represent standard error of the mean for biological

replicates (n = 3); �� p<0.01, & ���� p<0.0001 using ANOVA followed by Tukey’s post-test.

https://doi.org/10.1371/journal.ppat.1007328.g007
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biofilm defect. Second, we compared secretion of a BriC reporter construct in a WT strain

with that in a comAB deletion mutant.

Our biofilm data suggests that ComAB plays a role in transporting BriC. At 72h post-seed-

ing, a comE/comAB-double deletion mutant strain expressing briC from the RUP-encoding

long promoter (R6DΔcomEΔcomAB::PbriClong-briC) displayed a biofilm with reduced biomass

and thickness when compared to the equivalent construct in only a comE-deletion background

(R6DΔcomE::PbriClong-briC) (Fig 9A and 9B). However, the biofilm levels were not reduced

to the levels observed in the ΔcomE strain. These results suggest that under these conditions,

ComAB may not be the only transporter that contributes to the export of BriC.

To further elucidate the role of ComAB in the export of BriC, we employed the HiBiT tag

detection system, which was recently used to detect secretion of BlpI [44]. The HiBiT tag cor-

responds to an 11-residue peptide. The assay works by addition of an inactive form of lucifer-

ase (LgBit) to the extracellular milieu. When both LgBit and HiBiT combine, they generate

bioluminescence [48], [49]. To study BriC transport, we fused the putative BriC leader

sequence to the HiBiT tag and expressed this reporter under the control of the native (short)

Fig 8. BriC plays a pivotal role in regulating biofilm development. (A) Representative confocal microscopy images showing top view of the reconstructed biofilm

stacks of WT, ΔcomE, ΔbriC::PbriCShuffled ComE-box-briC, ΔcomE::PbriClong-briC and WT::PbriClong-briC cells of strain R6D stained with SYTO59 dye at 72h. Images are

pseudo-colored according to depth (scale shown). (B) COMSTAT2 quantification of 72h biofilm images. Y-axis denotes units of measurement: μm3/μm2 for biomass,

and μm for maximum thickness and average thickness over biomass. Error bars represent standard error of the mean calculated for biological replicates (at least n = 3);
“ns” denotes non-significant comparisons, and ���� p<0.0001 using ANOVA followed by Tukey’s post-test.

https://doi.org/10.1371/journal.ppat.1007328.g008
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briC promoter in WT and ΔcomAB R6-strains. We measured the extracellular biolumines-

cence produced by this reporter both in the presence and absence of CSP (Fig 9C, S3 Table).

In the absence of CSP, the levels of secreted HiBiT resembled that of background (WT cells

without HiBiT), consistent with very low expression of N-terminal BriC-HiBiT as well as low

expression of the ComAB transporter. In the WT background, upon addition of CSP, N-termi-

nal BriC-HiBiT is induced and the extracellular level of HiBiT is significantly increased, con-

sistent with HiBiT export. In the ΔcomAB background, upon addition of CSP, N-terminal

BriC-HiBiT is induced and the extracellular levels of HiBiT also increase. However, the

increase in the level of extracellular HiBiT observed in ΔcomAB strain is significantly less than

that in the WT strain, consistent with a severe reduction in HiBiT export in the absence of

Fig 9. ComAB plays a role in the export of BriC. (A) Representative confocal microscopy images showing top view of the reconstructed biofilm stacks of WT, ΔcomE,

ΔcomE::PbriClong-briC and ΔcomEΔcomAB::PbriClong-briC cells of strain R6D stained with SYTO59 dye at 72h. Images are pseudo-colored according to depth (scale

shown). (B) COMSTAT2 quantification of 72h biofilm images. Y-axis denotes units of measurement: μm3/μm2 for biomass, and μm for maximum thickness and

average thickness over biomass. Error bars represent standard error of the mean calculated for biological replicates (at least n = 3). (C) Extracellular Nano-Glo HiBiT

activity of the BriC reporter produced by WT and ΔcomAB cells (whole cells). The HiBiT activity was measured by recording luminescence with an integration time of

2000 milliseconds. Error bars represent standard deviation calculated for biological replicates (n = 3); “ns” denotes non-significant comparisons, ��� p<0.001, and ����

p<0.0001 using ANOVA followed by Tukey’s post-test.

https://doi.org/10.1371/journal.ppat.1007328.g009
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comAB. Combined, these results strongly suggest that ComAB serves as a major transporter

for BriC.

BriC is important for in vivo colonization

During nasopharyngeal colonization, pneumococci form biofilms and upregulate the compe-

tence pathway. Thus, we investigated the role of briC in nasopharyngeal colonization using an

experimental murine colonization model. Our in vitro investigations have been performed

using strain R6D, which is defective in colonization due to the absence of a capsule [50]. Thus,

we performed colonization experiments with the serotype 2 strain, D39, which is the ancestor

of strain R6 [51]. Mice were colonized with D39 WT, the briC-deletion mutant (D39ΔbriC) or

the briC-complemented (D39ΔbriC::briC) strains. Comparison of the number of bacteria in

nasal lavages immediately after inoculation revealed that mice in the three cohorts received the

same number of bacteria. In contrast, nasal lavages at three and seven days post-inoculation

revealed decreased levels of D39ΔbriC relative to WT in the nasal wash (Fig 10A). Further-

more, the WT levels were restored in the complemented strain (Fig 10A). These findings indi-

cate that briC encodes a novel colonization factor.

In in vitro biofilms, briC links competence to biofilms. First, disruption of the ComE- bind-

ing box in the briC promoter led to a biofilm defect similar to that observed in a ΔcomE strain.

Second, overexpression of briC driven by the long version of the promoter was found to

restore the competence-dependent defect in in vitro biofilm development. Thus, we investi-

gated the behavior of these strains in the pneumococcus colonization model. We found that

the strain with a disruption of the ComE-binding box (D39ΔbriC::PbriCShuffled ComE-box-briC)

within the briC promoter was defective for colonization, the decreased bacterial counts resem-

bled those in the D39ΔcomE strain (Fig 10B). These findings suggest that briC is a substantial

mediator of the role of ComE on colonization. Further, addition of this long briC promoter to

ΔcomE cells (D39ΔcomE::PbriClong-briC) partially rescues the colonization defect of the

D39ΔcomE strain. That is, the numbers of bacterial cells of strain D39ΔcomE::PbriClong-briC
recovered from the nasal lavages at both three and seven days post-inoculation were signifi-

cantly higher than the numbers of D39ΔcomE cells recovered, but less than that of the D39

WT (Fig 10B). Finally, the overexpression of briC in the WT background (D39 WT::PbriClong-

briC) does not impact colonization. Thus, we conclude that BriC is a contributor to the compe-

tence-induced stimulation of nasopharyngeal colonization observed in strain D39. Further,

natural variations leading to a long briC promoter appear to dampen the impact of competence

in colonization.

Discussion

An important component of pneumococcal pathogenesis is its ability to form complex biofilm

structures. Pneumococci in a biofilm mode of growth display decreased sensitivity to antibiot-

ics and increased resistance to host immune responses [6]. These properties make the bacteria

recalcitrant to treatment and highlight the need to better understand the molecular mecha-

nisms that drive biofilm development. Activation of the competence pathway is critical for bio-

film development. Previous in vitro studies have demonstrated that while cell-adherence and

early biofilm formation are competence-independent, an intact competence system is required

in the later stages of biofilm development. It was shown that the competence pathway posi-

tively influences structure and stability of late stage biofilms [12]. However, the molecules

downstream of competence activation by ComDE that regulate biofilm development remain

poorly understood. In this study, we present BriC, a previously uncharacterized peptide, that
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we show is regulated by competence and plays a role in promoting biofilm development and

nasopharyngeal colonization.

We have presented extensive evidence that briC is a competence regulated gene. We have

shown that induction of briC is triggered by addition of CSP and requires ComE. Further, we

have also shown that the briC promoter encodes the consensus ComE-binding box, and that

briC expression follows the temporal pattern described for genes directly regulated by ComE.

Previous studies have used microarray analysis to identify pneumococcal genes differentially

regulated upon CSP stimulation [21], [26] and have categorized these genes into two main

groups—early genes regulated by ComE or late genes regulated by the alternative sigma factor,

ComX. In the study by Peterson and colleagues, briC was found to be upregulated in a pattern

consistent with early genes [26]. However, the upregulation was not found to be statistically

significant, and this study is the first validation of briC as a competence-regulated peptide.

We have provided evidence that briC stimulates biofilm development on abiotic surfaces

and promotes nasopharyngeal colonization in a murine model. These findings are consistent

with studies that show that pneumococcal biofilms contribute to colonization. Colonization of

the upper respiratory tract is a requisite for pneumococcal dissemination to distant anatomical

sites and subsequent disease [10]. These sessile communities serve as a source of pneumococ-

cal cells with an activated virulence-associated transcription program. That is, when compared

to cells originating from a planktonic mode of growth, those originating from a biofilm mode

of growth are more likely to cause disease upon infecting other tissues [11]. In this manner,

increased biofilm development likely heightens the risk of disease. Biofilms and competence

are also associated with transformation efficiency. We have observed a mild but significant

decrease in the transformation efficiency of briC-deletion mutants relative to WT R6D cells

(S1 Fig). Finally, colonization of the upper respiratory tract is also a reservoir for pneumococ-

cal transmission. Transmission occurs when cells migrate from the nasopharynx of one host to

that of another. Thus, BriC’s contribution to colonization may influence both disease severity

and transmission.

While it has been established that CSP contributes to biofilm development, the compe-

tence-dependent genes that regulate biofilm development are not well understood [7], [12].

Our finding that increased levels of briC can fully rescue biofilm defects from a comE deletion

mutant in vitro, and partially rescue its colonization defects in vivo suggests that briC expres-

sion may bypass the requirement for competence in biofilm development. ComE is a key regu-

lator of competence whose activity is required to regulate approximately 5–10% of the

genome, and as such deletion of comE is expected to have substantial global consequences

[21], [26]. In this context, it is noteworthy that overexpression of one gene (briC) in the comE-

deletion mutant was able to improve colonization in the murine model. These findings

strongly suggested that BriC is a molecular link between competence, biofilm development,

and colonization.

Our data suggests that many strains have multiple inputs to the regulation of briC. Shared

across all strains is the regulation by ComE, the key regulator of the competence pathway.

Competence is responsive to environmental cues, such as changes in cell density, pH,

Fig 10. BriC contributes to pneumococcal colonization of the mouse nasopharynx. CD1 mice were infected intranasally with 20μl

PBS containing approximately 1 X 105 CFU of (A) WT (grey circles), ΔbriC (orange squares), and ΔbriC::briC (black triangles) (B) WT

(grey circles), ΔcomE (blue diamonds), and ΔcomE::PbriClong-briC (black crosses), ΔbriC::PbriCShuffled ComE-box-briC (yellow triangles),

and WT::PbriClong-briC (green circles) cells of the pneumococcal strain D39. At predetermined time points (0, 3 & 7 days post-

infection), at least five mice were culled, and the pneumococcal counts in the nasopharyngeal washes were enumerated by plating on

blood agar. Y-axis represents Log10 counts of CFU recovered from nasal washes. X-axis represents days post-inoculation. Each data

point represents the mean of data from at least five mice. Error bars show the standard error of the mean. ���� p<0.0001 relative to the

WT strain, and # p<0.0001 relative to the ΔcomE strain, calculated using ANOVA and Tukey post-test.

https://doi.org/10.1371/journal.ppat.1007328.g010
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mutational burden in cells, and exposure to antibiotics [16], [52–54]. Conversely, competence

is inhibited by the degradation of CSP via the activity of the CiaHR TCS and the serine prote-

ase, HtrA [55], [56]. Factors altering competence will also alter briC levels due to its compe-

tence-dependent induction. Our comparative genomics suggest that a subset of pneumococcal

lineages may encode an additional briC-regulatory element. Specifically, the briC promoter dif-

fers across strains, in that a subset of lineages encodes a long promoter with a RUP sequence

(PbriClong) and has higher basal levels of briC expression. This long promoter is constitutively

active, even when competence is off.

The long promoter is encoded in the vast majority of strains from the PMEN1 lineage

(Spanish-USA) and the PMEN14 (Taiwan-19F) lineages. These lineages are prominent in the

clinical setting; they are multi-drug resistant and pandemic [57–59]. This additional compe-

tence-independent regulation of the long promoter may provide promoter-binding sites for

additional regulators or reflect consequences of positional differences for the existing pro-

moter binding sites. Our biofilm and colonization experiments suggest that encoding the long

briC promoter has functional consequences. We conclude that the response of briC to compe-

tence is ubiquitous, but that additional lineage-specific factors influence briC regulation and

downstream phenotypic consequences.

We propose a model where briC encodes a signaling molecule with a role in biofilm devel-

opment and colonization. First, the transcription of briC is induced by ComE through compe-

tence signal transduction pathway in all lineages, and possibly by additional regulator(s) in a

subset of lineages. Once this Gly-Gly peptide is produced, we propose that it is exported

through ABC transporters, a process in which ComAB plays a prominent role. Based on a bio-

informatic comparison with other Gly-Gly peptides we suggest that BriC is cleaved into its

active form (BRIC) during export. It is tempting to speculate that BRIC is a new member of

the expanding set of pneumococcal secreted peptides that signal to neighboring cells promot-

ing population-level behaviors. In this era of emerging antibiotic resistance, it is imperative

that we test the potential of alternative strategies to inhibit bacterial carriage and disease. One

such strategy is to specifically target bacterial communities and population-level behaviors. In

that regard, molecules such as BriC present promising alternatives to be used as targets for dis-

covery of novel drugs and therapeutic interventions.

Materials & methods

Bacterial strains & growth conditions

Four wild-type (WT) Streptococcus pneumoniae strains were used for this experimental work.

The majority of studies were performed on a penicillin-resistant derivative of R6 (R6D); this

strain was generated from a cross where parental strain R6 was recombined with Hungary19A

and the recombinant was selected for penicillin resistance [60]. The briC allele in R6D is iden-

tical to the allele present in the parental R6. This laboratory strain is non-encapsulated and

does not colonize mice, thus mice colonization experiments were performed with the serotype

2 D39 strains (GenBank CP000410)[61]. The D39 strain contains the same briC allele as is

present in the R6D strain, which has been used for most of the work in this study. Finally, for a

representative of PMEN1, we used the carriage isolate, PN4595-T23 (GenBank ABXO01) gra-

ciously provided by Drs. Alexander Tomasz and Herminia deLancastre [62].

Colonies were grown from frozen stocks by streaking on TSA-II agar plates supplemented

with 5% sheep blood (BD BBL, New Jersey, USA). Colonies were then used to inoculate fresh

Columbia broth (Remel Microbiology Products, Thermo Fisher Scientific, USA) and incu-

bated at 37˚C and 5% CO2 without shaking. When noted, colonies were inoculated into acidic
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Columbia broth prepared by adjusting the pH of Columbia broth to 6.6 using 1M HCl. Acidic

pH was used to inhibit the endogenous activation of competence.

Construction of mutants

The mutant strains (R6DΔbriC and PN4595ΔbriC) were constructed by using site-directed

homologous recombination to replace the region of interest with erythromycin-resistance

gene (ermB) or kanamycin-resistance gene (kan), respectively (S4 Table). The kan and specti-

nomycin-resistance gene (aad9) were used to construct ΔcomE strains in R6D and

PN4595-T23 respectively. Briefly, the transformation construct was generated by assembling

the amplified flanking regions and antibiotic resistance cassettes. ~2kb of flanking regions

upstream and downstream of the gene of interest was amplified from parental strains by PCR

using Q5 2x Master Mix (New England Biolabs, USA). The antibiotic resistance genes, kan
and aad9 were amplified from kan-rpsL Janus Cassette and pR412, respectively (provided by

Dr. Donald A. Morrison), and ermB was amplified from S. pneumoniae SV35-T23. SV35-T23

is resistant to erythromycin because of the insertion of a mobile element containing ermB [62].

These PCR fragments were then assembled together by sticky-end ligation of restriction

enzyme-cut PCR products. The deletion mutant in R6D is an overexpressor of the downstream

peptide (spr_0389).

The briC complement and overexpressor strains were generated using constructs contain-

ing the CDS of briC along with either its entire native promoter region or overexpressing pro-

moter respectively, ligated at its 3’ end with a kanamycin resistance cassette. The promoters

used to overexpress briC included either the constitutive amiA promoter, or PbriClong. These

were assembled with the amplified flanking regions by Gibson Assembly using NEBuilder

HiFi DNA Assembly Cloning Kit. The construct was introduced in the genome of R6D down-

stream of the bga region (without modifying bga), a commonly employed site [63]. Primers

used to generate the constructs are listed in S5 Table. Like R6DΔbriC, R6DΔbriC::briC is also

an overexpressor of the downstream peptide (spr_0389), which is annotated as a pseudogene

in strains R6D, R6 and D39 (Fig 2A). The expression of spr_0389 remains unchanged in the

mutant and the complement (expression of spr_0389 was induced by 5-6-fold in both the

mutant and the complement relative to WT).

The R6DΔcomE::PbriClong-briC strain was constructed by replacing comE with spectinomy-

cin resistant cassette in the R6D PbriClong-briC strain. The comAB-deletion mutant in a briC
overexpressor R6D genomic background strain (R6DΔcomAB::PbriClong-briC) was con-

structed by transforming the R6D::PbriClong-briC strain with the genomic DNA of ADP226.

ADP226 is a strain from the D39 genomic background with comAB replaced by erythromycin

resistance cassette. To make the construct, the flanking regions and erythromycin resistance

cassette were amplified, and then assembled together by sticky-end ligation of restriction

enzyme-cut PCR products. The construct was then transformed into D39 ADP225 and

selected on Columbia blood agar supplemented with 0.25 μg mL−1 erythromycin (S4 Table).

The briC promoter region was modified by shuffling the ComE-binding box (R6DΔbriC::

PbriCShuffled ComE-box-briC). The ComE-binding box was shuffled using PCR by amplifying

from R6DΔbriC::briC and introducing the shuffled sequence (CAGACCAGTTAGTCTAGGA-

TAGAGCTTAAG) into the primers. The resulting amplicons were assembled using Gibson

Assembly. The modified construct was transformed into R6DΔbriC strain in the region down-

stream of the bgaA gene.

The D39 briC deletion mutant (D39ΔbriC), briC complemented (D39ΔbriC::briC), comE
deletion mutant (D39ΔcomE), briC overexpressor in comE deletion background (D39ΔcomE::

PbriClong-briC), and briC expressed from a promoter with a shuffled ComE-binding

Competence-induced peptide regulates biofilms and in vivo colonization

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007328 October 11, 2018 18 / 30

https://doi.org/10.1371/journal.ppat.1007328


box (R6DΔbriC::PbriCShuffled ComE-box-briC) strains were generated by transformation with

the corresponding constructs amplified from R6D into strain D39.

Construction of lacZ fusions

Chromosomal transcriptional lacZ-fusions to the target promoters were generated to assay

promoter activity. These lacZ-fusions were generated via double crossover homologous

recombination event in the bgaA gene using modified integration plasmid pPP2. pPP2 was

modified by introducing kan in the multiple cloning site, in a direction opposite to lacZ. The

modified pPP2 was transformed into E. coli TOP10. The putative briC promoter regions were

amplified from R6 and PN4595-T23 strains, and modified to contain KpnI and XbaI restric-

tion sites, which were then assembled in the modified pPP2 plasmid by sticky-end ligation of

the enzyme digested products. These plasmids were transformed into E. coli TOP10 strain,

and selected on LB (Miller’s modification, Alfa Aesar, USA) plates, supplemented with ampi-

cillin (100μg/ml). These plasmids were then purified by using E.Z.N.A. Plasmid DNA Mini Kit

II (OMEGA bio-tek, USA), and transformed into pneumococcal strains R6 and PN4595-T23

and selected on Columbia agar plates supplemented with kanamycin (150μg/ml).

Bacterial transformations

For all bacterial transformations to generate mutants, target strains (R6D or D39) were grown

in acidic Columbia broth, and 1μg of transforming DNA along with 125μg/mL of CSP1

(sequence: EMRLSKFFRDFILQRKK; purchased from GenScript, NJ, USA) was added to

them when the cultures reached an OD600 of 0.05, followed by incubation at 37˚C. After 2

hours, the treated cultures were plated on Columbia agar plates containing the appropriate

antibiotic; erythromycin (2μg/ml), or kanamycin (150μg/ml). Resistant colonies were cultured

in selective media, and the colonies confirmed using PCR. Bacterial strains generated in this

study are listed in S4 Table.

For transformation efficiency experiments, R6D strain was grown in acidic Columbia broth

until it reached an OD600 of 0.05. At this point, number of viable cells was counted by plating

serial dilutions on TSA-blood agar plates. Transformations were carried out by adding either

100ng or 500ng of transforming DNA in the media supplemented with 125μg/mL of CSP1 and

incubated at 37˚C for 30mins. For transforming DNA, we used either genomic DNA or PCR

products. The donor DNA contained spectinomycin-resistance gene (aad9) in the inert geno-

mic region between spr_0515 and spr_0516. This construct was generated in PN4595-T23,

specR, followed by its amplification and transformation into R6D and Taiwan-19F strains

(Sp3063-00). The genomic DNA was extracted from Taiwan-19F, specR strain. The purified

linear DNA was an amplimer of the region from R6D. After 30 minutes, the cultures were

plated on Columbia agar plates containing spectinomycin (100μg/ml), incubated overnight,

and colonies were counted the next day.

RNA extraction

RNA extraction consists of sample collection, pneumococcal cell lysis, and purification of

RNA. For qRT-PCR analysis, the strains (R6D and R6DΔcomE) were grown to an OD600 of 0.3

in acidic Columbia broth, followed by CSP1 treatment for 0, 10, or 15 minutes. For in vitro
transcriptomic analysis using NanoString Technology, the R6D strain was grown to an OD600

of 0.1 in Columbia broth (in one experimental set, the samples were grown in sub-lethal con-

centration of penicillin (0.8μg/ml) for an hour). RNA was collected in RNALater (Thermo

Fisher Scientific, USA) to preserve RNA quality and pelleted. For the in vivo experiments, the

RNA was extracted from middle-ear chinchilla effusions infected with PN4595-T23 and
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PN4595-T23ΔcomE strains and preserved by flash freezing the effusion. In all the samples, the

pneumococcal cell lysis was performed by re-suspending the cell pellet in an enzyme cocktail

(2mg/ml proteinase K, 10mg/ml lysozyme, and 20μg/ml mutanolysin), followed by bead beat-

ing with glass beads (0.5mm Zirconia/Silica) in FastPrep-24 Instrument (MP Biomedicals,

USA). Finally, RNA was isolated using the RNeasy kit (Genesee Scientific, USA) following

manufacturer’s instructions. For analysis with the NanoString, which does not require pure

DNA, the output from the RNeasy kit was loaded on the machine without further processing.

For analysis using qRT-PCR, contaminant DNA was removed by treating with DNase (2U/μL)

at 37˚C for at least 45 mins. The RNA concentration was measured by NanoDrop 2000c spec-

trophotometer (Thermo Fisher Scientific, USA) and its integrity was confirmed on gel electro-

phoresis. The purity of the RNA samples was confirmed by the absence of a DNA band on an

agarose gel obtained upon running the PCR products for the samples amplified for gapdh.

NanoString Technology for transcriptional analysis

nCounter Analysis System from NanoString Technology provides a highly sensitive platform

to measure gene expression both in vitro and in vivo, as previously described [64]. Probes used

in this study were custom-designed by NanoString Technology, and included housekeeping

genes gyrB and metG, which were used as normalization controls. 5μL of extracted RNA sam-

ples were hybridized onto the nCounter chip following manufacturer’s instructions. RNA con-

centration ranged from 80-200ng/μL for in vivo samples, and between 60-70ng total RNA for

in vitro samples. A freely available software from manufacturers, nSolver, was used for quality

assessment of the data, and normalization. The RNA counts were normalized against the geo-

metric mean of gyrB and metG [65], [66]. The 16S rRNA gene is not optimal for normalization

in the NanoString, as the high abundance of this transcript packs the field of view. Pearson’s

Correlation Coefficient was used to estimate correlation in the expression levels of different

genes.

qRT-PCR for transcriptional analysis

High quality RNA was used as a template for first-strand cDNA synthesis SuperScript VILO

synthesis kit (Invitrogen). The resulting product was then directly used for qRT-PCR using

PerfeCTa SYBR Green SuperMix (Quantabio, USA) in an Applied Biosystems 7300 Instru-

ment (Applied Biosystems, USA).16S rRNA counts were used for normalization. The raw data

was then run through LinregPCR for expression data analysis, where the output expression

data is displayed in arbitrary fluorescence units (N0) that represent the starting RNA amount

for the test gene in that sample [67], [68]. Fold-change relative to WT was then calculated for

each individual experiment.

β-galactosidase assay

β-galactosidase assays were performed as previously described [69] using cells that were grown

in acidic Columbia broth to exponential phase. Cells were either left untreated, or indepen-

dently treated with CSP1 (EMRLSKFFRDFILQRKK) or CSP2 (EMRISRIILDFLFLRKK) (Gen-

script, USA) for 30 minutes and processed for analysis.

Biofilm formation assay

Pneumococcal cultures grown in Columbia broth were used to seed biofilms on abiotic sur-

faces. When the cultures reached an OD600 of 0.05, each bacterial strain was seeded on 35MM

glass bottom culture dishes (MatTek Corporation, USA). To promote biofilm growth, the

Competence-induced peptide regulates biofilms and in vivo colonization

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007328 October 11, 2018 20 / 30

https://doi.org/10.1371/journal.ppat.1007328


plates were incubated at 37˚C and 5% CO2. Every 24 hours, the supernatant was carefully aspi-

rated, followed by addition of the same volume of pre-warmed Columbia broth at one-fifth

concentration. The biofilm samples were fixed at two time-points: 24 and 72h. For fixing, the

supernatants were carefully aspirated, and biofilms were washed thrice with PBS to remove

non-adherent and/or weakly adherent bacteria. Subsequently, biofilms were fixed with 4%

PFA (Electron Microscopy Sciences), washed three times with PBS, and prepared for confocal

microscopy.

Confocal microscopy & quantification of biofilms

Fixed biofilms were stained with SYTO59 Nucleic Acid Stain (Life Technologies, USA) for 30

minutes, washed three times, and preserved in PBS buffer for imaging. Confocal microscopy

was performed on the stage of Carl Zeiss LSM-880 META FCS, using 561nm laser line for

SYTO59 dye. Stack were captured every 0.46 μm, imaged from the bottom to the top of the

stack until cells were visible, and reconstructed in Carl Zeiss black edition and ImageJ. The dif-

ferent biofilm parameters (biomass, maximum thickness, and average thickness over biomass)

were quantified using COMSTAT2 plug-in available for ImageJ [70]. For depiction of repre-

sentative reconstructed Z-stacks, empty slices were added to the images so the total number of

slices across all the samples were the same. These reconstructed stacks were pseudo-colored

according to depth using Carl Zeiss black edition. The color levels of the images being used for

representation purposes were adjusted using GNU Image Manipulation Program (GIMP).

Testing peptide secretion using the Nano-Glo HiBiT extracellular detection

system

HiBiT constructs were designed by fusing the C-terminus of the region of interest with the

11-amino acid HiBiT peptide using a 10-amino acid linker. The region of interest was the

putative secretion signal (until the double glycine) of the briC gene. The expression of these

constructs was designed to be controlled by the briC promoter region. The construct was

introduced in the genome of R6D and R6DΔcomAB strains downstream of the bgaA gene

(without modifying bgaA).

R6D strains containing HiBiT constructs were started from overnight blood agar plates

into acidic Columbia broth (pH 6.6) and incubated at 37˚C and 5% CO2 without shaking. Cul-

tures were grown to an OD600 of ~0.2. Cultures were either left untreated or treated with

125μg/mL of CSP1 for 30 minutes, followed by measuring optical density at 600nm. Cells were

pelleted by centrifuging the cultures for 5 minutes at 3700×g. The resulting supernatants were

removed and filtered through 0.2μm syringe filters. The cell pellets were resuspended in equal

volume of PBS. To obtain cell lysate, triton X-100 was added to 1ml of the resuspended cells to

a final concentration of 1%. Additionally, to minimize non-specific binding, triton X-100 was

also added to 1ml of the filtered supernatant to a final concentration of 1%. 75μl of the super-

natant, whole cells, lysates, were added to a Costar96 well flat white tissue culture treated plates

and mixed with an equal volume of the Nano-Glo Extracellular Detection System reagent as

specified in the manufacturer’s instructions. Additionally, media and PBS samples were used

as controls. Reactions were incubated at room temperature for 10 minutes followed by mea-

suring luminescence on a Tecan Spark with an integration time of 2000 milliseconds.

In vivo transcriptomic analysis using chinchilla OM model

All chinchilla experiments were conducted with the approval of Allegheny-Singer Research

Institute (ASRI) Institutional Animal Care and Use Committee (IACUC) A3693-01/1000.

Research grade young adult chinchillas (Chinchilla lanigera) weighing 400-600g were acquired
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from R and R Chinchilla Inc., Ohio. Chinchillas were maintained in BSL2 facilities and experi-

ments were done under subcutaneously injected ketamine-xylazine anesthesia (1.7mg/kg ani-

mal weight for each). Chinchillas were infected with 100 CFUs in 100μL of S. pneumoniae
PN4595-T23 by transbullar inoculation within each middle ear. For RNA extraction, chinchil-

las were euthanized 48h post-inoculation of pneumococcus, and a small opening was gener-

ated through the bulla to access the middle ear cavity. Effusions were siphoned out from the

middle ear and flash frozen in liquid nitrogen to preserve the bacterial RNA. Animals were

euthanized by administering an intra-cardiac injection of 1mL potassium chloride after regu-

lar sedation.

Murine colonization model

The role of briC in experimental pneumococcal colonization was assessed as previously

described [71], [72]. For this, 10 weeks old female CD1 mice (Charles River), weighing approx-

imately 30-35g were anesthetized with 2.5% isoflurane over oxygen (1.5 to 2 liter/min), and

administered intranasally with approximately 1X105 CFU/mouse in 20μl PBS. At predeter-

mined time intervals, a group of 5 mice were euthanized by cervical dislocation, and the naso-

pharyngeal lavage of each animal was obtained using 500μl PBS. The pneumococci in

nasopharyngeal wash were enumerated by plating the serial dilutions onto blood agar plates.

Statistical tests

The statistical differences among different groups were calculated by performing ANOVA fol-

lowed by Tukey’s post-test, unless stated otherwise. p-values of less than 0.05 were considered

to be statistically significant.

Distribution of briC across streptococcal strains

To identify briC homologs we used tBLASTn with default parameters on the RAST database to

search the genome sequences of all fifty-five strains. Predicted protein sequences were down-

loaded as well as nucleotide sequences for the briC homolog and 1500-bp flanking regions sur-

rounding the briC homolog. Predicted protein sequences for BriC were aligned using NCBI

Cobalt [73] and visualized using Jalview [74]. One sequences (CDC3059-06) appeared to have

a frame-shift after a string of guanines. Given that sequencing technologies are often inaccu-

rate after a string of identical bases, we curated this sequence in the dataset. The sequences

were translated in Jalview and organized based on polymorphisms in the translated sequences.

The briC alleles were then organized in the context of the species tree. For this we used a

published phylogenetic tree [34], [38]. As previously described, the whole genome sequence

(WGS) for these strains were aligned using MAUVE [75], [76], the core region was extracted

and aligned using MAFFT (FFT-NS-2) [77]. Model selection was performed using MODELT-

EST [78], and the phylogenetic tree was built with PhyML 3.0 [79], model GTR+I(0.63) using

maximum likelihood and 100 bootstrap replicates. On the visualization, each allelic type is

shape-coded, and the visualization was generated using the Interactive Tree of Life (iTOL)

[80].

Next, we expanded the search to a set of 4,034 genomes. These correspond to the genomes

within pubMLST, with at least 2Mb of genomic data (Genome IDs are listed in S6 Table). We

used BLASTn to search for genomes that encode sequences that are at least 70% identical over

70% of their length to briC alleles 1A or 1B. The 3,976 hits were organized to parse out and

enumerate the unique sequences using Python. Next, the hits were visualized and further

annotated using Jalview [74]. As in the smaller genomic set, one allele representative appeared

to have a frame-shift after a string of guanines and was curated in the dataset. Next the DNA
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sequences were translated, and the predicted protein sequences were organized to display the

unique alleles. The resulting 19 coding sequence were colored in Jalview based on percent

identity to highlight the variability (Fig 6). To search for briC in related species, we performed

a BLASTp analysis in NCBI. We used alleles 1A and 1B as query sequences, default parameters,

and the non-redundant database excluding Streptococcus pneumoniae (taxid: 1313).

Analysis of briC promoter region

In order to examine the structure of the promoter region upstream of the briC gene, a 1500-bp

flanking region on both sides of the briC gene was pulled from the RAST database [81].

Sequences were aligned using Kalign [82] and then visualized with Jalview [74]. The alignment

revealed two clear groups within the dataset: those with the RUP insertion and those without.

We also noted that CDC1087-00 may have an additional mobile element inserted within the

RUP. However, given that the RUP and this mobile element exist in multiple places in the

genome, we cannot determine whether this is real or an artifact of assembly without the isolate.

Thus, we opted not to use the promoter sequence for the consensus in Fig 2A, and we did not

mark this genome as having a long promoter in Fig 5. We marked the species tree with allelic

variants that contain the RUP insertion. We observed that RUP was present in the representa-

tive isolates from two clinically important lineages PMEN1 and PMEN14. To check the distri-

bution of the long promoter in a larger set strains, we used PubMLST [39] to inspect 4,034

sequences with complete genomes (sequence IDs for these 4,034 sequences are listed in S6

Table). This set includes 198 ST81 (PMEN1), as well as 104 ST236 (PMEN14) and 15 ST320

(PMEN14) strains. In the PMEN1 strains (ST81), one genome encodes the short promoter and

178 genomes encode the long promoter. In the PMEN14 strains, none of the strains encode

the short promoter, and 71 out of 104 ST236 strains and 14 out of 15 ST320 strains encode the

long promoter. Manual curation of selected genomes from the remaining set did not reveal a

third promoter. Instead, we captured contig breaks and likely issues with assembly that we

deduce are linked to repetitive nature of the RUP. Thus, we conclude that the long promoter is

present in the vast majority of the PMEN1 and PMEN14 isolates. For analysis of the ComE-

binding box, the ComE consensus sequence was extracted from the promoter regions of the

pneumococcal strains and aligned with Jalview. The logo was generated using WebLogo [83].

Ethics statement

Mouse experiments were performed at the University of Leicester under appropriate project

(permit no. P7B01C07A) and personal licenses according to the United Kingdom Home

Office guidelines under the Animals Scientific Procedures Act 1986, and the University of

Leicester ethics committee approval. The protocol was agreed by both the U.K. Home Office

and the University of Leicester ethics committee. Where specified, the procedures were carried

out under anesthetic with isoflurane. Animals were housed in individually ventilated cages in a

controlled environment and were frequently monitored after infection to minimize suffering.

Chinchilla experiments were performed at the Allegheny-Singer Research Institute (ASRI)

under the Institutional Animal Care and Use Committee (IACUC) permit A3693-01/1000.

Chinchillas were maintained in BSL2 facilities, and all experiments with chinchillas were done

under subcutaneously injected ketamine-xylazine anesthesia (1.7mg/kg animal weight for

each). All chinchillas were maintained in accordance with the applicable portions of the Ani-

mal Welfare Act, and the guidelines published in the DHHS publication, Guide for the Care

and Use of Laboratory Animals.
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