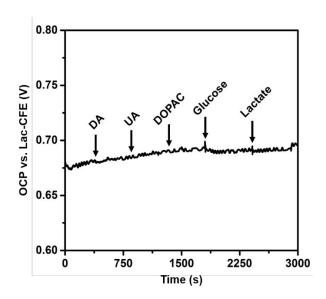
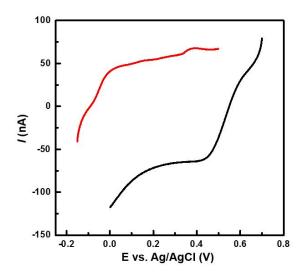
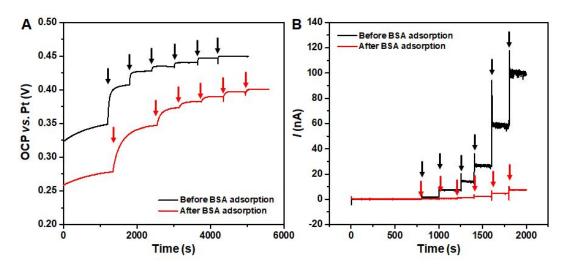

Supporting Information

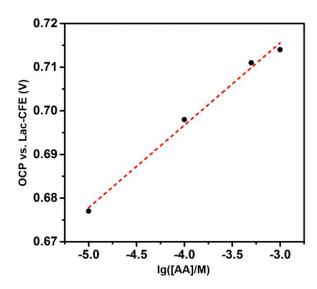
Galvanic Redox Potentiometry for Self-driven *In Vivo* Measurement of Neurochemical Dynamics at Open-Circuit Potential


Fei Wu,^{1,2} Hanjun Cheng,¹ Huan Wei,^{1,2} Tianyi Xiong,^{1,2} Ping Yu,^{1,2} Lanqun Mao*,^{1,2}

¹Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China.


²University of Chinese Academy of Sciences, Beijing 100049, China.


Figure S1. Linear sweep voltammograms of oxygen reduction on Pt wire electrode in air-saturated PBS. Scan rate, 2 mV s^{-1} .


Figure S2. OCP (vs. Lac-CFE) response starting with 0.2 mM AA in aCSF to sequential injections of 10 μ M DA, 80 μ M UA,10 μ M DOPAC, 1 mM glucose and 1 mM lactate.

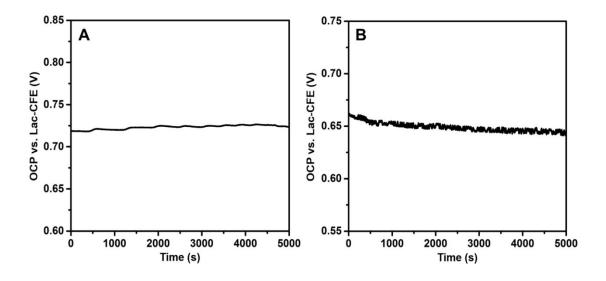

Figure S3. Linear sweep voltammograms of AA oxidation on SWNT-CFE (red line) in aCSF containing 0.2 mM AA and oxygen reduction on micropipette-compartmentalized Lac-CFE (black line) in 50 mM phosphate buffer containing 100 mM NaNO_3 and 0.2 mM ABTS. Scan rate, 2 mV s^{-1} .

Figure S4. Time responses of the GRP sensor (**A**) and amperometric sensor (**B**) to injections of 1 μ M, 10 μ M, 50 μ M, 100 μ M, 200 μ M, 500 μ M and 1 mM AA before and after BSA adsorption (4 h in 40 mg mL⁻¹ BSA solution).

Figure S5. Calibration curve of a Lac-CFE-referenced GRP sensor.

Figure S6. Steady-state OCP of the Lac-CFE-referenced GRP sensor in aCSF containing 25 mM AA (A) or in the live rat brain cortex (B).