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1 Introduction

This document is an annotated version of the R code used to fit the GAMs and related analyses
to the Small Water and Braya-Sø example data sets.

The following packages are required: mgcv, scam, ggplot2, cowplot, and tidyr.
library("mgcv")

#> Loading required package: nlme

#> This is mgcv 1.8-24. For overview type 'help("mgcv-package")'.
library("scam")

#> This is scam 1.2-2.
library("ggplot2")
library("cowplot")

#>
#> Attaching package: 'cowplot'

#> The following object is masked from 'package:ggplot2':
#>
#> ggsave
library("tidyr")

In addition, the gratia package is required; this in-development package is not on CRAN but
can be installed directly from GitHub using functions from the devtools package. To install the
package, install devtools and then use devtools::install_github() to install gratia, as shown
below:
## gratia is not on CRAN, install from github:
install.packages("devtools")
devtools::install_github("gavinsimpson/gratia")
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Assuming that the installation of gratia completes without error, the package can be loaded as
usual
library("gratia") # need to change the name of the package

The final environment-preparation step is to set the default ggplot theme, which the loading of
cowplot has over-ridden. Here I use the more-minimal black-and-white theme (theme_bw())
## Default ggplot theme
theme_set(theme_bw())

2 Load the data sets

The example data sets are also stored on GitHub; https://github.com/gavinsimpson/
frontiers-palaeo-additive-modelling. Once downloaded the data are read in and processed a
little
## source Small Water data
small <- readRDS("./data/small-water/small-water-isotope-data.rds")
head(small)

#> Depth d13C TotalC d15N TotalN DryWeight Year
#> 1 0.2 -27.57 806.49 3.05 64.21 8.2 2007.254
#> 2 0.4 -27.67 949.33 3.01 73.26 7.6 2006.510
#> 3 0.8 -27.63 1305.52 2.93 93.25 11.6 2004.941
#> 4 1.2 -27.62 1136.04 2.33 86.09 9.6 2003.269
#> 5 1.6 -27.48 1028.27 2.09 93.80 10.9 2001.496
#> 6 2.0 -27.39 809.91 2.66 79.98 9.9 1999.626
## load braya so data set
braya <- read.table("./data/braya-so/DAndrea.2011.Lake Braya So.txt",

skip = 84)
## clean up variable names
names(braya) <- c("Depth", "DepthUpper", "DepthLower", "Year", "YearYoung",

"YearOld", "UK37")
## add a variable for the amount of time per sediment sample
braya <- transform(braya, sampleInterval = YearYoung - YearOld)
head(braya)

#> Depth DepthUpper DepthLower Year YearYoung YearOld UK37
#> 1 0.25 0.0 0.5 1999.125 2006.00 1992.25 -0.640
#> 2 0.75 0.5 1.0 1985.375 1992.25 1978.50 -0.637
#> 3 1.25 1.0 1.5 1971.525 1978.50 1964.55 -0.614
#> 4 1.75 1.5 2.0 1957.575 1964.55 1950.60 -0.627
#> 5 2.25 2.0 2.5 1943.150 1950.60 1935.70 -0.633
#> 6 2.75 2.5 3.0 1928.250 1935.70 1920.80 -0.616
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#> sampleInterval
#> 1 13.75
#> 2 13.75
#> 3 13.95
#> 4 13.95
#> 5 14.90
#> 6 14.90
## plot labels
d15n_label <- expression(delta^{15}*N)
braya_ylabel <- expression(italic(U)[37]^{italic(k)})

Plots of the two data sets are prepared using ggplot2
## plot Small Water data
small_plt <- ggplot(small, aes(x = Year, y = d15N)) +

geom_point() +
labs(y = d15n_label, x = "Year CE")

## plot Braya-So data
braya_plt <- ggplot(braya, aes(x = Year, y = UK37)) +

geom_line(colour = "grey") +
geom_point() +
labs(y = braya_ylabel, x = "Year CE")

## Recreate plot from manuscript
plot_grid(small_plt, braya_plt, ncol = 1, labels = "auto", align = "hv",

axis = "lr")
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3 Fitting GAMs

Instead of following the structure of the paper exactly, the subsequent sections focus on the
two example data sets in turn, beginning with Small Water.

3.1 Small Water

A GAM is typically fitted using the gam() function from the mgcv package. The typical call
includes a formula describing the response variable and the linear predictor separated by the
~ (tilde) symbol. The linear predictor part of the model contains the smooth function of the
time variable in the data set, and is indicated using the s() function. Unless other options are
needed, we only need specify where the variables in the formula can be found via the data
argument, and that we wish to use REML smoothness selection.

Putting this togetherwe have the following function call to fit a simpleGAM to the SmallWater
isotope data
m <- gam(d15N ~ s(Year, k = 15), data = small, method = "REML")

As discussed in the paper, this model assumes that residuals1 are independent. To account
for residual temporal autocorrelation we can include a continuous-time first-order autoregres-
sive (CAR(1)) process in the model residuals for GAMs fitted to data that are conditionally
distributed Gaussian.

The GAM plus CAR(1) process is fitted to the Small Water data set using the gamm() function.
This fits GAMs as mixed effects models via the nlme package, which allows the use of corre-
lation structures in the model residuals via the correlation argument. Here, the corCAR1()
function is used to select the CAR(1) process and we specify the ordering of samples via the
Year variable in small.
## fit small water GAM using gamm() with a CAR(1)
mod <- gamm(d15N ~ s(Year, k = 15), data = small,

correlation = corCAR1(form = ~ Year), method = "REML")

The estimated value of ϕ for the CAR(1) can be extracted from the fitted model via the $lme
component. Here we just extract the correlation structure component.
## estimate of phi and confidence interval
smallPhi <- intervals(mod$lme, which = "var-cov")$corStruct
smallPhi

#> lower est. upper
#> Phi 0.282388 0.6026967 0.8539689
#> attr(,"label")
#> [1] "Correlation structure:"

1or equivalently that the observations, conditional upon the model, are independent.
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The object returned by gamm() includes both the linear mixed model and GAM faces of the
model, and as a result we need to access the separate elements (lme and gam respectively)
when proceeding to explore the model fit. The model summary is prepared from the $gam
component of the fitted model
## summary object
summary(mod$gam)

#>
#> Family: gaussian
#> Link function: identity
#>
#> Formula:
#> d15N ~ s(Year, k = 15)
#>
#> Parametric coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 3.30909 0.03489 94.84 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df F p-value
#> s(Year) 7.954 7.954 47.44 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.929
#> Scale est. = 0.037268 n = 48

The output shows the estimated complexity of the fitted smooth, expressed in terms of the ef-
fective degrees of freedom of the spline. An associated F statistic and test of the null hypoth-
esis of no trend (effect) are also shown. Here the estimated trend provides strong evidence
against this null.

The CAR(1) process plotted in Figure 11 of the manuscript was prepared using
## plot CAR(1) process
S <- seq(0, 50, length = 100)
car1 <- setNames(as.data.frame(t(outer(smallPhi, S, FUN = `^`)[1, , ])),

c("Lower","Correlation","Upper"))
car1 <- transform(car1, S = S)

car1Plt <- ggplot(car1, aes(x = S, y = Correlation)) +
geom_ribbon(aes(ymax = Upper, ymin = Lower),

fill = "black", alpha = 0.2) +
geom_line() +
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ylab(expression(italic(c) * (list(h, varphi)))) +
xlab(expression(h ~ (years)))
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The exponential decline in correlationwith increasing separation is evident here; once samples
are ~10 years apart, there is little estimated dependence between them.

The next code chunk prepares a plot of the fitted GAMS. The general idea is to predict from
the fitted model for a fine grid of points over the range of the time variable. Below I plot the
trend for Small Water with an approximate 95% point-wise confidence interval that assumes
asymptotic normality
N <- 300 # number of points at which to evaluate the smooth

## create new data to predict at; 200 evenly-spaced values over `Year`
newYear <- with(small, data.frame(Year = seq(min(Year), max(Year),

length.out = 200)))
## Predict from the fitted model; note we predict from the $gam part
newYear <- cbind(newYear,

data.frame(predict(mod$gam, newYear, se.fit = TRUE)))
## Create the confidence interval
crit.t <- qt(0.975, df = df.residual(mod$gam))
newYear <- transform(newYear,

upper = fit + (crit.t * se.fit),
lower = fit - (crit.t * se.fit))

## Plot estimated trend
small_fitted <- ggplot(newYear, aes(x = Year, y = fit)) +

geom_ribbon(aes(ymin = lower, ymax = upper, x = Year), alpha = 0.2,
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inherit.aes = FALSE, fill = "black") +
geom_point(data = small, mapping = aes(x = Year, y = d15N),

inherit.aes = FALSE) +
geom_line() +
labs(y = d15n_label, x = "Year CE")

small_fitted
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3.2 Braya-Sø

The same model as used for Small Water was also initially attempted with the Braya-Sø data.
However, in order to even fit the model with both a smooth and the CAR(1) process, I had
to change the default optimizer used to estimate the model parameters, and reduce the basis
dimension, k, to a small number. I also fit themodel usingGCV,which is, at the time ofwriting,
the default in gam(), hence no method argument
## fit the car(1) model --- needs optim as this is not a stable fit!
## also needs k setting lower than default
braya.car1 <- gamm(UK37 ~ s(Year, k = 5), data = braya,

correlation = corCAR1(form = ~ Year),
method = "REML",
control = list(niterEM = 0, optimMethod = "BFGS",

opt = "optim"))

## fit model using GCV
braya.gcv <- gam(UK37 ~ s(Year, k = 30), data = braya)

## estimate of phi and confidence interval
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brayaPhi <- intervals(braya.car1$lme)$corStruct
brayaPhi

#> lower est. upper
#> Phi 2.680033e-31 0.2000156 1
#> attr(,"label")
#> [1] "Correlation structure:"

Note thewide confidence interval— effectively 0–1—on ϕ. If youwere to increase the value of
k to be k = 10 in the s(Year) above, the model will fit but a warning message will be emitted
when trying to extract ϕ due to a non-positive definite model covariance matrix, indicating
problems with the model.

To plot the GAMs fitted to the Braya-Sø time series, we repeat the process used with the Small
Water GAM, butwe do this for bothmodels (GAMM+CAR(1) andGCV), using a critical value
from the t distribution to form the confidence interval
N <- 300 # number of points at which to evaluate the smooth

## data to predict at
newBraya <- with(braya, data.frame(Year = seq(min(Year), max(Year),

length.out = N)))
## add predictions from GAMM + CAR(1) model
newBraya <- cbind(newBraya,

data.frame(predict(braya.car1$gam, newBraya,
se.fit = TRUE)))

crit.t <- qt(0.975, df = df.residual(braya.car1$gam))
newBraya <- transform(newBraya,

upper = fit + (crit.t * se.fit),
lower = fit - (crit.t * se.fit))

## add GAM GCV results
fit_gcv <- predict(braya.gcv, newdata = newBraya, se.fit = TRUE)
crit.t <- qt(0.975, df.residual(braya.gcv))
newGCV <- data.frame(Year = newBraya[["Year"]],

fit = fit_gcv$fit,
se.fit = fit_gcv$se.fit)

newGCV <- transform(newGCV,
upper = fit + (crit.t * se.fit),
lower = fit - (crit.t * se.fit))

newBraya <- rbind(newBraya, newGCV) # bind on GCV results
## Add indicator variable for model
newBraya <- transform(newBraya,

Method = rep(c("GAMM (CAR(1))", "GAM (GCV)"),
each = N))
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## plot CAR(1) and GCV fits
braya_fitted <- ggplot(braya, aes(y = UK37, x = Year)) +

geom_point() +
geom_ribbon(data = newBraya,

mapping = aes(x = Year, ymax = upper, ymin = lower,
fill = Method),

alpha = 0.3, inherit.aes = FALSE) +
geom_line(data = newBraya,

mapping = aes(y = fit, x = Year, colour = Method)) +
labs(y = braya_ylabel, x = "Year CE") +
scale_color_manual(values = c("#5e3c99", "#e66101")) +
scale_fill_manual(values = c("#5e3c99", "#e66101")) +
theme(legend.position = "right")
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Figure 6 in the manuscript was produced using:
plot_grid(small_fitted, braya_fitted, ncol = 1, labels = "auto",

align = "hv", axis = "lr")

3.2.1 Checking if the size of the basis expansion is sufficient

For the Braya-Sø data, clearly we are not able to identify both the wiggly trend and the CAR(1)
process in a single model. We proceed by fitting a simple GAM via gam()with REML smooth-
ness selection and a moderate number of basis functions — here we set k = 15 for illustration.
braya_low_k <- gam(UK37 ~ s(Year, k = 15), data = braya, method = "REML")
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Before proceeding, we should perform a check to determine if the number of basis functions re-
quested is sufficient to capture thewiggliness in the data. This test is provided by gam.check()
gam.check(braya_low_k)

#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [-4.468978e-08,8.696768e-10]
#> (score -187.2524 & scale 0.000689802).
#> Hessian positive definite, eigenvalue range [0.5525272,43.5153].
#> Model rank = 15 / 15
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(Year) 14.00 2.62 0.56 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first few lines of output from gam.check() include information on the model fit, whether
the algorithm converged, and some diagnostics from the optimization at convergence — you
are unlikely to need this information, but it can be useful in diagnosing problems with model
fitting or when reporting problems to Simon Wood, the developer of the mgcv package. In
the table at the bottom of the output from gam.check(), the column labelled k' is the size of
the basis used to fit the model (the number of basis functions). Note that the stated value is
14 and not the requested 15 functions because the constant basis function has been removed
due to it being confounded with the model constant term, the intercept. The column labelled
edf indicates the effective degrees of freedom for the estimated smooth, which is a measure of the
complexity or wiggliness of the final smooth. The k-index column contains the value of a
test statistic for a test of a sufficient number of basis functions — ideally, we’d like the value of
k-index to be close to or greater than 1. The quoted p value measures the support for the null
hypothesis that enough basis functions were available. In practial terms, the low k-index and
very low p value shown above strongly suggest that the requested number of basis functions
used to fit the model was too low.

The solution is to increase k, say by doubling the original value, and refit the model and per-
form the basis dimension check using gam.check(), repeating this process until k-index is
close to or greater than 1 and the p value is larger than a desired threshold. In my experience
fitting GAMs to palaeoenvironmental time series, it may not be possible with some data sets
to increase k large enough to result in a k-index > 1 and a p value > 0.05, given the available
number of samples. It is important to remember that the test provided by gam.check() is only
an heuristic one and shouldn’t be seen as infallible. If you find yourself increasing k to large
values relative to the number of samples in your data set without achieving a k-index > 1 or p
> 0.05, then note the value in the edf column as you increase k. If the edf of themodel changes
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little as you continue to increase k, this may be evidence that the test is failing in this particular
instance and that the estimated smooth is not dependent on the value of k chosen.

3.3 Accounting for heteroscedasticity due to time averaging

To proceed with the Braya-Sø example, we need to increase the basis dimension, fit using
method = "REML". As discussed in the manuscript, we should also account for the non-
constant variance, or heteroscedasticity, that may arise due to variation in the amount of time
(or “lake years”) that each sample represents. All else equal, we expect that samples that av-
erage more time have lower variance than those that average a smaller amount of time. To
include information about the expected heteroscedasticity in the GAM we can use observa-
tional weights2. Here, I use the sampleInterval variable that I created earlier as the measure
of lake years per sample, and, to avoid changing the model likelihood, the weights use are the
values of sampleInterval divided by the mean of sampleInterval:
braya_reml <- gam(UK37 ~ s(Year, k = 40), data = braya,

method = "REML",
weights = sampleInterval / mean(sampleInterval))

summary(braya_reml)

#>
#> Family: gaussian
#> Link function: identity
#>
#> Formula:
#> UK37 ~ s(Year, k = 40)
#>
#> Parametric coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.633741 0.001929 -328.5 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df F p-value
#> s(Year) 27.45 32.36 7.782 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.744 Deviance explained = 82.4%
#> -REML = -175.61 Scale est. = 0.00024757 n = 89

2This simple solution is for a Gaussian GAM. For models with other distributions, the exact interpretation of
observational weights will vary. For such data, where the conditional mean and variance of the observations are
linked, the use of location-scale, or distributional, models may be more apporpriate and informative.
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If we now check if 39 (k = 40) basis functions is sufficient
gam.check(braya_reml)

#>
#> Method: REML Optimizer: outer newton
#> full convergence after 9 iterations.
#> Gradient range [-1.105422e-06,1.500959e-07]
#> (score -175.6093 & scale 0.0002475669).
#> Hessian positive definite, eigenvalue range [2.644434,47.78257].
#> Model rank = 40 / 40
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(Year) 39.0 27.5 1.27 0.99

we note that the value of k-index is now greater than 1 and the p value suggests there is
very little evidence against the null hypothesis. This result strongly suggests that there were
sufficient basis functions used to estimated the trend.

Also note that the edf of the estimated smooth is considerably below the maximum (k'). This
is the effect of the smoothness penalty removing the excessivewiggliness possiblewith 39 basis
functions. If the edfwere close to k', you might consider increasing k by a modest amount (in
this instance by 5 or 10 additional basis functions) to assure yourself that you have sufficient
basis functions. This has the additional advantage of allowing a richer set of smooths of a
given complexity (edf) to be represented using this larger set of basis functions, which may
improve the model fit to the data without changing the edf too much.

4 Posterior simulation

Samples from the posterior distribution of a GAM can be drawn using the simulate()meth-
ods from the gratia package.
set.seed(1) # set the random seed to make this reproducible
nsim <- 20 # how many simulations to draw

## do the simulations
sims <- simulate(mod, nsim = nsim, newdata = newYear, unconditional = TRUE)

## rearrange the output into a long/tidy format
colnames(sims) <- paste0("sim", seq_len(nsim))
sims <- setNames(stack(as.data.frame(sims)), c("simulated", "run"))
sims <- transform(sims, Year = rep(newYear$Year, nsim),
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simulated = simulated)

## Plot simulated trends
smallSim.plt <- ggplot(newYear, aes(x = Year, y = fit)) +

geom_line(data = sims,
mapping = aes(y = simulated, x = Year, group = run),
colour = "grey80") +

geom_line(lwd = 1) +
labs(y = d15n_label, x = "Year CE")

smallSim.plt
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We repeat the same simulation for Braya-Sø
## data points to simulate at
newBraya <- with(braya,

data.frame(Year = seq(min(Year), max(Year),
length.out = N)))

braya_pred <- cbind(newBraya,
data.frame(predict(braya_reml, newBraya,

se.fit = TRUE)))

## simulate
set.seed(1)
sims2 <- simulate(braya_reml, nsim = nsim, newdata = newBraya,

unconditional = TRUE)

## rearrange the output into a long/tidy format
colnames(sims2) <- paste0("sim", seq_len(nsim))
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sims2 <- setNames(stack(as.data.frame(sims2)),
c("simulated", "run"))

sims2 <- transform(sims2, Year = rep(newBraya$Year, nsim),
simulated = simulated)

brayaSim.plt <- ggplot(braya_pred, aes(x = Year, y = fit)) +
geom_line(data = sims2,

mapping = aes(y = simulated, x = Year, group = run),
colour = "grey80") +

geom_line(lwd = 1) +
labs(y = braya_ylabel, x = "Year CE")

brayaSim.plt
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Figure 8 in the manuscript was prepared using
plot_grid(smallSim.plt, brayaSim.plt, ncol = 1, labels = "auto",

align = "hv", axis = "lr")

5 Confidence and simultaneous intervals

Across-the-function and simultaneous confidence intervals are computed using the
confint() method. The type of interval required is given via the type argument with
options "confidence" and "simultaneous". For example, for Small Water we would use
sw.cint <- confint(mod, parm = "Year", newdata = newYear,

type = "confidence")
sw.sint <- confint(mod, parm = "Year", newdata = newYear,
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type = "simultaneous")
head(sw.sint)

#> smooth Year est se crit lower upper
#> 1 s(Year) 1846.319 3.787215 0.1616144 3.072403 3.290671 4.283760
#> 2 s(Year) 1847.128 3.789747 0.1509100 3.072403 3.326090 4.253403
#> 3 s(Year) 1847.937 3.792304 0.1411439 3.072403 3.358653 4.225955
#> 4 s(Year) 1848.745 3.794914 0.1324961 3.072403 3.387832 4.201995
#> 5 s(Year) 1849.554 3.797602 0.1251070 3.072403 3.413222 4.181981
#> 6 s(Year) 1850.363 3.800394 0.1190552 3.072403 3.434608 4.166180

The confint()methods return data frames suitable for subsequent plotting with ggplot. The
columns labelled est and se are the estimate values of the smooth and its standard error,
respectively. The variables lower and upper contain the values of the lower and upper bounds
on the requested interval. The intervals can be plotted as follows
smallInt.plt <- ggplot(sw.cint, aes(x = Year, y = est)) +

geom_ribbon(data = sw.sint,
mapping = aes(ymin = lower, ymax = upper, x = Year),
fill = "grey80", inherit.aes = FALSE) +

geom_ribbon(mapping = aes(ymin = lower, ymax = upper, x = Year),
fill = "grey60", inherit.aes = FALSE) +

geom_line(lwd = 1) +
labs(y = d15n_label, x = "Year CE")

smallInt.plt
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The intervals for Braya-Sø are created
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bs.cint <- confint(braya_reml, parm = "Year", newdata = newBraya,
type = "confidence")

bs.sint <- confint(braya_reml, parm = "Year", newdata = newBraya,
type = "simultaneous")

and plotted
brayaInt.plt <- ggplot(bs.cint, aes(x = Year, y = est)) +

geom_ribbon(data = bs.sint,
mapping = aes(ymin = lower, ymax = upper, x = Year),
fill = "grey80", inherit.aes = FALSE) +

geom_ribbon(mapping = aes(ymin = lower, ymax = upper, x = Year),
fill = "grey60", inherit.aes = FALSE) +

geom_line(lwd = 1) +
labs(y = braya_ylabel, x = "Year CE")

brayaInt.plt
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in the same way

Figure 9 in the manuscript was prepared using
plot_grid(smallInt.plt, brayaInt.plt, ncol = 1, labels = "auto",

align = "hv", axis = "lr")

6 Derivatives of the estimated trend

The first derivative of the estimated trend is calculated using finite differences using the
fderiv() function. There is also a confint()method for objects produced by fderiv(). The
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first derivatives and a 95% simultaneous confidence interval for the Small Water trend were
computed and plotted using
small.d <- fderiv(mod, newdata = newYear, n = N)
small.sint <- with(newYear,

cbind(confint(small.d, nsim = nsim,
type = "simultaneous"),

Year = Year))

small_deriv_plt <- ggplot(small.sint, aes(x = Year, y = est)) +
geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 0.2,

fill = "black") +
geom_line() +
labs(x = "Year CE", y = "First derivative")

whilst for Braya-Sø, the following was used
braya.d <- fderiv(braya_reml, newdata = newBraya, n = N)
braya.sint <- with(newBraya,

cbind(confint(braya.d, nsim = nsim,
type = "simultaneous"),

Year = Year))

braya_deriv_plt <- ggplot(braya.sint, aes(x = Year, y = est)) +
geom_ribbon(aes(ymin = lower, ymax = upper),

alpha = 0.2, fill = "black") +
geom_line() +
labs(x = "Year CE", y = "First derivative")

Figure 10 in the manuscript was prepared using
plot_grid(small_deriv_plt, braya_deriv_plt, ncol = 1, labels = "auto",

align = "hv", axis = "lr")
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7 Gaussian process smooths

For the Gaussian process smooth to fit within the GAM framework described in the
manuscript, we need to supply the value of ϕ for the effective range of the correlation function.
To estimate ϕ, we need to repeatedly fit the required GAMusing a range of plausible values for
ϕ, which we do using a loop. In the chunk below I fit 200 models with ϕ in the range 15–500.
For each value of ϕ I fit the required GAM and extract the REML score (from component
gcv.ubre) and store it in the numeric vectors Mat or SEx, for Matérn and Squared Exponential
correlation functions, respectively. The final line of the chunk prepares the REML scores in
long or tidy format suitable for plotting with ggplot2.
nn <- 200 # number of points at which to evaluate profile likelihood
dseq <- seq(15, 500, length.out = nn) # effective ranges to fit at
Mat <- SEx <- numeric(length = nn) # object to hold model fits

## loop over the sequence of deparation distances and fit the models
for (i in seq_along(dseq)) {

## iterate over dseq, fit GP GAM w Matérn covariance
Mat[i] <- gam(UK37 ~ s(Year, k = 45, bs = "gp", m = c(3, dseq[i])),

weights = sampleInterval / mean(sampleInterval),
data = braya, method = "REML",
family = gaussian())[["gcv.ubre"]]

## fit squared exponential
SEx[i] <- gam(UK37 ~ s(Year, k = 45, bs = "gp", m = c(2, dseq[i], 1)),

weights = sampleInterval / mean(sampleInterval),
data = braya, method = "REML",
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family = gaussian())[["gcv.ubre"]]
}

## extract the REML score into ggplot-friendly object
reml.scr <- data.frame(cor = rep(c("Matérn","Exponential"), each = nn),

effrange = rep(dseq, 2),
reml = c(Mat, SEx))

The REML scores for the models are plotted with ggplot2 using
## profile-likelihood plot
proflik.plt <- ggplot(reml.scr, aes(x = effrange, y = reml, colour = cor)) +

geom_line() +
scale_colour_manual(name = "", values = c("#e66101","#5e3c99")) +
labs(y = "REML score", x = expression(Effective ~ range ~ (varphi)))

proflik.plt
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Next we extract the minimum of the REML scores for the two correlation functions and refit
those models (we threw away all the models in the for () loop earlier to avoid storing lots
of model objects). Then we fit GAMs with Gaussian process smooths using the values of ϕ
that produced the minimum REML scores, and predict using the fitted models to visualize
the trends.
## effective range minima from profile likelihood
effRange2 <- with(subset(reml.scr, cor == "Matérn"), dseq[which.min(reml)])
effRange3 <- with(subset(reml.scr, cor == "Exponential"), dseq[which.min(reml)])

## Refit these models: Matern
gp2 <- gam(UK37 ~ s(Year, k = 45, bs = "gp", m = c(3, effRange2)),
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data = braya,
method = "REML", weights = sampleInterval / mean(sampleInterval))

## Refit these models: Power exponential
gp3 <- gam(UK37 ~ s(Year, k = 45, bs = "gp", m = c(2, effRange3, 1)),

data = braya,
method = "REML", weights = sampleInterval / mean(sampleInterval))

## data to predict at
newd <- with(braya, data.frame(Year = seq(min(Year), max(Year),

length.out = 1000)))
## create predictions on response scale for both covariance functions
p.gp2 <- transform(newd,

fitted = predict(gp2, newdata = newd, type = "response"),
effRange = round(effRange2))

p.gp3 <- transform(newd,
fitted = predict(gp3, newdata = newd, type = "response"),
effRange = round(effRange3))

## joint the two sets of predictions together
pred <- rbind(p.gp2, p.gp3)
## add some categorical variables for plotting
pred <- transform(pred,

effRange = factor(effRange),
cor = rep(c("Matérn", "Exponential"), each = nrow(newd)))

The estimated Gaussian process trends are plotted using
gp.plt2 <- ggplot(pred, aes(x = Year, y = fitted, colour = cor)) +

geom_line() + theme(legend.position = "right") +
geom_point(aes(x = Year, y = UK37), data = braya, inherit.aes = FALSE) +
scale_colour_manual(name = "", values = c("#e66101","#5e3c99")) +
labs(y = braya_ylabel, x = "Year CE")

gp.plt2
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whilst Figure 13 in the manuscript was prepared using
plot_grid(proflik.plt, gp.plt2, ncol = 1, labels = c("a","b"),

align = "hv", axis = "lr")

8 Adaptive smooths

The adaptive smooth was fitted to the Braya-Sø data by adding bs = "ad" to the s() term in
the model formula. The other aspects of the fit are as previously used for the other models,
REML smoothness selection and observational weights:
## Adaptive spline, weights as sampleInterval
mod_ad <- gam(UK37 ~ s(Year, k = 45, bs = "ad"), data = braya,

method = "REML",
weights = sampleInterval / mean(sampleInterval))

9 Comparing trends

For the model comparison I refitted all the models for consistency; the code to fit each of the

1. Thin plate regression spline (TPRS),
2. Gaussian process spline (Matérn correlation functions), and
3. Adaptive smoother

is shown below.
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## effective range parameter from profile-likelihood of Matern model
effRange <- effRange2

## TPRS, weights as sampleInterval
mod_tprs <- gam(UK37 ~ s(Year, k = 45, bs = "tp"), data = braya,

method = "REML",
weights = sampleInterval / mean(sampleInterval))

## Gaussian process, Matern, kappa = 1.5, weights as sampleInterval
mod_gp <- gam(UK37 ~ s(Year, k = 45, bs = "gp", m = c(3, effRange)),

data = braya,
method = "REML",
weights = sampleInterval / mean(sampleInterval))

## Adaptive spline, weights as sampleInterval
mod_ad <- gam(UK37 ~ s(Year, k = 45, bs = "ad"), data = braya,

method = "REML",
weights = sampleInterval / mean(sampleInterval))

I wrote a small function to predict from each model over the range of Year and return the data
in tidy format for plotting.
## wrap this in a function that will return all the plots & derived objects
processGAM <- function(mod) {

## Predict from model
N <- 500
newYear <- with(braya,

data.frame(Year = seq(min(Year), max(Year),
length.out = N)))

newYear <- cbind(newYear,
data.frame(predict(mod, newYear, se.fit = TRUE)))

out <- list(objects = newYear)
out

}

plts_gp <- processGAM(mod = mod_gp) # Gaussian process smooth with weights
plts_ad <- processGAM(mod = mod_ad) # Adaptive smooth with weights
plts_tprs <- processGAM(mod = mod_tprs) # TPRS with weights

pltData <- do.call("rbind", lapply(list(plts_gp, plts_ad, plts_tprs),
`[[`, "objects"))

pltData <- transform(pltData,
Model = rep(c("GP", "Adaptive", "TPRS"),

each = nrow(plts_gp$objects)))
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allFits <- ggplot(pltData, aes(x = Year, y = fit)) +
geom_point(aes(x = Year, y = UK37), data = braya) +
geom_line(aes(colour = Model)) + labs(y = braya_ylabel, x = "Year") +
theme(legend.position = "right") +
scale_colour_manual(name = "",

values = c("#e66101", "#fdb863", "#5e3c99"))
allFits
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The plot produced reproduces Figure 14 in the manuscript.

10 Accounting for age-model uncertainty

The manuscript proposed to simulate from the posterior distribution of the fitted age model
as a way to account for age-model uncertainty. The first step in the process is to fit the age
model from which to simulate new age models. This was done using the scam package for a
shape-constrained GAM, with the age-model spline constrained to be monotonic decreasing (bs
= "mpd").

To make this section self-contained, I refitted the Small Water GAM plus CAR(1) model. Be-
causewewill be sampling ages for each observation from the posterior of the age-model GAM,
the oldest sample will will be somewhat younger than the expected value from the model in
some samples. This will cause problems when we come to simulate from the GAMs fitted to
the resampled age-models as each GAMwill cover a slightly different range of time. To avoid
this problem I fix the knots at the extremes of the observed values of Year and spread the re-
maining 12 knots evenly inbetween. The knot locations are stored in the vector knots, which
is passed to the argument knotswhen fitting the GAM
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knots <- with(small, list(Year = seq(min(Year), max(Year), length = 14)))
mod <- gamm(d15N ~ s(Year, k = 15), data = small, method = "REML",

correlation = corCAR1(form = ~ Year),
knots = knots)

Setting the knots like this doesn’t change the model estimated above; I’m only repeating what
happens internally if you don’t supply knots. However, later we will need to specify this set
of knots explicitly when accounting for age model uncertainty.

Next we load the 210Pb dating results for the dated core sections.
swAge <- read.csv("./data/small-water/small1-dating.csv")

before fitting the shape-constrained GAM. Currently, scam can only fit models using GCV
smoothness selection. I used the gamma argument here to add a larger penalty for more-
complex models. Each effective degree of freedom used by the spline is counted as 1.4
degrees of freedom in the GCV score.
## monotonic spline age-depth model
swAge$Error[1] <- 1.1
swAgeMod <- scam(Date ~ s(Depth, k = 5, bs = "mpd"), data = swAge,

weights = 1 / swAge$Error, gamma = 1.4)

Note that I added a small amount of error to the surface sample age as the model cannot be
fitted if an observation has 0weight.

Next, predict from the estimated age model, and draw 25 samples from the posterior distribu-
tion using simulate(). The results are tidied into a format suitable for further processing and
plotting. Note that the posterior samples here are only used for plotting.
## predict from the age model for a smooth set of points in `Depth`
newAge <- with(swAge, data.frame(Depth = seq(min(Depth), max(Depth),

length.out = 200)))
newAge <- transform(newAge,

fitted = predict(swAgeMod, newdata = newAge,
type = "response"))

newSims <- as.data.frame(simulate(swAgeMod, nsim = 25, newdata = newAge))
newSims <- cbind(Depth = newAge$Depth, newSims)
newSims <- gather(newSims, Simulation, Age, -Depth)

In the next code chunk, I draw 100 samples from the posterior distribution of the age model,
but notice that I pass in the small data to newdata in the call to simulate() as the locations
I want new age estimates for are the depths for which we have δ15N values. A small function
(fitSWModels) is written to prepare each simulation for fitting and then actually fit the GAM
plus CAR(1) model using the updated age information.
## simulate from age model; each column is a simulation
ageSims <- simulate(swAgeMod, nsim = 100, newdata = small, seed = 42)
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ageSims <- as.data.frame(ageSims)

fitSWModels <- function(x, y, knots) {
dat <- data.frame(d15N = y, Year = x)
m <- gamm(d15N ~ s(Year, k = 15), data = dat, method = "REML",

correlation = corCAR1(form = ~ Year), knots = knots)
}

## generate new trends using draws from age-model posterior
simTrendMods <- lapply(ageSims, fitSWModels, y = small$d15N, knots = knots)

## function wrapper to predict new trends at locations over the
## range of `Year`
predSWModels <- function(mod, newdata) {

predict(mod$gam, newdata = newdata, type = "response")
}

## predict from fitted model to produce a smooth trend for each posterior
## sample
simTrends <- lapply(simTrendMods, predSWModels, newdata = newYear)

## arrange in a tidy format form plottings
simTrends <- data.frame(Year = with(newYear, rep(Year, length(simTrends))),

Trend = unlist(simTrends),
Group = rep(seq_along(simTrends),

times = lengths(simTrends)))

The next chunk does the final step in the process. For each of the models we just fitted, we
simulate 50 draws from the model posterior distribution. We start with a wrapper function
around the simulate() codewewant to run on eachmodel, then do the actual posterior draws
for each model using lapply(). The final step just arranges data for plotting.
## wrapper to simulate from a fitted GAM with the required arguments
simulateSWModels <- function(mod, newdata, nsim, seed = 42) {

sims <- simulate(mod, nsim = nsim, newdata = newdata, seed = seed)
as.vector(sims)

}

## now do the posterior simulation
NSIM <- 50 # number of posterior samples *per* model
simSimulate <- lapply(simTrendMods, simulateSWModels, newdata = newYear,

nsim = NSIM, seed = 42)

## arrange in a tidy format
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simSimulate <-
data.frame(Year = with(newYear,

rep(Year, times = NSIM * length(simSimulate))),
Trend = unlist(simSimulate),
Group = rep(seq_len(NSIM * length(simSimulate)),

each = nrow(newYear)))

Each of the steps is visualized using the plot code shown below.
## plot the estimated age model ad posterior simulations from it
plt1 <- ggplot(swAge, aes(y = Date, x = Depth)) +

geom_line(data = newSims,
mapping = aes(y = Age, x = Depth, group = Simulation),
alpha = 1, colour = "grey80") +

geom_line(data = newAge, mapping = aes(y = fitted, x = Depth)) +
geom_point(size = 1.5, colour = "red") +
geom_errorbar(aes(ymin = Date - Error, ymax = Date + Error, width = 0),

colour = "red") +
labs(y = "Year CE", x = "Depth (cm)")

## plot the simulated trends showing the effect of age-model uncertainty
plt2 <- ggplot(simTrends, aes(x = Year, y = Trend, group = Group)) +

geom_line(alpha = 0.1, colour = "grey80") +
geom_line(data = newYear,

mapping = aes(x = Year, y = fit), inherit.aes = FALSE) +
geom_point(data = small,

mapping = aes(x = Year, y = d15N),
inherit.aes = FALSE, size = 0.7) +

labs(x = "Year", y = d15n_label)

## plot simulated trends showing the effect of age-model uncertainty and
## the effect of uncertainty in the estimated trend itself
plt3 <- ggplot(simSimulate, aes(x = Year, y = Trend, group = Group)) +

geom_line(alpha = 0.2, colour = "grey80") +
geom_point(data = small,

mapping = aes(x = Year, y = d15N),
inherit.aes = FALSE,
size = 0.7) +

geom_line(data = newYear,
mapping = aes(x = Year, y = fit),
inherit.aes = FALSE) +

labs(x = "Year", y = d15n_label)

## align all plots vertically
plots <- align_plots(plt1, plt2, plt3, align = 'v', axis = 'l')
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## create the two rows of figures, from `plots`
top_row <- plot_grid(plots[[1]], NULL, ncol = 2, labels = "a")
bot_row <- plot_grid(plots[[2]], plots[[3]], ncol = 1, labels = c("b", "c"))

## combine the two rows, top row has 1 plot row, bottom row has 2, hence
## the rel_heights to even this out
plot_grid(top_row, bot_row, ncol = 1, rel_heights = c(0.5, 1))
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This reproduces Figure 15 from the manuscript.

11 Session information

devtools::session_info()

#> Session info -------------------------------------------------------------

#> setting value
#> version R version 3.4.3 Patched (2018-01-16 r74126)
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate en_CA.UTF-8
#> tz America/Regina
#> date 2018-08-16

27



#> Packages -----------------------------------------------------------------

#> package * version date source
#> assertthat 0.2.0 2017-04-11 CRAN (R 3.4.3)
#> backports 1.1.2 2017-12-13 CRAN (R 3.4.3)
#> base * 3.4.3 2018-01-16 local
#> bindr 0.1.1 2018-03-13 CRAN (R 3.4.3)
#> bindrcpp 0.2.2 2018-03-29 CRAN (R 3.4.3)
#> codetools 0.2-15 2016-10-05 CRAN (R 3.4.3)
#> colorspace 1.3-2 2016-12-14 CRAN (R 3.4.3)
#> compiler 3.4.3 2018-01-16 local
#> cowplot * 0.9.3 2018-07-15 CRAN (R 3.4.3)
#> crayon 1.3.4 2017-09-16 CRAN (R 3.4.3)
#> datasets * 3.4.3 2018-01-16 local
#> devtools 1.13.6 2018-06-27 CRAN (R 3.4.3)
#> digest 0.6.15 2018-01-28 CRAN (R 3.4.3)
#> dplyr 0.7.6 2018-06-29 CRAN (R 3.4.3)
#> evaluate 0.11 2018-07-17 CRAN (R 3.4.3)
#> ggplot2 * 3.0.0 2018-07-03 CRAN (R 3.4.3)
#> glue 1.3.0 2018-07-17 CRAN (R 3.4.3)
#> graphics * 3.4.3 2018-01-16 local
#> gratia * 0.0-6 2018-08-16 local
#> grDevices * 3.4.3 2018-01-16 local
#> grid 3.4.3 2018-01-16 local
#> gtable 0.2.0 2016-02-26 CRAN (R 3.4.3)
#> htmltools 0.3.6 2017-04-28 CRAN (R 3.4.3)
#> knitr 1.20 2018-02-20 CRAN (R 3.4.3)
#> labeling 0.3 2014-08-23 CRAN (R 3.4.3)
#> lattice 0.20-35 2017-03-25 CRAN (R 3.4.3)
#> lazyeval 0.2.1 2017-10-29 CRAN (R 3.4.3)
#> magrittr 1.5 2014-11-22 CRAN (R 3.4.3)
#> MASS 7.3-50 2018-04-30 CRAN (R 3.4.3)
#> Matrix 1.2-14 2018-04-09 CRAN (R 3.4.3)
#> memoise 1.1.0 2017-04-21 CRAN (R 3.4.3)
#> methods 3.4.3 2018-01-16 local
#> mgcv * 1.8-24 2018-06-18 CRAN (R 3.4.3)
#> munsell 0.5.0 2018-06-12 CRAN (R 3.4.3)
#> nlme * 3.1-137 2018-04-07 CRAN (R 3.4.3)
#> pillar 1.3.0 2018-07-14 CRAN (R 3.4.3)
#> pkgconfig 2.0.1 2017-03-21 CRAN (R 3.4.3)
#> plyr 1.8.4 2016-06-08 CRAN (R 3.4.3)
#> purrr 0.2.5 2018-05-29 CRAN (R 3.4.3)
#> R6 2.2.2 2017-06-17 CRAN (R 3.4.3)
#> Rcpp 0.12.18 2018-07-23 CRAN (R 3.4.3)
#> rlang 0.2.1 2018-05-30 CRAN (R 3.4.3)
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#> rmarkdown * 1.10 2018-06-11 CRAN (R 3.4.3)
#> rprojroot 1.3-2 2018-01-03 CRAN (R 3.4.3)
#> scales 0.5.0 2017-08-24 CRAN (R 3.4.3)
#> scam * 1.2-2 2017-09-24 CRAN (R 3.4.3)
#> splines 3.4.3 2018-01-16 local
#> stats * 3.4.3 2018-01-16 local
#> stringi 1.2.4 2018-07-20 CRAN (R 3.4.3)
#> stringr 1.3.1 2018-05-10 CRAN (R 3.4.3)
#> tibble 1.4.2 2018-01-22 CRAN (R 3.4.3)
#> tidyr * 0.8.1 2018-05-18 CRAN (R 3.4.3)
#> tidyselect 0.2.4 2018-02-26 CRAN (R 3.4.3)
#> tools 3.4.3 2018-01-16 local
#> utils * 3.4.3 2018-01-16 local
#> withr 2.1.2 2018-03-15 CRAN (R 3.4.3)
#> yaml 2.2.0 2018-07-25 CRAN (R 3.4.3)
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