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“ExpoCast”
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methods, and chemical analyses of environmental samples 

including water, dust, blood, and household products
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• National Research Council (1983) identified chemical risk as a 
function of both inherent hazard and exposure

• To address thousands of chemicals, we need new approach 
methodologies (NAMs) that can inform prioritization of 
chemicals most worthy of additional study

• High throughput risk prioritization needs:
1. High throughput hazard characterization (Dix et al., 2007, 

Collins et al., 2008)
2. High throughput exposure forecasts (Wambaugh et al., 

2013, 2014)
3. High throughput toxicokinetics (i.e., dose-response 

relationship) linking hazard and exposure (Wetmore et al., 
2012, 2015)

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk

Chemical Risk = 
Hazard x Exposure
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High throughput screening 
(HTS) for in vitro bioactivity 
allows characterization of 
thousands of chemicals for 
which no other testing has 
occurred

Exposure

High-Throughput
Risk 

Prioritization

Toxicokinetics

Hazard

High-Throughput Risk Prioritization

Tox21: Examining >8,000 
chemicals using ~50 assays 
intended to identify 
interactions with biological 
pathways (Schmidt, 2009)

ToxCast: For a subset (>2000) 
of Tox21 chemicals ran >1100 
additional assay endpoints 
(Kavlock et al., 2012)
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Rapid Exposure and Dosimetry 
“ExpoCast” Research

 Procurement and Mining of Exposure-Related Data for Support of Rapid Exposure Tools
• New Databases (such as CPdat)
• Suspect screening and non-targeted analysis (SS/NTA) 

 High Throughput Toxicokinetics (HTTK) for Rapid Dosimetry 

 Development and Evaluation of High-Throughput Human and Ecological Exposure Models 
• SHEDS-HT: High Throughput Stochastic Human Exposure Dose Simulator

 Statistical Methods for Model Evaluation and Calibration
• High throughput exposure models calibrated to exposure biomarker data (SEEM)

We are systematically addressing the areas contributing the greatest uncertainty to high throughput 
exposure methods:
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High Throughput Toxicokinetics (HTTK)

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

Toxicokinetics (TK) describes 
the Absorption, Distribution, 
Metabolism, and Excretion 
(ADME) of a chemical by the 
body

TK relates external 
exposures to internal 
tissue concentrations of 
chemical
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In Vitro - In Vivo Extrapolation (IVIVE)
Definition: 
IVIVE is the utilization of in vitro experimental data to predict 
phenomena in vivo 

• IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics): 
• Fate of molecules/chemicals in body
• Considers absorption, distribution, metabolism, excretion 

(ADME)
• Uses empirical PK and physiologically-based (PBPK) modeling

• IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics): 
• Effect of molecules/chemicals at biological target in vivo
• Assay design/selection important
• Perturbation as adverse/therapeutic effect, reversible/ 

irreversible

• Both contribute to predict in vivo effects

Slide from Barbara Wetmore

Potential 
Exposure Rate

mg/kg BW/day

Potential 
Hazard from in 

vitro with IVIVE

Lower
Risk

Medium Risk Higher
Risk
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Figure from Barbara Wetmore

Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Wetmore et al. (2015) +163 chemicals

High-Throughput Toxicokinetics (HTTK)
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Measurements require chemical-
specific methods for quantitation

• Most chemicals do not have TK data – we use in vitro HTTK methods adapted from pharma to fill gaps 
• In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted 

concentrations are typically on the order of values measured in clinical trials (Wang, 2010)
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Open Source Tools and Data for HTTK

9

https://CRAN.R-project.org/package=httk

R package “httk”
• Open source, transparent, and peer-reviewed tools and data 

for high throughput toxicokinetics (httk)
• Currently 579 chemicals with human in vitro TK data, and 97 

chemicals with rat data
• Allows in vitro-in vivo extrapolation (IVIVE), reverse 

dosimetry, and physiologically-based toxicokinetics (PBTK)

https://cran.r-project.org/package=httk
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Risk-Based Ranking for Total NHANES Population
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Life-stage and Demographic Specific Predictions

• We can calculate 
margin between 
bioactivity and exposure 
for specific populations

• Use biometrics from 
NHANES to simulate TK 
variability

Change in Activity:Exposure Ratio

Change in Risk Relative to 
Total Population

N
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m
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Ring et al. (2017)
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Building Confidence in HTTK

“…the steady-state, peak, and 
time-integrated plasma 
concentrations of non-
pharmaceuticals were 
predicted with reasonable 
accuracy… HTTK and IVIVE 
methods are adequately robust 
to be applied to high 
throughput in vitro toxicity 
screening data of 
environmentally-relevant 
chemicals for prioritizing based 
on human health risks.”

We are working to identify and areas of greatest (most impactful) 
uncertainty and reduce these uncertainties with new data and methods

New in vivo TK data was collected by 
EPA/NHEERL (Mike Hughes) and RTI (Tim Fennell)
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13

100% Bioavailability Assumed

Wambaugh et al. (2018)

Evaluating HTTK
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14

In Vivo Measured Bioavailability Used100% Bioavailability Assumed

Impact of Oral Bioavailability Data

Wambaugh et al. (2018)

Evaluating HTTK
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Evaluating HTTK

15

Greg Honda (NCCT) made a SOT2018 presentation on using Caco2 in vitro 
data to predict absorption for ~300 ToxCast chemicals

In Vivo Measured Bioavailability Used100% Bioavailability Assumed

Impact of Oral Bioavailability Data

Wambaugh et al. (2018)
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 EPA is developing a public database of 
concentration vs. time data for building, 
calibrating, and evaluating TK models

 Curation and development ongoing, but 
to date includes:
• 198 analytes (EPA, National 

Toxicology Program, literature)
• Routes: Intravenous, dermal, oral, 

sub-cutaneous, and inhalation 
exposure

 Database will be made available through 
web interface and through the “httk” R 
package

In Vivo TK Database

16

Sayre et al., in preparation

 Standardized, open source curve fitting software invivoPKfit used to calibrate models to 
all data:

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Measured data allows evaluation of new models

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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New HT-PBTK Models

• We are working to augment the basic HT-PBPTK model with 
new PBTK models

• Each model will be released publicly upon peer-reviewed 
publication

• Pre-publication models can be shared under a MTA

• We assume there will be coding errors and over-
simplifications, so each publication involves curation of 
evaluation data from the scientific literature and through 
statistical analysis

• In Vivo TK (Concentration vs. Time) database (Sayre et al.) is 
critical to these efforts
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New Exposure Data and Models

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

In order to address 
thousands of chemicals 
from limited information, 
we are working to 
evaluate and develop high 
throughput models for 
consumer,  occupational, 
and ambient pathways

To date, most efforts have 
focused on consumer 
pathways

High throughput screening + in vitro-in vivo
extrapolation (IVIVE can predict a dose 
(mg/kg bw/day) that might be adverse
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Limited Available Data for 
Exposure Estimations



Office of Research and Development24 of 43

Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

Near-Field
Direct

Near-Field 
Indirect

Human
Ecological

Flora and Fauna

Dietary Far-Field

Direct Use
(e.g., surface cleaner)

Residential Use
(e.g. ,flooring)

RECEPTOR

MEDIA

EXPOSURE 
(MEDIA + RECEPTOR)

Ecological

Chemical Manufacturing and Processing

Environmental 
Release

USE and RELEASE

Other Industry

Occupational

Occupational 
Use

Waste

Drinking 
Water

Outdoor Air, Soil, Surface and 
Ground Water

Forecasting Exposure is a Systems Problem

Figure from Kristin Isaacs
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 New database of chemical and product information
 General uses, functional uses, product ingredients and compositions
 Data on 75,000 chemicals and 15,000 consumer products
 Data available via individual chemical search or via bulk download the CompTox Chemistry Dashboard

Chemical and Products Database (CPDat)
https://comptox.epa.gov/dashboard/
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Chemical Use: Chemicals and Products Database (CPDat)
Broad “index” of chemical uses

MSDS 
Data

Ingredient 
Lists 

CPCat
(Chemical 

and Product 
Categories)

Occurrence data

CPDat
Dionisio et al., 

(2018)

Functional 
Use Data

and 
Predictions

Slide from Kristin Isaacs

Occurrence and quantitative chemical composition

Household 
Product 
Analysis
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 High-throughput model for simulating population exposures to chemical in consumer products via 
multiple product types, scenarios, and routes

 Provided publicly as an R package
 R package, code, and default input files for consumer products (derived from CPDat) available at:

High-Throughput Stochastic Human Exposure and 
Dose Simulation Model (SHEDS-HT)

https://github.com/HumanExposure/SHEDSHTRPackage 
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Consensus Exposure Predictions 
with the SEEM Framework

• Different exposure models incorporate knowledge, assumptions, and data (MacLeod et al., 2010)

• We incorporate multiple models (including SHEDS-HT, ExpoDat) into consensus predictions for 1000s of chemicals within the Systematic 
Empirical Evaluation of Models (SEEM) (Wambaugh et al., 2013, 2014)

• Evaluation is similar to a sensitivity analysis: What models are working? What data are most needed? 

Hurricane Path Prediction is an 
Example of Integrating Multiple Models
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Collaboration on High Throughput Exposure Predictions
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-
Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathways

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity 
model (USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) Near-Field Direct (2017)

Isaacs (2017) 7511 Far-Field Industrial and Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. 
(2012)

645 Residential

RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. 
(2014) 

1221 Residential

USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 
(2016,2017)

615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. 
(2016), Ernstoff et al. (2017)

8167 Dietary

Ring et al., under revision
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“In particular, the 
assumption that 
100% of [quantity 
emitted, applied, or 
ingested] is being 
applied to each 
individual use 
scenario is a very 
conservative 
assumption for 
many compound / 
use scenario pairs.”

Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models
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Reducing Uncertainty by Predicting Pathways
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Sources of Positives Sources of Negatives
Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, CPDat 

(Food, Food Additive, Food 
Contact), NHANES Curation

Pharmapendium, CPDat (non-
food), NHANES Curation

Near-Field 49 1622 567 26 24 74 CPDat (consumer_use, 
building_material), ExpoCast, 
NHANES Curation

CPDat (Agricultural, Industrial), 
FDA CEDI, NHANES Curation

Far-Field 
Pesticide

94 1480 6522 21 36 80 REDs, Swiss Pesticides, 
Stockholm Convention, CPDat 
(Pesticide), NHANES Curation

Pharmapendium, Industrial 
Positives, NHANES Curation

Far Field 
Industrial

42 5089 2913 19 16 81 CDR HPV, USGS Water 
Occurrence, NORMAN PFAS, 
Stockholm Convention, CPDat 
(Industrial, Industrial_Fluid), 
NHANES Curation

Pharmapendium, Pesticide 
Positives, NHANES Curation

We use the method of Random Forests to relate chemical structure and properties to exposure pathway

Ring et al., under revision
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Pathway-Based Consensus Modeling

Intake Rate (mg/kg BW/day) Inferred from 
NHANES Serum and Urine
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Ring et al., under revision

 Machine learning models 
were built for each four 
exposure pathways

 Pathway predictions can be 
used for large chemical 
libraries

 Use prediction (and accuracy 
of prediction) as a prior for 
Bayesian analysis

 Each chemical may have 
exposure by multiple 
pathways
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Consensus Modeling of Median 
Chemical Intake 

Ring et al., under revision
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Suspect Screening and Non-
Targeted Analysis (SSA/NTA)

 We are working to reduce the uncertainties in 
high throughput exposure models. To do this we 
would like to to:

 Increasing the chemical diversity of the 
biomonitoring data that the models are 
calibrated against

 Better characterize what we are exposed to

 New SSA/NTA analytical chemistry methods allow 
simultaneous identification of many chemicals in 
a single sample (Sobus, et al., 2017)

 EPA has applied SSA/NTA methods to house dust 
(Rager et al., 2016), drinking water filters 
(Newton et al., 2017) and household products 
(Phillips et al., 2018)
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Developing Pathway-Specific Chemical Data

Phillips et al. (2018)

In order to use models 
like SHEDs-HT we must 
approximately know the 
composition of 
household items

ExpoCast household 
item pilot study 
analyzed 5 examples 
each of 20 diverse 
household items. 

Of 1,632 chemicals 
confirmed or tentatively 
identified, 1,445 were 
not present in CPCPdb
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Suspect Screening and Non-
Targeted Analysis (SSA/NTA)

ToxCast 
Chemicals 

Reference 
House Dust

Reference 
Human Serum

Reference 
Silicone Wristbands

EPA’s Non-
Targeted Analysis 
Collaborative Trial 
(ENTACT)EPA collaborative trial 

workshop was held 
August 13-15 in 

Research Triangle Park, 
NC, USA

• In order to characterize the reliability of SSA/NTA techniques, the EPA is leading a collaborative trial across 
more than two dozen academic and industry laboratories

• EPA’s Non-Targeted Analysis Collaborative Trial is starting with synthetic mixtures formulated from the 
ToxCast library – will eventually look at wristbands, standard reference material (SRM) house dust, and 
SRM human plasma
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Suspect Screening of Human Tissues

Rappaport et al. (2014)
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Substances are defined by their biological 
function, and are expected to be 
structurally heterogeneous. Some 
compounds can appear in more than one 
category. For example, cholesterol: it is 
present in cellular membranes (1), from 
consumption of animal fat (2a), or as an 
effect of glucocorticoid medication (3b).

Sayre, Wambaugh, Williams, Sobus, and Grulke

We propose databases for five categories of substances found in human biomonitoring samples:
1) endogenous metabolome,
2a) exogenous nutrients, 
2b) markers of exposure to exogenous nutrients,
3a) xenobiotics, and 
3b) markers of exposure to xenobiotics
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Summary
 High throughput screening (HTS) provides bioactivity data for thousands of chemicals as a surrogate for hazard, but 

you also need exposure and toxicokinetics to assess risk

 Toxicokinetics for IVIVE provides real world context to hazards indicated by HTS
• Using in vitro methods developed for pharmaceuticals, we can predict TK for large numbers of chemicals, but we 

are currently limited by analytical chemistry

 High throughput exposure approaches can make coarse predictions of exposure
• We are actively refining these predictions with new models and data
• In some cases, upper confidence limit on current predictions is already many times lower than predicted hazard

 We are working to systematically identify and address those areas contributing the greatest uncertainty

 All data being made public:
• R packages “httk”, “CPDat”. “SHEDS-HT”
• The Comptox Chemicals Dashboard: http://comptox.epa.gov/

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA

http://comptox.epa.gov/
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