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Abstract

Recently, technologies utilizing ubiquitous sensory data have started
to revolutionize our perception and interaction with the physical world,
as the Internet of Things (IoT) continues to bring billions of sensors
online. Most systems are currently architected with sensor data
collection at the edge and processing in the cloud. However, as
embedded processing becomes cheaper, faster, and more efficient, we
are seeing the opportunity to apply learning on raw data samples closer
to the sensor devices. The combination of edge computing and in situ
learning not only improves a system’s sensing and analysis ability, but
also maintains low transportation cost, low latency, and good
scalability.

In this dissertation, we explore this new class of agile sensing
applied to active wide-band acoustic sensors. Unlike conventional
approaches that rely on signal processing and well-engineered acoustic
features, we propose generic and adaptive learning algorithms that
operate closer to raw waveforms. We demonstrate this applied to the
field of modern architectural acoustics, where modeling and
manipulating space acoustics remains a big challenge, and show its
potential in applications such as occupancy estimation, room geometry
sensing, acoustic model reconstruction, and microphone localization.
We address multiple challenges in designing a lightweight and adaptive
learning algorithm, and evaluate trade-offs between estimation
accuracy, memory consumption, and energy efficiency on an embedded
platform in various real-world environments.
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Chapter 1

Introduction

1.1 Background

Sound waves can tell us a great deal about the world around us. When sound

waves are generated, information about their sources, such as pitch, duration, and

loudness, is embedded into pressure waves that move through air. These pressure

waves impart energy into our eardrums, allowing us to hear words and music. This

same principle applies to echoes, where each can be treated as an individual sound

wave carrying information about its reflector. This mechanism is the foundation of

active acoustic sensing, and it can be found both in nature and in man-made

systems. Bats make high-pitched calls to navigate and forage; toothed whales use

echolocation to hunt; shrews emit ultrasound to locate insects. As early as the

mid-18th century [68], reports show that blind individuals are able to locate silent

objects using sound and hearing 1. These intriguing findings have since inspired

many remarkable inventions such as SOund Navigation And Ranging (SONAR).
1Interestingly, the mechanism driving this ability was originally believed to be pressure changes

on the skin [68]
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However, most applications and advanced techniques have been limited to

underwater sensing and outdoor environments. Acoustic signals are notoriously

difficult to model and manipulate in indoor environments where spaces are

confined. Not only does sound dissipate faster in air than in water, when

transmitted into a confined space it creates numerous echoes. These multipath

reflections can blend in with each other or cancel each other out, while decaying

at different rates based on the absorption of the reflected surfaces. This

phenomenon makes it extremely difficult to capture all the dynamics and nuances

in the environment. Scientists and engineers in the field of architectural acoustics

have been studying the impact of room geometry and absorption on indoor

acoustics for more than a hundred years, yet the state-of-the-art still relies on

computer simulations that struggle to be accurate.

Over centuries, the potentials of active acoustic sensing have continued to

thrive as measurement tools and processing techniques have advanced. Perhaps

what it can achieve is only limited by our imagination. In the 2008 Christopher

Nolan movie, The Dark Knight, the Batman and his confidant hack into people’s

cellphones, activating their speakers and microphones to “see” the surrounding

environment and nearby people, as a bat would. While this might seem futuristic,

the line separating science fiction and reality begins to blur given the rapid pace of

technology. From nature’s gifts to science fiction, all of these abilities are built

upon a central understanding of sound and echoes; they are driven by a

comprehension of how the echo is reflected and where the echo is reflected. This

dissertation takes initial steps toward expanding our understanding of echoes and

their potentials in active acoustic sensing driven by machine learning approaches.
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1.2 Motivation

Recently, technologies utilizing ubiquitous sensory data have started to

revolutionize our perception and interaction with the physical world, as the

Internet of Things (IoT) continues to bring billions of sensors online. Real-time

networked sensors have demonstrated huge potential in making numerous

applications smarter through rich inferences derived from surrounding

environment and nearby people. Driven by advances in embedded devices with

faster processing power, lower energy consumption, and decreases in cost, we are

seeing the opportunity to apply in situ learning on the sensor devices to improve

their sensing and analysis capabilities while maintaining low transportation cost,

low latency, and good scalability.

In this dissertation, we explore the use of embedded machine learning

techniques on active acoustic sensing systems like smart speakers, where sound

signals are transmitted into the environment and the reflected signals are

recorded at one or multiple locations. Applications in active acoustic sensing have

taken many forms in the past, such as SONAR, ultrasonic imaging, and motion and

proximity sensing. Most of these applications have been limited in terms of both

scope and performance, because modeling and making inferences about acoustic

signals is difficult due to the highly dynamic nature of multipath reflections in

confined spaces. Classic signal processing approaches use building blocks that

attempt to perform generalized processing. However, this processing approach

often fails due to variability from space to space. Given how significantly the

environment impacts acoustic signals, we demonstrate that learning can be used

to capture the nuances of specific environments to help model acoustic
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properties. For example, work in the domain of architectural acoustics has studied

acoustic modeling in space in order to improve sound quality within buildings.

Acoustic engineers use relatively basic first-order models for a variety of

applications ranging from enhancing speech clarity in auditoriums to reducing

background noise in restaurants or improving music quality in concert halls and

home theatres. However, manipulating space acoustics, which requires a strong

understanding of sound absorption and reflection, still remains a process of trial

and error. By sensing and learning about specific environmental features, we

believe we can significantly improve upon this process and, more importantly,

expand on the types of sensing that are possible with active acoustic systems.

To expand the capabilities of active acoustic sensing, we propose an approach

that leverages learning to accurately capture both acoustic absorption and

reflection at the same time. We demonstrate this capability in real-world

environments and show its potential in applications such as occupancy estimation,

room geometry sensing, acoustic model reconstruction, and microphone

localization. We also discuss practical challenges of enabling learning on

resource-constrained devices and evaluate their impacts on various aspects of the

system performance.

1.3 Problem Statement

Active acoustic sensing relies on understanding the physical nature of how sound

interactswith the environment, as shown in Figure 1.1. On one axis, we see that sonic

energy is altered either through absorption or reflection. On the other axis, we see

the impact of the room geometry and humans in the space. Various different active
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acoustic sensing applications lie at the intersection of each of these dimensions.

For example, room geometry reconstruction and microphone localization require

modeling the environment and locating the sources of reflections. Improving sound

quality depends on understanding room surface absorption. Counting humans in a

space requires an understanding of both absorption and reflection.

Human

Environment

Sound

Room

Absorption

Reflection

Occupancy 
Estimation

Room Geometry Sensing & 
Microphone Localization

Proximity Sensing

Gesture 
Recognition

Acoustic Model 
Reconstruction

Ultrasonic Imaging

Touch & Grasp 
Recognition

Figure 1.1: Active acoustic sensing applications and their interactions with the
environment.

Through learning different aspects of these interactions, we aim to answer the

following questions:

1. Can active acoustic sensing be used to estimate occupancy?

• Howwell can the technique estimate the number of occupants in a variety

of spaces?

• What parameters impact the estimation accuracy?

• How does the environment affect the system performance?

• What Machine Learning techniques are best suited for embedded
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systems?

• How can we adapt a trained model to environmental changes?

2. Can active acoustic sensing be used to derive room geometries, microphone

locations, and acoustic models of spaces?

• How well can we estimate the room geometry in a variety of spaces?

• How well can we locate a microphone?

• What parameters impact the reconstruction’s accuracy?

• How well can we estimate architectural acoustic properties such as

absorption coefficient of surfaces?

• How does the system perform compared to the state-of-the-art?

1.4 Thesis Statement

“Machine learning applied to active acoustic systems can improve their ability to sense

and derive inferences from the environment; we present new techniques for occupancy

estimation, room geometry sensing, acoustic model reconstruction, and microphone

localization.”

1.5 Contribution

The contribution of this dissertation is presented in the following applications

within the class of active acoustic sensing:

1. Occupancy Estimation

• The design and evaluation of an occupancy estimation algorithm based
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on acoustic properties

• The design and evaluation of a presence detection algorithm and

recalibration algorithm that adapt the occupancy estimation model to

account for changes in the background environment over time

• The design and implementation of a self-contained energy-harvesting

platform with wireless communication that executes the occupancy

estimation algorithm in real-time and leverages a smartphone for

training

• A comparative analysis of the proposed approach and state-of-the-art

solutions in real-world environments

2. Room Geometry Sensing, Acoustic Model Reconstruction, and Microphone

Localization

• The design and evaluation of a room model reconstruction and

microphone localization algorithm

• The design and evaluation of a gradient-based searching algorithm

• The design of a prototype system evaluated in real-world environments

• A comparative analysis of the proposed approach and state-of-the-art

solutions

• An AR application for visualizing the reconstructed acoustic model
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Chapter 2

Related Work

In this chapter, we discuss the background related to active acoustic sensing (see

Section 2.1), followed by an overview of Machine Learning (ML) frameworks in the

domain of acoustic sensing (see Section 2.2). Next, we address challenges specific

to the field of architectural acoustics (see Section 2.3) and discuss their close

relationships with occupancy estimation, room geometry sensing, and acoustic

model reconstruction. Finally, we detail technologies related to these specific

topics in Section 2.3.1 and Section 2.3.2, respectively.

2.1 Active Acoustic Technologies

Active acoustic approaches have shown great potential in multiple forms of

sensing. As early as 1912, the first underwater echo-ranging device was invented in

response to the sinking of the Titanic, in an attempt to echolocate the ship in the

same way bats use sound for navigation and localization. During World War I, the

military developed active SONAR (SOund Navigation And Ranging) system for the

detection of submarines. SONAR works by sending out a ping signal and then

9



listening for the reflected echo of the pulse. To measure the distance to an object,

the time between the transmission and the reception of the pulse can be

converted into a range based on propagation given the speed of sound. To

measure the bearing, multiple hydrophones are used to measure the relative

amplitude and arrival time between each beam. To measure the radial speed of the

target, the Doppler effect is used to convert the difference in frequency between

the transmitted and received signal into a velocity. Numerous studies have

continued to improve these measuring methods over the years, and techniques

such as pulse compression, beamforming, and Acoustic Doppler Velocimetry (ADV)

have since enabled improved ranging accuracy, signal strength, and velocity

estimation.

Recently, acoustic sensing and related techniques have been widely applied to

non-military applications. For example, acoustic ranging techniques have been

utilized in several indoor localization systems [53, 78, 101, 104]. These systems

typically share the same operating principle as the Global Positioning System

(GPS); the Line-of-Sight (LOS) ranges from multiple synchronized

transmitters/receivers with known locations are used to determine the

receiver’s/transmitter’s location. Depending on whether the transmitter(s) and

receiver(s) are synchronized, the localization process can either follow a Time of

Arrival (TOA) or Time Difference of Arrival (TDOA) based approach. The ranging

measurements from multipath reflections can also be exploited in a similar way

and used in many applications. Many researchers used a speaker and/or

microphone array to determine the shape of a room or surrounding reflectors

based on echo ranges [6, 18, 19, 27, 35, 60, 88, 110, 112, 113, 127]. To improve ranging

resolution and SNR, most systems utilize pulse compression on the transmitted
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signal along with a matched filter at the receiver. Aside from pulse compression,

wireless communication modulation schemes can also be applied to acoustic

signals to improve ranging resolution. For example, in [91], the authors used OFDM

modulation to achieve sub-centimeter ranging accuracy and demonstrated

accurate gesture tracking and recognition using a mobile phone.

Active acoustic sensing has been shown effective for various applications in

classification. In [82, 99, 134], the authors demonstrated how an attached

speaker/microphone pair on human bodies or common objects allows recognition

of various touch and grasp gestures. As the sound wave propagates through the

body, different postures cause varying fluctuations in the signal’s power spectrum

which can be reliably classified using Support Vector Machine (SVM). The

micro-Doppler effect, which is the shift in frequency caused by an object vibrating

or spinning commonly observed in RADAR systems, has also been studied in

acoustic signals. In [11], the authors built a k-NN and Bayesian classifier with

micro-Doppler signature to differentiate walking gaits of different people, or

different actions undertaken by the same person. The same gait signature has also

been used to distinguish humans from four-leg animals [139], or to classify

underwater vehicles [64]. A few studies also exploited ranging readings in addition

to reflected Doppler signals, to classify speech, walking motion, and gestures

tracking [107]. It is worth noting that most of these classification-based

applications apply machine learning algorithms on top of signal processing tools to

derive more complex inferences from received signals.

In this dissertation, we utilize many of the aforementioned acoustic inferences

including frequency shift, ranging estimation, and changes in the spectrum and

apply relevant techniques such as Doppler shift, pulse compression, and machine
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learning for estimating occupancy and reconstructing an acoustic model of a

room.

2.2 Machine Learning Frameworks

In the domain of acoustic sensing, automatic speech recognition (ASR) is one of

the first fields to widely adopt machine learning techniques. In fact, ASR was one

of the main drivers for machine learning in general and has a substantial influence

on the development of acoustic signal processing. Techniques such as Support

Vector Machine (SVM), Gaussian Mixture Model/Hidden Markov Model

(GMM-HMM), and Artificial Neural Networks (ANN) have been commonly used

with well-engineered features, such as zero-crossing rate, linear predictive coding

(LPC), Mel-frequency cepstrum coefficient (MFCC), for the recognition and

translation of spoken languages [33]. In particular, MFCC [31] is by far the most

widely used feature in state-of-the-art speech recognition systems, given its

robustness to additive noise and uniqueness in approximating human auditory

response. Other common generalized feature extraction techniques include

Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and

Independent Component Analysis (ICA), which have also been widely employed in

speech recognition and sometimes used in combination with MFCC [81, 122, 128].

Following their success in ASR, many of these techniques and features have been

adopted in other applications as well, such as human activity recognition [24],

gesture recognition [12], and sound source localization [124].

Over the past decade, advances in hardware and the availability of large

datasets have reignited interest in Deep Neural Networks (DNN) based approaches
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due to their powerful ability to generalize feature extraction and

transformation [67] while perfectly matching modern GPU architectures.

Deep-learning methods are typically composed of multiple layers of

representation with transformation/activation functions in between. While the

representation in each layer can be relatively simple, the combined non-linear

transformation allows the model to approximate extremely complex functions as

the number of layers grows. Several studies have shown that DNN-based

approaches can obtain comparable performance even when trained with raw

waveforms or amplitude spectra instead of conventional features like MFCC [129].

Methods combining Long short-term memory (LSTM), deep Recurrent Neural

Networks (RNN) or Convolutional Neural Networks (CNN) have become part of

state-of-the-art systems in ASR [40, 49, 59, 115].

However, DNN-based approaches face several obstacles in practice. Despite

having superior performance in general, these approaches rely on advanced

hardware with large memory size, GPU acceleration, and efficient parallelization

for data processing. These drawbacks make them more difficult to implement on

embedded devices that have weak processors and limited memory. To solve these

embedded challenges, some have proposed compressing the model size of existing

algorithms. Several methods have been proposed to compress DNN [52], Random

Forest (RF) [90], and k-Nearest Neighbor (k-NN) [73], but they still struggle at the

scale of embedded devices. Offloading the computation to the cloud provides an

attractive alternative, yet most cloud computing frameworks introduce several

drawbacks including latency, bandwidth, reliability, and privacy issues [9]. In order

to strike a balance between efficiency, accuracy, and robustness, the majority of

applications maintain a traditional pipeline of signal processing followed by feature
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extraction and classification. With this conventional framework, however,

applications continue to rely on carefully crafted features and a considerable

amount of labeled training data.

Recently, more attention has been drawn to developing embedded machine

learning algorithms in order to bridge the gap between the two frameworks.

Enabling in situ learning on edge devices can potentially create a new paradigm

that combines the merits from both frameworks; devices can utilize learning

without inducing the disadvantages of transporting data over the network. In [72],

the authors proposed an embedded tree-based algorithm with extreme resource

efficiency in energy consumption, execution time, and model size (≤2kB) while

retaining good prediction accuracy in classification tasks. Their algorithm

achieved the gain from a sparse tree learned in a low-dimensional space using

dimensional reduction, joint learning, and gradient descent with iterative hard

thresholding. Several papers [50, 131, 141] focused on embedded k-NN algorithms.

Particularly in [50], the authors presented a compressed k-NN model that greatly

reduced the model size from 6MB to 16kB using low-dimensional projection,

prototype representation, and joint optimization. An efficient algorithm for outlier

robust Principal Component Analysis (OR-PCA) is also studied in [25]. The authors

proposed a thresholding based algorithm to effectively reduce the time complexity

from quadratic to linear, which is equivalent to vanilla PCA, under specific noise

models. Unfortunately, the method does not apply to the additive Gaussian noise

model that is often observed in practice.

The majority of practical machine learning applications rely on supervised

learning, which requires tremendous amounts of well-labeled data for training.

However, such databases can often be expensive and difficult to obtain especially
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when human annotators, special devices, or lengthy experiments are involved. In

the domain of ASR, for example, accurately transcribing speech at the phonetic

level can be extremely time-consuming and often requires experts [97]. In

computer vision, labeling footage frame by frame is often laborious and tedious. In

protein structure prediction, it may take weeks or months of laboratory work to

identify a specific DNA sequence of a protein. On the other hand, unlabeled data is

often available in large quantity and can be easily acquired: speech recordings can

be obtained from radio broadcasts or audio books; video footage is readily

available from online streaming services; and DNA sequences can be extracted

directly from gene databases. This practical factor leads to a learning paradigm

so-called semi-supervised learning, which considers the problems with a paucity

of data labeled. The goal of semi-supervised learning is to utilize both labeled and

unlabeled data to achieve better performance than using either alone. From a

different perspective, semi-supervised learning could achieve the same

performance as supervised learning, but with less labeled data required.

Depending on problem formulation, semi-supervised learning can be utilized in

multiple settings such as classification, clustering, or regression [143].

In this dissertation, we apply various data-driven algorithms to learn various

aspects of acoustic properties while minimizing training effort, computational

complexity, and memory consumption. To estimate room occupancy (see

Chapter 3), we propose a semi-supervised learning framework based on raw

frequency features that bypass the process of feature engineering. Our algorithm

uses a PCA-based approach for dimensional reduction to reduce the model size,

but assigns different weights based on relevancy to prevent outliers. We also apply

a clustering algorithm in combination with a regression model to further minimize
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the model size, impact of noise, and training effort. To reconstruct the acoustic

model of a room (see Chapter 4), we propose a pipeline of optimization tools,

including semi-definite programming and combinatorial optimization, to derive

consensus on room geometry based on echo ranges. In addition, we use a

clustering algorithm and design a searching algorithm based on gradient descent

to reduce estimation inaccuracy and run-time complexity.

2.3 Architectural Acoustic

Over the last 120 years, work in the area of architectural acoustics has emerged to

scientifically improve sound quality within buildings. Acoustic engineers have

looked at problems ranging from enhancing speech clarity in auditoriums to

reducing background noise in restaurants or improving music quality in concert

halls and home theatres. However, manipulating space acoustics, which requires

precise modeling of sound absorption and reflection, remains a big challenge.

Current acoustic treatments rely on cumbersome trial and error processes

performed by domain experts that involve constant adjustments of sound

absorbers/blockers and repeated measurements using high-end equipment at

specific locations, or in some more difficult cases, with a well-trained ear. Other

benchmarks such as reverberation time RT60 (the time it takes an audio signal to

decay 60dB) can be used in combination with room size to estimate room

response, but are limited in depicting room geometry and deriving absorption

coefficients from all of the surfaces that play important roles in overall acoustics.

In the early 1900s, Wallace Sabine began to model the impact of people,

frequency, and the geometry of spaces on acoustics [114]. Significant follow-on
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work in acoustics has shown that people in a space significantly impact

reverberation and that reverberation is frequency- as well as room

geometry-dependent [15]. To model overall acoustic properties, recent work in

this area has used computer simulations [30, 56, 57, 118] with precise 3D model and

acoustic details of the space. It is clear from this large body of research that

creating simple, generalizable models of reverberation is quite challenging. For

this reason, we propose using machine learning techniques to identify room

geometry while learning and classifying the reverberation response on a

per-installation basis.

2.3.1 Occupancy Estimation

Occupancy sensing spans a variety of technologies with a number of design

trade-offs. Conventional solutions use largely binary sensors with PIR, microwave,

or ultrasound to detect the presence of people. Most recent work has used

cameras or fusion of multiple sensor types to measure occupancy level. All of

these approaches generally fall into two categories based on their capabilities.

One group focuses only on detecting the vacancy/presence of

people [17, 28, 51, 96, 126, 133], which often comes with an analysis of detailed user

behaviors and actions. Other categories focus more on people-counting

systems [16, 22, 43, 58, 66, 76, 85, 89, 92, 94, 132, 133, 140, 144], usually involving

more sophisticated algorithms and learning-based approaches.

Presence Detection

In the category of presence detection, two common sensors have been widely

deployed in modern buildings: passive infrared sensor and ultrasonic sensor.
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Passive infrared (PIR) sensors detect the differences in infrared radiation, such as

heat, emitted from human movement and those from the background

environment. These sensors typically have a limited field-of-view and require clear

LOS to the targets, which make them more suitable for a small, enclosed space or a

narrow entrance. Ultrasonic sensors, on the other hand, use active transmission of

ultrasonic signals to detect the presence of occupants. These sensors rely on the

detection of Doppler shifts that occurs when there is movement toward or away

from the transmitted signal. Ultrasonic sensors do not require strict LOS of the

targets and can detect people around corners, due to diffraction and multipath

reflection. In general, they are more effective at detecting sudden movements and

tend to have larger coverage areas compared to PIR sensors, which makes them

work well in open spaces and spaces with obstacles.

Recently, presence detection has been expanded to other sensor types. For

example, in [133], the authors combined motion sensors and smart meter feeds to

detect the presence of occupants and even infer the occupancy. In [28], the

authors focused primarily on WiFi signals and used “sniffers” that monitor WiFi APs

to detect occupants’ mobile devices and their whereabouts. In both cases, the

approaches do not perform as well in large spaces like auditoriums, unless each

occupant is carrying a mobile device that cooperates with the system. Two of the

recent works use similar approaches based on ultrasonic signals [17, 126]. In [126],

the author proposed a sonar system using four microphones at a constant

frequency of 20kHz in order to detect the user’s attention state and several

pre-defined activities. They built a classifier by characterizing the variance of the

reflection intensity from a user’s body. Their experimental results show supportive

evidence that a user’s presence impacts the intensity of the echoes, which is a
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fundamental characteristic we leverage in our approach. Nevertheless, this

technique requires a copious amount of training data to predict the pre-defined

activities, and assumes the environment to be free from interference. Similar work

in [17] proposed an ultrasonic array sensor and tracking algorithm to detect the

presence and capture the movement of targets. This is achieved by taking the

difference between the received echo signals to estimate the direction of arrival

(DOA) with the array of sensors, and utilizing the received signal-to-noise ratio

(SNR) as an indicator of occupancy. A simple tracking algorithm is also proposed to

increase the performance of presence detection. While this method shows better

performance than PIR sensors, the detection zone is limited to a certain area and

confined by DOA angle.

Some other approaches take advantages of using multiple co-located

sensors [51, 94, 96]. In [96], TelosB nodes are deployed with pressure sensors, PIR

sensors, and audio sensors. The system is able to predict pre-defined activities by

correlating the binary readings from multiple sensors. The overall classification

accuracy is more than 90%, but it requires a careful deployment of multiple

sensors at different locations in the room. With a similar choice of sensors, the

author in [51] adopts additional light and CO2 sensors. Classification is done using

a decision tree in order to determine which sensors are most important. The

results indicate that the motion sensor is dominant, and accounts for 97% of

accuracy even when used alone. Even more diverse sensor types are utilized

in [94] including temperature, humidity, light, and CO2. The authors evaluated

their performance with multiple classification algorithms. The model achieved

99% of accuracy with readings from light sensors as the most effective parameter.

However, in case of changes in location, the model has to be retrained to adapt to
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the new environment, which is a prerequisite for most classification models.

To summarize, although most of the presence detection techniques have the

advantage of low-cost and low-complexity, their applications are limited due to

their binary sensing. They also suffer from scalability and deployment difficulties

due to the confined detection area of the sensors.

People Counting

The most common commercial solution for people-counting uses RGB video

cameras [16, 22, 85, 132, 140]. While camera-based approaches tend to have high

accuracy, they often suffer in practice due to lighting conditions, clutter in the

background, privacy issues, and extensive training and setup efforts. An early work

for fine-grained indoor people-counting is presented in [132], where the locations

of the objects are first measured by their silhouettes by image sensors deployed

around the room. The system shows accurate results up to 12 people moving in a

room, but requires careful placement of multiple image sensors. Also, the

computational complexity grows proportionally to the number of sensors. In [140],

the authors used face detection with Kalman filtering and a k-NN classifier to

track the trajectories of occupants. The results show high tracking accuracy, but

the method does not scale well as the number of occupants increases. For

counting larger groups of people, a crowd-counting algorithm proposed in [22]

shows accurate results for tens of pedestrians with an error of less than two

people. The algorithm claims to be privacy preserving by segmenting the crowd

into groups using low-level features, then using a regression model to count

people within each segment. A pedestrian database is required for providing a

large number of training images, which is often costly and thus makes it less
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feasible in more constrained use-cases, like on an embedded sensor. To reduce

the effort in acquiring labeled data, several pieces of research proposed using a

semi-supervised learning method for crowd counting [16, 125]. These algorithms

first perform a spectral clustering on the unlabeled data to select the most

representative data for labeling, then use feature mapping to facilitate learning of a

new target model. This concept enables the use of knowledge from a previous

scene and thus reduces required training data for bootstrapping learning in the

new scene, but the assumption is that the two scenes must share similar manifold

representations.

Recently, there have been several attempts at extending data fusion approaches

from presence detection to occupancy estimation [43, 76, 144]. In [76], the authors

evaluated three different learning methods including SVM, NN, and Hidden Markov

Model (HMM) over a dozen of different sensor inputs, and were able to estimate

0 − 3 occupants in an open office area with 75% accuracy. In [43], a classification

model built on WiFi access, user activity, calendar, and time-of-day information

achieved as high as 90% accuracy among five occupants. In [144], the authors

developed an indoor air quality measurement system with CO2 sensor, total

volatile organic compounds (TVOC), air temperature, and air relative humidity

sensors. They adopted supervised learning algorithms and compared decision

tree, Logistic Regression, k-NN, and RF in their capability to detect and estimate

occupancy of three people. Although the learning model could only achieve an

accuracy of 75%, it was shown to be insensitive to the training participants.

Rather than estimating the occupancy in an instantaneous manner, another

popular approach is to track the inbound and outbound traffic of the room by

monitoring its entrance [58, 66, 89, 92]. An early work in [66] used a camera hung
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from the ceiling to track people passing through the door. The algorithm used

background subtraction followed by object extraction and tracking to monitor

occupancy. This approach, however, assumes all moving objects are human and

they do not overlap with each other. This assumption is more relaxed in [58],

where Hnat et al. introduced the Doorjamb tracking system using ultrasonic range

finders mounted on door frames to monitor room access. By using probabilistic

inference and associating people’s identities with their heights, the system

performs well on people-tracking in specific environments, such as labs or

residential homes with a high room-tracking accuracy. A similar system in [92]

used weight sensors and Microsoft Kinect with Naïve Bayes and SVM classifiers to

identify people based on their weight and height. However, both of these systems

are unable to detect multiple people crossing at the same time and are unsuitable

for environments with wide entrances. More recently in [89], the authors

presented the FORK system utilizing Kinect depth sensors above doorways to

track the heads and shoulders of passing occupants. The system is highly accurate

and tolerant to multiple people-crossing scenarios. They also compared

identification performance among several classification algorithms using tens of

biometric features. However, the system is expensive to install and the

performance degrades as the number of people crossing increases. In general,

there are a few fundamental challenges associated with door monitoring

approaches. First, they typically require careful deployment and hand-tuning of

detection thresholds. Second, system performance degrades when a crowd of

people passes through simultaneously, and the estimated error accumulates over

time without a reliable calibration mechanism. Finally, systems with better

performance tend to rely on more costly hardware that are more intrusive in
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terms of privacy.

In summary, although most of the presence detection techniques have the

advantage of low-cost and low-complexity, they only provide a coarse estimate of

people within a space. In contrast, most of the people-counting techniques are

either more expensive in terms of cost and complexity, struggle to perform crowd

estimation, or require large, labeled databases. Based on this large body of work,

there are no existing frameworks that can perform wide-area people counting

with a single cost-effective and versatile sensor. In recent experiments using

reverberation [75], it is clear that given a particular room geometry, audience

absorption follows relatively distinct curves that make it a powerful feature for

occupancy estimation. In this dissertation, we present one of the first end-to-end

systems where ultrasound has been used to directly estimate occupancy.

2.3.2 Room Geometry Sensing and Acoustic Model Reconstruction

Geometrical room acoustic modeling has a long research history that involves many

related topics, such as data acquisition, measurement uncertainty, signal processing

techniques, acoustic design, and geometry reconstruction. Each of these topics

has a large body of research, so for the scope of this dissertation, our focus is on

the methods that can be used for estimating sound response in three-dimensional

(3D) spaces and/or the reconstruction of their geometries. These two problems

are similar in that the main contributing components of the impulse response, early

reflections, and reverberation are by and large determined by the geometry of the

room.

Acoustic geometry reconstruction typically assumes a set of microphones and

speakers with known locations. These transmitter and receiver pairs measure the
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RIR in order to estimate the location of reflectors and obstacles with respect to

their own positions. While many approaches formulate the reflection localization

problem in different ways, the relative positions between speakers, microphones,

and walls can either be characterized by time of arrival

(TOA) [27, 35, 60, 88, 110, 112, 113, 127], time difference of arrival (TDOA) [6, 88] of

impulses, or the direction of arrival (DOA) [18, 19, 113]. Note that in some

approaches, more than one of these characteristics are utilized in deriving the

solution. Earlier work in this area has been focusing on two-dimensional (2D)

reconstruction where the speakers, microphones, and reflectors lie on the same

plane [6, 18, 19, 36, 88]. Lately, many of these approaches have been extended into

3D reconstruction. For example, the work in [6] and [5] has been improved

respectively in [41, 111] and [93] to accommodate generalized 3D scenarios.

Direct Estimation Approach

One of the earliest approaches to room geometry reconstruction focused on direct

localization of sound reflectors. For example, [74] used an approach similar to

seismic exploration and underwater imaging to capture an image of the reflecting

objects from reflected energy. The imaging process is based on inverse wavefield

extrapolation from the receiver to the object’s position. One major limitation of

this approach is that it requires a planar array of microphones and assumes a

specific spatial relationship between the microphone array and reflectors.

In [6, 41, 93, 112], the authors modeled walls as planar surfaces tangent to the

ellipsoid defined by the echo distance between transmitter/receiver pairs. To find

the overlaps among multiple ellipsoids derived from noisy measurements, most

techniques adopt the Hough transform [38] or RANSAC process [42] to reliably and
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efficiently refine the solution in the presence of outliers. However, these

approaches often require a microphone array with known positions and the

localization of the sound sources using DOA. In addition, in order to prevent

“ghost” walls/reflectors caused by higher-order reflections, several studies

imposed restrictions on the dimensions of the room [41, 93].

Image Source Approach

A more recent approach to room geometry reconstruction relies on the Image

Source (IS) model [2] to indirectly locate the reflectors. The IS model defines

imaginary sound sources by mirroring the true sound source against the reflecting

surfaces. From the receiver’s perspective, any multipath reflections can be treated

as LOS signals from the image sources, which helps to describe how the sound

waves propagate and to greatly reduce the computational complexity of locating

the reflectors. This solution is exact, assuming the reflecting surface is rigid and

the wave incidence is spherical. In most scenarios, TOAs are first converted into

distances to determine the locations of the image sources, and in turn, determine

the locations of the reflectors using the IS model.

The main challenge of the image source formulation is that echoes reflected

from different walls can arrive at the receiver in an arbitrary order, and it is not

trivial to sort them based on the number of times they have been reflected, nor to

label them with the correct image sources. Many approaches alleviate this

problem by making assumptions about the types of echoes or the order of echo

arrival. In [27], the author considered the scenario with multiple sources and

receivers, and proposed a reconstruction algorithm based on minimizing the delay

ambiguity in echoes. However, the method assumed no higher-order reflections in
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the received signal, and the sound sources cannot overlap in time. The same

restriction on the order of RIR is assumed in [102], where a mobile node is used to

recover a wide class of a polygonal shape geometry through only first-order RIRs.

However, this approach may fail if the polygon has one or more pairs of parallel

edges. In [88], the authors exploited the constraints on convex polyhedral room

geometry imposed by the combination of first-order and second-order reflections

and presented a method to reconstruct room geometry from a single channel

impulse response. Unfortunately, this method requires prior knowledge of the

labels for all TOAs and the detection of all first-order and second-order

reflections, which is difficult in practice.

To relax the assumption on echo arrival, several works aim to solve the echo

labeling problem directly. In [35], Dokmanica et al. proposed using the properties

of Euclidean Distance Matrix (EDM) to solve the echo labeling problem by

brute-forcing all combinations of echoes using multidimensional scaling (MDS). To

alleviate the computational complexity, the system uses a microphone array of five

microphones with known positions to reduce the number of echo combinations.

In addition, the algorithm requires prior knowledge of the number of walls and the

detection of all first-order echoes to eliminate higher-order echoes and correctly

reconstruct room geometry. A follow-on work in [60] later transformed the echo

labeling problem into a maximal independent set listing problem in graphs that can

be solved more efficiently using an exponential space algorithm. They also used a

rank-5 factorization method that was first proposed in [103] to directly compute

the location of the transmitters and receivers in linear time complexity. While

promising in simulation, this approach requires at least ten sound sources and five

microphones. Another recent work further improves this graph-based approach
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using subspace-based filtering to reduce the computational complexity [26].

However, similar to [60], this approach delivers the speedup by utilizing a larger

number of microphones and sources.

More recent work leverages a mobile node to replace the need for multiple

microphones [102, 142]. In [102], the author studied the possible room shapes that

can be recovered using a mobile node, but assumed perfect localization and

precise echo ranging. In [142], a commodity smartphone is used to achieve

fine-grained reconstructions through short-range scanning. However, the method

requires the user to walk a full loop closely to the internal room boundaries which

is unsuitable for 3D reconstruction. To reliably measure the distance to walls, the

smartphone also needs to be held in a specific position and follows a careful

measurement gesture that is prone to error.

Based on this large body of work, we can conclude that most of the 3D

reconstruction approaches either require a large array of transmitters/receivers

and/or impose assumptions on the order of received echoes and the geometry of

the room. In addition, few of them are evaluated in a real-world environment

where missing/spurious echoes and measurement uncertainty have a huge impact

on reconstruction stability and accuracy.

In this dissertation, we adopt the image source model and the EDM formulation

as the building block of our algorithm, but assume no prior knowledge of the

number of reflective surfaces nor the detection of all first-order echoes. We

present a robust reconstruction algorithm that utilizes SDP to refine surfaces

localization, combinatorial optimization to cope with measurement uncertainty,

and a clustering algorithm with geometry properties to deal with missing and

spurious echoes. We also present a searching algorithm to reduce overall
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computational complexity. Our system requires only one speaker and a

commercial off-the-shelf smartphone that samples at multiple random locations

in the room with the help of Visual Inertial Odometry (VIO) tracking.
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Chapter 3

Occupancy Estimation

3.1 Introduction

Being able to count the number of people accurately in a space has high utility for

a number of applications. In building automation systems, knowing if a room is

occupied or not can be used to control zone heating and cooling, or simply to

disable unused lighting. Heating, Ventilation, and Air Conditioning (HVAC) of

buildings represents about 17% of the total energy used domestically, equivalent to

about 16.7 QBtu (quads) of energy annually. It has been shown that HVAC controls

that are adaptive to fluctuations in occupancy density and distribution should

allow optimization of air distribution and provide substantial energy savings in

thermal and lighting control [32, 48, 69, 98, 138]. In the context of large facilities

like conference centers or in the retail space, knowing how many people are in

certain locations and how long they dwell can be used to value shelf-space or

storefront locations and predict traffic flow. In architectural acoustics, knowing

the number of audiences can improve our estimation of audience absorption and

improve sound quality during live performances. These applications require a
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sensor capable of counting how many occupants are within a space.

There are currently many approaches for measuring occupancy in spaces

including passive infra-red (PIR) sensors, ultrasonic ranging sensors, microwave

sensors, smart cameras, WiFi Access Point (AP), break beam sensors, and laser

range-finders. These devices span across a wide spectrum of cost and

performance. Lower-cost alternatives, like PIR and ultrasonic ranging sensors, are

typically error-prone and usually only detect binary occupancy values rather than

estimating load. More expensive sensors like smart camera systems tend to

require sophisticated site-specific installation and calibration. They also require

wall power, pose privacy risks, and are often hindered by obstructions.

In this chapter, we present Adaptive Ultrasonic Response Estimation Sensor

(AURES) [120], a platform designed for low-power real-time sensing of the number

of occupants in indoor spaces. AURES utilizes a small ultrasonic bandwidth just

above human hearing range to sense occupancy silently. Figure 3.1 shows an

overview of AURES where a tweeter transmits an ultrasonic signal into a room and

a co-located microphone is used to receive the reflected signal. An electronics

package is responsible for generating the signal, processing the reflected signal,

and harvesting the required energy from nearby light sources.

AURES is equipped with an occupancy estimation algorithm based on the

acoustic response of the environment over a range of ultrasonic frequencies. It is

well known in the acoustics community that the number of people within a room

impacts the reverberation of sound. Reverberation is typically defined by the RT60

time constant, which is measured as the amount of time it takes for a signal to

decrease by 60dB [20] (in early experiments by Sabine at Harvard, this was the

amount of sound decrease before organ pipes became inaudible). When designing
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Figure 3.1: AURES system overview.

concert halls, musicians quickly realized that not only did the number of people in

the audience significantly impact reverberation, but it was also frequency

dependent. People in the audience act like sound absorbers which reduce the

amplitude of reflections. As early as the 1890s, Sabine began to model the impact

of people, frequency, and the absorbing surfaces of spaces on reverberation [114].

Extensive follow-on work has shown that the influence of audience on

reverberation can vary depending on the geometry and area occupied by the

audience. Many concert halls have been designed to sound their best when full of

people and don’t sound nearly as good when empty. AURES leverages the change

in this reverberation phenomena in the ultrasonic frequency range as an inaudible

way to accurately estimate occupancy.

To quickly measure the acoustic response of an environment, AURES transmits
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a wide-band ultrasonic chirp (see Section 3.2) into a room and processes the

superposition of the reflections recorded by a microphone (see Section 3.3). When

a room is occupied, sound impulses dissipate faster over time and result in a

shorter reverberation time. Since reverberation is frequency dependent, the

dissipation time across multiple frequencies provides temporal and spectral

features tied to the room occupancy level (see Section 3.3.2). By analyzing the

frequency response over the chirp’s bandwidth at different occupancy levels, we

are able to extrapolate the response as the number of people in the room changes.

We apply a semi-supervised machine learning approach that models the acoustic

characteristics of the room under multiple loads with few labeled training data

(see Section 3.4).

One of the key techniques for maintaining performance even when features of

the environment change, like when furnituremoves, is to let the system periodically

recalibrate on a known occupancy level (see Section 3.5). This is achieved through

two main phases of operation: presence detection and occupancy counting. In the

first phase, AURES detects the presence of people using three different classifiers,

and in the second phase, it estimates the number of occupants using the trained

regression model. AURES uses multiple transmissions of a single frequency tone in

order to measure Doppler shift, changes in signal amplitude, and changes in signal

energy within a short time window. The presence detector combines these three

classifiers to identify both sudden movements and static changes in the presence

of occupants. These presence features are general enough to be used in different

indoor environments without training on known data or assuming prior knowledge.

If the room is classified as empty in the first phase, then the received signal in the

second phase is used to recalibrate the trained model for occupancy estimation in
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order to adapt to changes in the environment.

Another main challenge when installing occupancy sensors is the cost of

running power and data cables. Many motion detectors can wirelessly transmit

data to gateway nodes within a building. Some of these sensors can even operate

for extended periods (years) off of batteries. Unfortunately, these systems only

detect motion and cannot count the number of people in a space. More

sophisticated occupancy estimation sensors like PIR arrays or smart cameras

currently consume too much power to make prolonged battery operation feasible.

Unlike PIR motion detectors, occupancy estimation sensors are significantly more

difficult to aggressively duty-cycle, since they often resort to tracking or frame

differencing, or have long warm-up and configuration times. The AURES platform

is designed with an energy-harvesting sub-system that can power the system and

charge onboard batteries using indoor light sources (see Section 3.6). A typical

use-case is to place a solar panel inside a recessed lighting or fluorescent fixture

and then run the low-voltage wire (which does not require a commercially

certified electrician) to the main AURES module mounted nearby on the ceiling. In

drop-down ceiling tile installations, the majority of the transducers can sit on the

top of the tile, with the ultrasonic transducer protruding through the tile. In

combination with our improved algorithm that can run on a microcontroller, this

makes for an extremely effective, low-cost, and easy-to-install sensing package.

3.2 Impulse Signal

In order to efficiently collect the response of the environment over a range of

frequencies, AURES utilizes a sinusoidal signal that linearly increases in frequency.
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These types of signals are commonly known as chirps. Much like how the lens of a

camera controls the quality of a photo, the characteristics of a chirp determine the

acoustical information embedded in the received signal. In this section, we

evaluate how these characteristics affect our system performance.

3.2.1 Ultrasonic Chirp

Chirps exhibit pulse compression, which is a common technique often used in

SONAR and RADAR systems to improve the ranging resolution. By nature, chirps

have a high correlation with themselves, and can be easily detected with an

increased SNR at the receiver. Since the chirps naturally sweep across a frequency

range, this allows us to conveniently collect the reverberation characteristics

across a larger bandwidth in a single operation. In fact, the same approach can

also be observed in nature. A number of bat species emit short but broadband

ultrasonic signals in order to differentiate the texture of their prey or plants by the

interference pattern reflected in echoes [95, 116, 130]. Our algorithm aims to

mimic this instinctive behavior by leveraging ultrasonic chirps to learn the

absorption patterns for human bodies. While bats can only recognize their targets

within a short distance using the first reflection, we apply the same idea to the

reverberation composed of dissipating multipath reflections and in turn extend

the sensing range.

3.2.2 Bandwidth and Chirp Length

Since reverberation is a function of frequency, one would expect that a chirp’s

frequency and duration have a direct impact on the performance of the system.
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Figure 3.2: Impact of chirp length on classification error.

Given more bandwidth, we should be able to collect more reverberation

characteristics as the signal dissipates. The length of the chirps define the

resolution of the frequencies we can acquire given a fixed sampling rate. By

design, we limited the frequency bandwidth to the ultrasonic range, such that it is

inaudible to humans.

In order to test the impact of bandwidth and chirp length, we collected more

than 100 points of data for 0–5 people at four different bandwidths and five

different chirp lengths, for a total of 8000 samples. In Figure 3.2, we show the

sensitivity of chirp length and bandwidth on our classifier. An important trend to

see is that the performance is proportional to a bandwidth and time product.

Picking the minimum length and bandwidth helps scope the hardware

requirements and maximizes sensing rate. Based on our experiments, the chirps

with a bandwidth of 20–23kHz and a length of greater than 300ms gives the best

performance. Note that the upper bound of 23k is also considered the highest

frequency most common (non-ultrasonic) speakers can support.

While larger bandwidth and longer chirp length are better, we use a rather
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short chirp length of 30ms instead in order to prevent crosstalk between a

co-located transmitter and receiver on an embedded platform. We will discuss

more details on how to compensate the resulting performance loss when

constructing the training features in Section 3.3.2. As studied in [78], many tweeter

speakers exhibit non-ideal impulse responses that can result in audible artifacts

like clicking sounds. To alleviate this problem, we add 5ms of fade-in and fade-out

time to the chirp’s ramp up and ramp out time. The interval between each chirp is

set to 500ms, allowing the chirp to fully dissipate in the room. This is significantly

longer than the reverberation time derived from the Sabine and Eyring

equation [75]. We show the transmitted ultrasonic chirp in the time domain in

Figure 3.3 and its spectrogram in Figure 3.4 respectively.

3.2.3 Sampling Rate

The minimum sampling rate to support the system is an important factor driving

both the cost of the hardware components and the computational requirements of

receiving the signal. Generally, normal commodity audio equipment designed for

music only supports sampling rates up to 48kHz. Also, the dispersion pattern of a

lower ultrasonic frequency tends to be more omnidirectional. As shown in
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Figure 3.4: The linear chirp starts at 20kHz and crosses 23kHz at t=30msec.
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Figure 3.5: Impact of sampling rate on classification error.

Figure 3.5, a higher sampling rate has a slightly better overall performance, and

large error is expected when the sampling rate drops below the Nyquist limit (the

lower-bound sampling rate for alias-free signal sampling). The interesting point to

note is that the performance does not significantly increase with much higher

sampling rates than the input audio signal. This support the notion that our

features are based on the decay within our frequency band (see Section 3.3.2).
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3.3 Preprocessing

Before attempting to classify data, the raw signals are pre-processed to minimize

noises caused by multipath or any audio sources to improve prediction accuracy

(see Section 3.3.1). We then discuss how to properly generate the training features

given the constraint of the co-located speaker and microphone (see Section 3.3.2).

3.3.1 Matched Filter

We assume that the transmitted signal goes through an additive white Gaussian

noise (AWGN) channel while disseminating in the room. By this assumption, the

matched filter is known to be the optimal receiver filter to increase the

signal-to-noise ratio (SNR) of the received signal. In general, the signals can be

represented as

y(t) = h(t) ∗ x(t) + n(t) (3.1)

where y(t), x(t) is the received signal and the transmitted signal, h(t) is the impulse

response of the room, and n(t) are the background noises. Since the transmitted

signal is known and h(t) is the target of interest, wematched filter the received signal

with the original transmitted signal tomaximize the SNR. A high SNR of the received

signals is vital for the later analysis withmachine learning techniques, which identify

the most important characteristics in the frequency changes that differentiate the

signals of different occupancy levels.

The matched-filtered signal is then transformed into the frequency domain

using Fast Fourier Transform (FFT), and band-pass filtered to remove noise from

other acoustic sources. The filter’s bandwidth is exactly the same as the chirps’
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sweeping bandwidth. Transforming into the frequency domain also helps to

reduce the dimensions of the collected data and minimize the training time and

complexity.

3.3.2 Training Features

After matched-filtering, the training features are directly extracted from the

processed data capturing the frequency response of the chirp’s bandwidth. As

previously discussed in Section 3.2.2, we showed that the chirp’s frequency and

duration have a direct impact on the performance of the system, where increasing

the chirp’s frequency band and length improve the system performance. However,

when building the platform, we found that if the transmitter and receiver are

physically close, then the system suffers from crosstalk. Recording after playback,

in turn, defines an upper bound of the chirp length which must now be much

shorter (originally 300ms, now 30ms). To compensate for the performance loss, we

split the received signal into segments that have the same length as the chirp to

increase the temporal diversity of the features. Each segment is transformed into

the frequency domain individually and later combined together to form the

training features. This provides us with additional amplitude data across each

segment. Since the chirp is much shorter than the recording, this approach

generates features that not only better capture how the sound dissipates over time

in amplitude, but also greatly reduce the memory required to perform the FFT. To

prevent bias between features when performing WPCA (see Section 3.4.1), all

features are later normalized and subtracted by their means.

Figure 3.6 provides a simple example of the types of features the algorithm is

trying to identify. In the figure, we show the averaged spectrum over all segments
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Figure 3.6: Raw features for empty, half-full, and full room scenarios.

for better visualization. The top row shows the filtered spectrum after matched

filtering of an empty room, a half-full room, and a full room. The bottom row of the

image shows the difference between each top image and the empty room sample.

For example, an empty room shares little difference with another empty room and

hence we find almost no changes in the signal. However, in the case of a half-full

room and a full room, we see a significant difference. It is worth noting that the

difference between a half-full room and a full room is much more subtle.

3.4 Occupancy Estimation Algorithm

The occupancy estimation algorithm is composed of two parts. In the first part,

the Weighted Principal Component Analysis (WPCA) is performed on the training

dataset that contains data points collected from different occupancy levels. It

allows us to learn which of the principal components best characterize the
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absorption pattern of human bodies and reduce the dimensionality of the received

data. We assign lower weights to the empty room instances, which are identified

by the presence detector later discussed in Section 3.5.1, so that WPCA is biased

toward finding principal components that best explain the variance between

different occupancy levels. Once we have decomposed the signal into weighted

principal components, we use a DBSCAN clustering algorithm [83] to cluster each

identifier in a low-dimensional space to reduce the impact of noise.

In the second part, a regression model is built based on the projected data in

order to interpolate/extrapolate the occupancy beyond the training data. This

improves scalability and eliminates the need for copious amounts of labeled

training data. We derive the relationship between the number of people, which

can be seen as the absorption material in a room, and the amplitude difference in

frequency with the help of the Sabine equation and reverberation properties found

in [114]. To obtain the best prediction function and the estimated occupancy level

for each cluster, we design a loss function to be minimized based on several

heuristics. In order to speed up the process and improve the performance of

fitting, we assume the maximum capacity of the room is given and the data

collected should contain instances of at least half of the maximum capacity. This

can be achieved by setting up a data collecting period, such as a day, in the system

for bootstrapping before running the estimator. The idea is to have a self-learning

system that requires minimal training effort and is capable of training itself as

more data is collected and learned over time.
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3.4.1 WPCA

Before learning the human absorption pattern from the spectral features, we first

need to reduce the correlation between the feature vectors. There are a few

techniques that can be applied for this purpose, such as PCA, ICA, LDA, and

autoencoder. After evaluating these methods, we determined PCA-based

approaches to be the most suitable techniques for several reasons. First, since the

training dataset is typically collected from a continuous period, the occupancy

value follows a stochastic process with high dependency between the data

instances, which makes techniques such as ICA a poor fit. Second, in order to

minimize the training effort, algorithms such as LDA that rely on labeled data

would be less suitable. In addition, we find autoencoder and other non-linear

transformation methods less favorable due to the existence of numerous unknown

latent variables in the dataset. For example, using autoencoder, in some datasets

we find ourselves learning features corresponding to the geographical distribution

of the occupants. However, with limited ground truth labels, it is difficult to

identify the nature of the learned features, or rule out features that induce noise to

occupancy estimation. On the other hand, people in a space significantly impact

the reverberation and spectral amplitudes, which makes PCA-based approaches

good candidates.

Another important property of PCA is that it determines the ranking of each

independent component based on the magnitude of its corresponding eigenvalue.

The ranking can then be used for dimensionality reduction that is useful for

processing high-dimensional datasets while preserving as much variance between

the data as possible. This allows us to build an efficient model in terms of

computation and memory consumption. In addition, dimensionality reduction
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helps in dealing with independent and identical Gaussian noise among the dataset.

When applying PCA, we project the n-dimensional spectral features into an

n′-dimensional space, where n′ ≤ n and all variables in the new space are linearly

uncorrelated with each other. The projection is achieved using the first n′

principal components for transformation where the first principal component is

defined as the variable that gives the maximum possible variance in the dataset.

Since most variance is concentrated in the first few principal components, the

effect of constant noise variance is proportionally less after the projection,

allowing higher SNR in our spectral features.

However, when applying a vanilla PCA, we inherently assume the whole training

dataset should be collected in background environments with almost identical

reverberation characteristics. If the acoustic response of the environment changes

dramatically during data collection, which is likely to happen in practice, then PCA

can perform poorly. The resulting PCA can erroneously produce principal

components that explain the changes in the environment, rather than the desired

ones that differentiate the varying occupancy levels. To solve this problem, a

weighted variation of PCA (WPCA) is adopted to target components that separate

occupancy levels. While classical PCA is known to be sensitive to outliers and

missing data, WPCA increases the robustness of the system to outliers by assigning

different weights to data points based on their estimated relevancy. For our

application, we borrow the same idea to minimize the influence of the changing

environments by giving the empty room data points a lower weight.

We assume the training dataset is given by thematrixX , where each of the i rows

represents a feature variable and each of the j columns represents an observation.
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The goal of a classical PCA is to find a decomposition of the matrix

X = PC (3.2)

where P is the orthogonal matrix of principal component and C is the principal

coefficient matrix, such that the matrix D given by

D = P TXXTP = P Tσ2P (3.3)

is diagonal and has its variance maximized. The diagonals of D are often

rearranged in order such that Dii >= Djj , ∀i < j so that the first column of P

represents the first principal component that accounts for the most variance.

Equivalent to maximizing the variance, the principal components allow us to

minimize the reconstruction error ∥X − PC∥22 when the data is projected into a

lower-dimensional space. Similarly, the goal of WPCA is to minimize the weighted

reconstruction error given by

∥W (X − PC)∥22 =
∑
ij

W 2
ij(Xij − PCij)

2 (3.4)

By assigning lower weights wj < 1 column-wise to the empty room instances,

which are identified by the presence detector (see Section 3.5.1), WPCA is biased

toward finding principal components that best explain the variance between

different occupancy levels. Other non-empty room instances are assigned with a

fixed weight wj = 1 to prevent bias. To center the dataset and calculate the
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covariance matrix, the weighted mean to be subtracted is given by

x̄ =

∑
j WjXj∑
j Wj

(3.5)

where Xj denotes the jth column of the dataset X . While lowering the dimensions

of data reduces the overall complexity, more information is lost during the

transformation process. Ideally, n′ ≥ 5 gives the best performance in clustering

result (see Section 3.4.2) based on our empirical experiment, and the

corresponding eigenvalue ratio representing the ratio of variance kept after

transformation is around 25%. More evaluation on how to select a proper weight

along with varying output volume is later discussed in Section 3.6.3.

In Figure 3.7, we show illustrations of the processed spectral features in 2D

projection and compare the results derived from WPCA and autoencoder. This

dataset is collected in a small room environment for 0–8 people and its colors

reflect the occupancy levels. The autoencoder is composed of 3 hidden layers of

size 100, 10, and 3 respectively and trained using a sigmoid activation function with

regularized MSE loss function. We observe that while the autoencoder can obtain

highly non-linear representations, the derived features may not correlate with the

occupancy levels in a predictive manner. On the other hand, by maximizing the

variance between the data, WPCA retains components that differentiate the

occupancy levels. As a result, a better prediction accuracy is achieved when we

adopt the linear analysis in this initial step, but introduce non-linearity to our

algorithm later in the regression model (see Section 3.4.3).
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Figure 3.7: Visualization of spectral features processed by WPCA (Top) and
autoencoder (Bottom).

3.4.2 Clustering

Once we have extracted the principal components of the signal, we cluster each

identifier to reduce the impact of noise and outliers. Due to the projection of

WPCA, each cluster of data can take arbitrary shape in the new space with varying

density. The DBSCAN clustering algorithm [83] has been widely used in this
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manner with high robustness to outliers and zero prior knowledge of the number

of clusters. Moreover, we do not want to assume any prior distributions of people

in the room, since the real distribution can vary from day-to-day and largely

depends on the usage and functionality of the room. These properties of DBSCAN

allow us to cope with noise caused by the different distribution of bodies in the

room and successfully categorize the data with high accuracy. The DBSCAN

algorithm can be summarized in the following steps:

1. For every point, connect all its neighbors within a given neighbor distance ϵ,

and mark it as a core point if it has more neighbors than a given minimum

neighborhood points.

2. For every core point, find the connected components on the neighbor graph

(can be core or non-core) and form a cluster.

3. All points not reachable from any other point are outliers.

Note that these steps can be performed in iterations for one point at a time to save

memory. Since each point will perform exactly one neighborhood query, which can

be done in O(logn), the overall average runtime complexity is given by O(n logn).

One limitation of DBSCAN is that the clustering result is sensitive to the

minimum neighborhood points and neighbor distance ϵ. In order to reduce the

indeterministic outcomes and improve the quality of DBSCAN, each collected data

point consists of multiple samples with a known number of chirps. Different

neighborhood distances ϵ are also evaluated based on the intra-cluster distance

derived from the training data, and the most frequent combination is selected as

the clustering result.

One primary reason to cluster data before performing regression is to improve

the prediction accuracy, especially for smaller room environments. In most of the
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scenarios, the dataset is quite noisy in general and often overlaps with itself even

in a high-dimensional space. By clustering the data into groups and removing

outliers, the accuracy in regression is drastically increased, especially in cases with

few people where we expect high granularity. Also, the computational complexity

is greatly reduced since only the cluster representations are used in building the

regression model instead of the raw dataset. The clustering algorithm also benefits

from the chirps’ physical characteristics. When using chirps with larger

bandwidth, more reverberation information across the frequency band is learned

in the training process. As a result, the density of each cluster is higher and

inter-cluster distance is greatly increased in the observed data. Figure 3.8 shows

the 2D WPCA projection with the clustering result. Each color and marker type

reflects the clustering of different occupancy levels. Most of the clusters are

correctly categorized except for a few points that are associated with the eight

people case due to noise. In the figure, we can also see that as the number of

people in the room increases, the dynamic distribution of people leads to a higher

variance in the clusters. On the other hand, in larger rooms such as an auditorium,

DBSCAN can be less successful in giving a conclusive clustering result due to

excessive scattered data points. However, these scenarios are often the ones

where the clustering algorithm will contribute the least to the results because the

granularity of the estimation is relatively less important. The estimate will then

rely mainly on the regression model, as discussed in Section 3.4.3.

3.4.3 Regression Model

In order to interpolate occupancy beyond the training data, we build a regression

model based on only two labeled training points. One data point is when the room
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Figure 3.8: Clusters of different numbers of people in a small conference room
shown in 2D principal component space.

is empty, while the other data point should be at a reasonable occupancy level

(≥ 10%). Here, we derive the relationship between the number of people, which

can be seen as the absorption material in a room, and the amplitude difference in

frequency with the help of the Sabine equation and reverberation properties found

in [114]. As shown by the Sabine acoustic model (Equation 3.6), the duration of the

audibility of the residual sound, namely the reverberation time (RT), follows a

rectangular hyperbola curve against the total absorbing material. Here c20 is the

speed of sound at 20 degrees Celsius, V is the volume (m3) of the room, S is the

total surface area (m2) of a room, and a is the average absorption coefficient of

room surface.

RT60 =
24 ln 10

c20

V

Sa
≃ 0.1611

V

Sa
(3.6)
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Figure 3.9: Theoretical regression trends with different room volumes based on
Equation 3.8.

Since the RT is defined by the time for a signal to decay by a certain decibel (dB), we

get

RT ∝ log( A0

Am

) (3.7)

where A0 is the constant initial amplitude of the sound source and Am is the

measured amplitude after absorption. Combining Equation 3.6 and Equation 3.7,

we obtain the relationship between the observed frequency amplitude and the

number of people as

Am ∝ e
−C0V

Sa (3.8)

As plotted in Figure 3.9, we can see that when the volume of the room is small, the

curve tends to be similar to an exponential regression. However, as the volume of

the room increases, the curve becomes smoother and more linear in regression.

The size of the room can be estimated to help choose the best starting model. To

calculate the amplitude difference, we first set the center of the empty roomdataset

as the new origin of the projected space, and for every cluster we calculate how far

they are from the origin. We tested with multiple distance metrics and decided that
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Chebyshev distance provided the best fit to the regression model shown across our

overall data, which is defined as

Dchebyshev(a, b) = max
1≤i≤n

(|ai − bi|) (3.9)

where a, b are two arbitrary n-dimensional data points. The unit distance is further

calculated based on the average of the pairwise-distance between the two training

datasets, where the unit distance is namely the reference distance between N and

(N + 1) people instance. Next, we estimate each cluster by fitting its distance to

the origin to the regression model. By finding the variable that changes the most

among all the data, which we note here is derived from a linear combination of all

the variables in the original space, we capture the feature that differentiates the

data the most and use it as a measurement to estimate the occupancy level.

Based on the observation from Equation 3.8, an exponential regression model

(Equation 3.10) is adopted with the distance value as the function input. To adapt

the model to varying estimation range, we define an exponential loss function to

estimate the most likely capacity combination for each cluster. The loss function is

defined in Equation 3.11 and Equation 3.12:

f(x) = αeβx (3.10)

f̂ = argmin
α,β

n∑
i=1

eWiϕ(xi) (3.11)

ϕ(x) = f(x)− round(f(x)) (3.12)

where n represents the total number of clusters, Wi is the weight of cluster i, and

xi is the distance between the cluster i and the origin (the empty room). The
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weight of each cluster Wi is proportional to the number of data points in the

cluster, and additional weights are assigned to the clusters with known training

labels. This allows the curve to be fitted to the most important clusters and

prevents overweight in outliers. Additionally, the function ϕ(x) tends to fit the

curve in a way that the predicted number of people is close to an integer. By

minimizing the loss function, we obtain the best prediction function f̂ with

corresponding parameter α̂, β̂, and the estimated occupancy level for cluster i is

assigned accordingly by f̂(xi). To speed up the process and improve the

performance of fitting, we assume the maximum capacity of the room is given and

the data collected should contain instances of at least half of the maximum

capacity. This can be achieved by setting up a data-collecting period, such as a

day, in the system for bootstrapping before running the estimator. The idea is to

have a self-learning system that requires minimal training effort and is capable of

training itself as more data is collected and learned over time. It is worth

mentioning that with more given training points, a more sophisticated regression

model can be adopted to improve the accuracy of the prediction. However, one of

our goals in this dissertation is to minimize the training effort from the user to

improve the feasibility and scalability of the system.

In Figure 3.10, we show an example of the estimated occupancy made by our

regression algorithms in a small room scenario. Each data point represents the

estimation for an entire cluster consisting of at least 100 sample points. In general,

the error slightly increases as the room size gets larger, but we are still able to

achieve an error of fewer than 2 people from the average ground truth.
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Figure 3.10: Adaptive exponential regression for occupancy estimation in small room
scenario.

3.4.4 Training Point Selection

The selection of the second training point can also affect the result dramatically in

certain cases. The training point consists of a single person or a group of a few

people is typically ideal for small and medium room scenarios. However, as shown

in Figure 3.11, using a small group of people as the training point in large rooms

is likely to cause significant estimation error. The error comes from the fact that

such changes in frequency magnitude are not strong enough to be fully captured.

A training point of a group of eight people or more in a 150-person room gives a

similar result with 5% error on average. Based on our experiments, training points

of at least 10% of the maximum capacity work well.

3.5 Auto Recalibration

To prevent retraining from scratch every time the background environment slightly

changes, the system requires a mechanism to slowly recalibrate itself over time. In
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Figure 3.11: Mean estimation error based on different numbers of occupants used as
the training point in a 150-person room.

this section, we propose an automatic recalibrationmechanism that first detects the

binary presence of occupants (see Section 3.5.1). If the room is identified as empty,

the trained model is updated dynamically by analyzing the frequency response of

the new environment and selecting the best principal components that represent it

(see Section 3.5.2).

3.5.1 Presence Detection

The ability to detect whether a room is empty not only improves the quality of

WPCA (see Section 3.4.1), but helps to determine when the system should

recalibrate. To automate the recurring recalibration process, we proposed using a

single tone instead of a chirp to facilitate the detection of Doppler shift. In each

sensing period, the system transmits 5 consecutive tones with a delay of 300ms in

between to allow echoes to fully dissipate. The received signals are first

transformed into frequency domain and then filtered to remove out-of-band

noise. The presence detector is composed of three binary classifiers (empty or
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Sizes
Param. Accuracy FP FN Precision Recall

Small room(s) 0.85 0.11 0.09 0.90 0.91
Medium room(s) 0.82 0.27 0.12 0.76 0.88
Large room(s) 0.75 0.29 0.21 0.72 0.79

Table 3.1: Presence detection performance with different room sizes.

non-empty), where each focuses on different features of the received signal. Note

that since presence detection is now part of the people-counting algorithm, the

features and mechanisms used in presence detection are independent from those

used in the determination of occupancy level. The first classifier is a Doppler

motion detector that detects Doppler shift caused by the movement of bodies or

gestures. Even though Doppler detectors work well at detecting sudden

movements, it is often difficult to detect static changes such as different postures

of the occupants or slow motions. To improve performance, we apply two

additional classifiers to calculate the variance of the spectral amplitude and the

variance of the received signal energy, respectively. Tuning the threshold of each

classifier allows us to control the ratio between false-negative rate (FNR) and

false-positive rate (FPR). To prevent the system from recalibrating on non-empty

data points, lowering the rate of getting a negative feedback while the room is

occupied is critical. Recalibrating on FN instances offsets the baseline of the model

and introduces substantial estimation error that would last until the next

recalibration cycle. On the other hand, FP instances trigger the system to make an

estimation on the new environment, which does not introduce much estimation

error in comparison since the model is trained to detect human bodies that absorb

more power. Therefore, the thresholds in all three detectors are tuned to be

conservative, and the final decision is obtained by taking an OR operation between

the three binary results in order to achieve a low FNR.
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Figure 3.12: Presence detection result compared between the ground truth and the
three classifiers with one day of empirical data.

In Figure 3.12, we show the classifiers’ sensitivity to the room occupancy level.

We can see that the Doppler-based classifier is sensitive to movements regardless

of the number of occupants in the room, while the variance-based classifiers are

more accurate when there are more occupants. The overall performance of the

presence detector is summarized in Table 3.1, which includes the accuracy, false

positive rate (FPR), false negative rate (FNR), precision, and recall. We see that the

overall accuracy decreases as the size of room increases, which is not surprising

since multipath reflections are much weaker and noisier in large spaces. In our ten

different room environments, each classifier has an accuracy of 65–75% on

average, but when combined, the overall accuracy increases to 80%. Since the

detector is designed to reduce false positive instances, we are able to achieve a

recall of 85%. For the remaining 15% false positive instances, we analyzed the

distribution over the number of occupants in different room environments to see

the negative impact on occupancy estimation. Figure 3.13 shows the FNR as the

number of occupants increases. We see that the detector suffers the most from
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Figure 3.13: False negative rate in presence detection decreases exponentially as the
number of occupants increases.

single person instances, especially in cases where the only person is still, as when

typing or using a laptop. However, the false positive rate decreases exponentially

as the number of occupants increases. This indicates the introduced error on the

successive occupancy estimation is minimal, even if the system erroneously

recalibrates on false negative instances. Also, it should be noted that in practice,

we can further improve the detection accuracy by extending the sensing period

and/or increasing the number of tones used for detection.

3.5.2 Recalibration Algorithm

Whenever the room is detected as empty, AURES begins collecting new data until

a certain number of samples is reached or the room becomes occupied. The

frequency response upon the new environment is then used to calibrate the model

by updating the selection of the principal components. Given the old empty room

dataset X and new empty room dataset X ′, we find the largest subset P ′ of the

original principal components P such that the mean distance between the two
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empty room datasets in the space spanned by P ′ is below a threshold, which can

be represented as

argmax
|P |

∑
|(X −X ′)P | ≤ d (3.13)

where the threshold d is determined based on the intra-clustered distance of the old

empty room dataset. The idea behind the algorithm is to preserve as many principal

components as possible, while minimizing the delta between the two environments.

Since the projection may alter the magnitude of the raw data, the unit distance is

scaled accordingly based on the eigenvalue ratio of P ′. The new model will then

have the originXP ′ and the estimation can bemade by applying the same regression

model. In this manner, the system is able to retrain when the environment changes

using only empty room training points.

To evaluate our automatic retraining technique, we collected three weeks of

data in a noisy semi-opened laboratory environment (shown in Figure 3.24a),

which frequently changed due to everyday use. We show the estimation traces of

the first five days of the collected data in Figure 3.14, where the estimation model

is trained using the first 500 samples with two labeled occupancy levels. Without

periodic self-retraining, we see an offset of estimation error right after the lab is

being used on the first day. Moreover, the error offset begins to accumulate over

time and prevents the system from accurately estimating the occupancy levels for

the following days. However, when the system retrains itself with presence

sensing, it is able to re-zero the baseline according to the new environment

sporadically and thus greatly reduce the estimation error. Using our presence

detector, the system is able to reduce the mean error from 2 to 0.5 people despite

a few occurrences of FP and FN events. In comparison, with a perfect presence

detector, the estimation error can be further reduced to 0.3 people. As previously
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Figure 3.14: Occupancy estimation of five days of empirical data compared between
(1) ground truth, (2) no retraining, (3) retraining with a perfect detector, and (4)
retraining with our detector.

discussed in Section 3.5.1, the amount of improvement the presence detector

provides depends mainly on its accuracy and the error distribution of the false

negative cases.

3.6 Platform Implementation

In this section, we discuss the hardware platform and the software processing

workflow. This entails how data is captured and passed to a mobile device for

installation and training.

3.6.1 Hardware Design

We developed an energy harvesting, embedded hardware platform for our

ultrasound transceivers as shown in Figure 3.15a and Figure 3.15b. The platform
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(a) Hardware PCB design with external
solar panel.

(b) AURES mounted on hanging
fluorescent light.

Figure 3.15: AURES hardware design.

was designed to have a low enough power consumption so that it can be powered

using a 7×5.5cm solar cell harvesting energy from artificial or natural light sources.

This allows for a flexible installation at a low cost, since the transceivers do not

need to be connected to AC wall power, which is often difficult to access at ceiling

mounting locations.

The hardware platform features a single PCB design, which uses a TI CC2650

multi-standard BLE and 802.15.4 SoC connected to a 192kHz audio codec, a MEMS

microphone and a piezo ultrasound speaker connected to a Class D piezo speaker

amplifier to transmit and receive ultrasound signals. An ultrasonic horn as

described in [80] is attached to the speaker to disperse the emitted ultrasound in

an omnidirectional fashion. 2Mbits of onboard SRAM is used to store recorded

waveforms before they are processed and the results are sent to a gateway using

802.15.4 or BLE. Figure 3.16 shows a block diagram of the primary components of

the hardware platform. The total cost of our current hardware design is around

$30 at quantity 1000, including the energy harvesting module.
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Figure 3.16: Block diagram of AURES main hardware components.

3.6.2 Processing Workflow

A general processing workflow of our system starts with an installation, a training

process, and finally, a steady-state with retraining. All processing is performed

onboard except the initial training, which is offloaded to a computer for

processing due to memory constraint. An installer should first mount the AURES

node to the ceiling in a central location with the solar panel near a lighting fixture.

The installer can then configure the node using a BLE enabled device, like a

smartphone, and bootstrap the volume configuration sequence on AURES where

the transmitter profiles the room’s SNR. After determining a sufficient volume

threshold, the node periodically scans for presence followed by collecting an

occupancy reading. Since initially there is no trained model, the node will store

the output of the high-pass filtered spectrum response of the chirp in its flash

memory as training data. This will be collected over an extended period and

eventually all training data is transferred to a phone or computer to perform

WPCA and regression. In cases where a gateway is available, this could also be

done in a streaming fashion. During data collection, the installer should come back
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Figure 3.17: Effect of different speaker volumes on data clustering in 2D space
derived by WPCA. Different colors reflect different occupancy levels.

periodically to label a subset of the room occupancy levels. In our experiments we

used only two labels, but at least one point should be above 10% of the room’s

capacity, as discussed in Section 3.4.4. When collecting data once every 10

minutes, the AURES node has enough storage to hold two weeks of data in its

4Mbits of flash storage which requires up to 30 seconds to transfer to a phone.

The resulting model (≤ 4KB) is then transferred back to the node over BLE at

which point the system begins executing. The trained model is periodically

updated afterward when the room is identified as empty.

3.6.3 Volume Control

Reducing the power consumption is key for building a self-sustained energy

harvesting platform. Based on the energy footprint of the device, signal playback

and recording are the most significant power-consuming operations. The power
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Figure 3.18: Received SNR plotted with different output volumes and room sizes.

consumption of recording is fixed, but the transmit power can be controlled by

adjusting the speaker volume. We also generally want to decrease volume for

scalability and to improve pet friendliness. Since the system relies on the

amplitude of the received signal to estimate occupancy level, we observed a

trade-off between the power consumption and the system performance.

Figure 3.17 shows how volume impacts the clustering performance of WPCA in one

of our test environments. For the purpose of visualization, the data are presented

in 2D space using WPCA. Each data point represents an observation and its color

reflects the occupancy level. We see that data collected at low volumes are more

difficult to be separated by their occupancy levels, while data collected with higher

signal strength can be easily clustered.

However, the ideal output power is both environment and room geometry

dependent. To better understand how the volume affects the system performance

in different environments, we also calculate their corresponding SNR. The

duration of the received signal on which we calculate the SNR is an important
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Figure 3.19: System performance with different SNR in small room environments.

factor, since the dissipation rate of the received signal is room geometry

dependent. Based on our experiment results, we find that the features from the

first two time segments of the received signal (i.e. the first reflection) are generally

more significant in the generation of high-rank principal components, therefore

we use them to define the SNR of the received signal. Figure 3.18 shows the

average received SNR at different output volumes in different sizes of rooms. One

could imagine using this property to estimate room size. We see received SNR

increases exponentially with higher output volume, and the increasing rate is

higher in smaller rooms. Figure 3.19 shows the overall system performance with

varying SNR of the received signal in different environments. We see a positive

correlation between the SNR and estimation accuracy, and we find that the mean

error is greatly reduced once the received SNR pass the 10dB threshold. At

installation, the system is designed to slowly increase the volume until this 10dB

SNR threshold is reached.

In Figure 3.20, we show the system performance with varying SNR of the
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received signal and weights assigned to the empty room instances. The assigned

weights help the system cope with noisy environmental data in the training

dataset. With a fixed SNR, we see that assigning overly high or low weights both

negatively impact the system’s performance. Assigning too much weight causes

the WPCA to take into account the variance between different environments, and

thus biases the estimator away from counting people. In contrast, an overly low

weight would produce dominating principal components, poorly extrapolate the

occupancy levels, and the estimator would overfit and often predict the room to

be full or empty. This negative impact is more noticeable when the SNR decreases,

which is not surprising since with a low SNR the amplitudes alone are not

correctly estimating the occupancy level. At this point, increasing weights

exacerbates the problem. Based on the experiment results, one should never use

an overly low weight to prevent overfitting, and for our evaluation we choose

weights equal to 0.5 since it works well in most configurations. During installation,

the volume of the transmitter is slowly increased until a particular SNR threshold

of the reflected signal is achieved.

3.6.4 Energy Harvesting and Consumption

The hardware platform uses a power management IC to charge three

low-self-discharge cells to provide sufficient power for transmitting ultrasound,

whether or not solar power is currently available. Figure 3.21 shows the typical

power consumption of a transceiver waking up from sleep and activating its audio

codec and piezo amplifier (1–2), transmitting a 40ms long ultrasound transmission

(30ms chirp with 5ms fade-in and fade-out time to prevent audible artifacts) at

maximum volume (86.5dB(Z) at 1m) (2–3), recording for 300ms at a sampling rate
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Figure 3.20: Mean estimation error with different received SNR and weights
assigned to empty room instances in WPCA.

of 96kHz (3–4), processing the recording and sending the result over the radio

(4–5) and then going back to sleep (5). This sequence of operations consumes a

total of 18.56mWs. Figure 3.22 shows the power output at the maximum power

point of our 7×5.5cm solar cell at various distances from a single 100W equivalent

CFL bulb. Based on these numbers and a negligible sleep power consumption on

the order of micro-watts, an update rate on the order of seconds is possible, while

ambient light energy harvesting allows for an update rate on the order of tens of

minutes.

3.6.5 Processing Microbenchmarks

The most CPU-demanding part of our system’s operations is performing 10×2048

point FFTs on 10×30ms long chunks of the 300ms recording. Each segment is

fetched from an external SRAM and then processed using ARM’s CMSIS-DSP

library. Benchmarking the time duration of this process using the
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Figure 3.21: The power consumption of AURES at full volume.
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microcontroller’s clock, we see that this typically requires 144.45ms, of which

44.88ms are spent fetching the data and 99.56ms are spent calculating the FFTs.

From each FFT result, 205 16bit samples from the frequency band of interest are
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(a) Medium-size conference
room in Collaborative
Innovation Center.

(b) Medium-size classroom in
Doherty Hall.

(c) Auditorium in
Hamerschlag Hall.

Figure 3.23: Experiment environments for occupancy estimation.

sent back to a base station via RF. It takes approximately 595ms to transmit,

record, process, and radio the result of an occupancy sample.

3.7 Real-world Performance

In this section, we discuss experimental results using data captured by our system.

In order to collect raw waveform with ground truth, we connected the AURES

transceiver to a BeagleBone Black Linux platform with a fish-eye camera. During

the sensing period, our system starts the recording of 300ms right after each

signal transmission and samples at a rate of 192kHz. The recording length is

selected to be significantly longer than the time required for the chirp to dissipate

fully in the room [114]. The ideal chirp length should be shorter than the acoustic

round-trip time of the room. Assuming the smallest room of operation is 3m2, the

maximum chirp’s length thereby corresponds to 20ms. To prevent audible artifacts

in low-cost speakers that could be detected by humans, as discussed in

Section 3.2, we added an additional 5ms of fade-in and fade-out time to the chirp

and ended up with a chirp length of 30ms. As discussed in Section 3.6.3, the

system automatically adjusts its volume at runtime.
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(a) (b) (c)

Figure 3.24: Experimental setup. (a) Lab with highly variable furniture and
equipment positions. (b) AURES node connected to a BeagleBone Black with a fish-
eye camera. (c) Ground truth camera snapshots of the lab at different occupancy
levels.

3.7.1 Indoor Environment

We conducted experiments in ten environments of different room sizes over the

campus1. Figure 3.23 shows example photographs of the three rooms where we

ran our experiments. In each room, we mounted the system on the ceiling close to

the center of the room to allow better coverage. The location of the transceiver

has little impact on the system performance (see Table 3.2). A camera with a

fish-eye lens (shown in Figure 3.24b) was installed next to the system and

configured to take a low-resolution snapshot (shown in Figure 3.24c) right after

each signal transmission to capture the ground truth. The system was configured

to collect 5 samples for both the presence detection and occupancy estimation

every 10 minutes throughout the day, which corresponded to ∼1300 samples per

day. We collected data between 3–14 consecutive days in each room and

periodically offloaded the collected data to a remote server. Once the data

collection was completed, we trained a model using the data collected from the

first day with two occupancy levels manually labeled. To generalize the evaluation
1Our IRB declared this data collection to be non-human subject research.
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Figure 3.25: Estimation made by our algorithm compared to ground truth in small
and medium-size rooms.

results, we classified these rooms into 3 categories based on their sizes. Rooms

occupying less than 10m2 are classified as small rooms, rooms occupying between

10–100m2 are classified as medium rooms, and rooms occupying more than 100m2

are classified as large rooms.

In Figure 3.25 and Figure 3.26, we show several estimation traces of our

experiments. Figure 3.25 shows the occupancy estimation made by the regression

algorithms respectively in small rooms and medium-size rooms. Each data point

represents the estimation for an entire cluster, each of which consists of at least

100 sample points. We find the error slightly increases as the room size gets larger,

but we are still able to achieve an error of fewer than 2 people from the average

ground truth. In Figure 3.26, we show the traces of an experiment carried out in an

auditorium before the start of a class. We periodically sample every 10 seconds

while students enter the auditorium. Ground truth was captured with a camera

that was hand annotated. As shown in the figure, the estimate tracks the ground

truth quite well. Moreover, the system is responsive to rapid dynamics of the

environment; the sudden boost in the estimated occupancy level happens right
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Figure 3.26: Estimation compared with the ground truth as students entered an
auditorium.

Interference Type Increase in Avg. Error
Door opened 1.63%
Windows opened 2.38%
Change volume 5.38%
Change position of the device 2.12%

Table 3.2: Impact of different interference sources in small room scenarios.

after a large group of students swarmed into the classroom.

In separate experiments, we evaluated how the system works in the presence

of various error sources. This interference test was only evaluated in small room

scenarios, since we believed this is where the interference would most significantly

impact the result. We performed tests including opening the door to the room,

opening windows in the room, changing the volume of the transmitter, and testing

in the same room one week later. As shown in Table 3.2, the error was most affected

by changes in volume and slightly by opening the windows. Error due to changes

in volume is not surprising, since the regression model is built around magnitude

changes in different frequencies.
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Room
Sizes

Avg. Tested /
Max Capacity

Avg. Error Error / Tested
Capacity

Small 4/5 0.26 6.5%
Medium 10/20 0.94 9.4%
Large 21/100 2.36 11.2%

Table 3.3: AURES system performance in indoor environments based on room size.

Method Proposed [132] [22] [76]
Max. Counts 50 12 35 5
Avg. Error 1.6 0.4 1.3 0.7
Environ. indoor indoor outdoor indoor
Complexity low medium high medium
Cost low high medium low

Table 3.4: Comparison of system performance between multiple people counting
approaches.

Finally, the overall system performance in different environments is

summarized in Table 3.3, and the comparison with related approaches in people

counting is shown in Table 3.4. The error is calculated by taking the absolute

difference between our estimation and the actual number of people in the room.

The overall error slightly increases with the room size since large rooms result in

lower received signal strength and higher variance in multipath delay. On average,

the absolute error is no more than 3 people across different room sizes, and the

error in percentage to the tested number of the participated occupants is around

10%.

3.7.2 Outdoor Environment

Unlike in enclosed rooms, in open-air environments a large portion of the

transmitted signal will be scattered away after the first reflection, and only a small

amount of the signal can be captured by the receiver. To test the system’s

performance and sensing range in an open-air environment, we collected a dataset
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Sensing Diameter Error / # of Occupants Accumulated Error
< 6m 0.08 0.08

6m-10m 0.27 0.21
> 10m 0.48 0.35

Table 3.5: System performance in open-air environment based on sensing range.

of people standing in lines and in clusters at different distances away from the

transceiver. Table 3.5 shows that performance is good for occupants standing

closer than 6m in diameter from the transceiver with an 8% estimation error.

However, as occupants move farther away, the estimation error increases to 27%

with a large performance drop-off beyond a 10m diameter. In our experiments, we

also noticed several blind spots at certain transmission angles that have a shorter

detection range, which is likely caused by the imperfect beam pattern of our horn

speaker design. In comparison to enclosed environments, the system’s

performance in open-air environments is noticeably worse except at close range.

This supports the notion that our training feature is based on the reverberation

and the decay of many multipath reflections. This experiment does show that our

sensor could be used for estimating occupants in smaller regions, even in open

environments, which might be a powerful tool for estimating line length in a food

court or detecting people in cubicle areas.
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Chapter 4

Room Geometry Sensing and

Acoustic Model Reconstruction

In the 1960s, Mark Kac asked the famous question, “Can you hear the shape of a

drum?” What he meant was, can one solve the age-old physics problem of

inferring a drum’s shape based on the sound it makes [63]? More precisely, the

central question is whether the shape can be uniquely predicted given a known set

of vibrating frequencies. Mathematicians soon discovered that the vibrating

frequencies can be reformulated as the eigenvalues of the Laplacian, and the

answer turned out to be negative. We can mathematically produce different drum

shapes with identical vibrating modes 1 [23, 47].

This problem shares many similarities with room geometry reconstruction, yet

they can be quite different from several perspectives. First, sound dissipates

considerably faster in a room due to larger dimensions and higher total absorption.

Second, typical materials used to construct a room are more rigid compared to the
1It was later proved to be positive only if we impose restrictions to certain convex planar regions

with analytic boundary (no corners) [137].
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membrane of a drum. If we strike a room on its walls, the room will barely vibrate

or resonate with the echoes. In other words, the resonate properties of a room

reveal little about its shape. However, as the dimensions of space increase, the

echoes’ arrivals are more discrete in time, allowing one to process them

individually. Since each of the echoes carries a piece of information about its

reflector, this reveals a way to learn about the room’s shape and absorption

property, a way that is fundamental to improving sound quality within space.

The field of architectural acoustics is a branch of acoustic engineering that

focuses on improving sound quality within buildings. Applications of architectural

acoustics include enhancing speech clarity in an auditorium, reducing background

noise in a restaurant, or simply improving the quality of music in a concert hall or

recording studio. One of the main challenges in this field is to understand room

impulse response (RIR) along with the location of various sound reflecting surfaces.

This information can be exploited for a variety of applications ranging from audio

forensics [84] to creating 3D spatial sound effects [145]. The interaction between

sound and the environment can be used by smart speakers [3, 8, 46] to either

improve music quality or tune beam-forming algorithms to enhance speech

recognition [10, 39, 135]. In contrast to existing room mapping approaches like

laser and depth sensors, acoustic sensing identifies the surfaces that have the

most significant impact on sound performance in space. For example, glass

reflects sound but allows light to pass easily through it, and certain materials like

felt absorb sound but would be easily detected by vision or lasers.

Currently, when acoustic engineers optimize the sound properties of a space,

they draw from a set of sound modification options like adding sound absorbers,

adding structures to block noise, adjusting frequency levels, or leveraging
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Figure 4.1: Synesthesia system overview.

electronic sound masking systems to combat various acoustic problems. For

specialized listening areas like music halls, modeling tools can help optimize

construction, but the fine tuning of real-world sound performance typically

requires an arduous trial and error process where installers test various

configurations of absorbers and reflectors, which they evaluate either with

measurement microphones at specific points in space or with a well-trained ear.

Smart speakers have the disadvantage of only being able to listen at a single point

in space. The geometry of the space and the absorption coefficient of all surfaces

play a large role in the space’s overall acoustics. This makes it extremely difficult to

optimize acoustic properties, especially with a limited number of sampling points.

In this chapter, we introduce Synesthesia2, a system that takes the first steps

towards providing acoustic engineers with the ability to accurately capture and

visualize the reflection and absorption of sound within interior spaces through the
2 Synesthesia is named after the phenomena where one sense in a person triggers a reaction in

another sensing system (e.g. seeing sound).
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use of a mobile phone as a receiver. With acoustic room geometry information

(not just wall locations), smart speakers and high-end audio theater systems can

better sense their environment to improve both their sound output quality as well

as the ability to understand voice commands while playing music. They are

currently limited with a single microphone that can only sense in a single fixed

location. By using visual inertial odometry (VIO) on a smartphone (provided by

platforms like ARKit [7]/ARCore [44]) we can precisely track a phone’s relative

location through space while simultaneously capturing a dense set of acoustic

samples. Figure 4.1 shows an overview of Synesthesia that consists of a single fixed

speaker array (i.e. a smart speaker) that generates a number of acoustic and

ultrasonic chirps. The transmissions of chirps are synchronized with the mobile

phone as the user walks around the space. Once a user has covered enough

ground, our system can learn the RIR at each location to estimate the location of

acoustic reflectors (like walls) based on echo arrival time and amplitude. After the

acoustic room geometry has been reconstructed, this model can be passed on as

information to an audio processing system, like a smart speaker, to improve sound

quality. For example, Synesthesia creates a heat map of acoustic absorption at a

range of test frequencies projected on each surface. Since the geometry is

constructed relative to the VIO starting point of the phone, it is possible to overlay

and visualize the final heat map using augmented reality. New versions of ARKit 2

support visual relocalization, so the phone can reload or share this information.

This creates a powerful new way for users to explore the space, by seeing actual

acoustic absorption mapped as colors in the environment. Though out of the

scope of this dissertation, the same acoustic map may eventually be used to

optimize smart speakers [109].
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Figure 4.2: Overview of the room geometry reconstruction algorithm.

In the early 1900s, Sabine began to model the impact of people, frequency, and

the geometry of spaces on acoustics [114]. Significant follow-on work has explored

modeling sound in indoor spaces to the point where it is possible to use the arrival

time of echoes reflected off of walls to reconstruct room geometry [6, 27, 35, 60, 88,

110, 112, 127]. These approaches leverage the RIR to find the most likely position of

walls in space, using a set of speakers and microphones in a fixed and well-known

configuration. For Synesthesia to achieve its goal of seamlessly allowing a phone to

scan the space, we must relax a few of the key underlying assumptions from this

body of previous work. First, our approach does not assume prior knowledge of

the number of reflective sources (typically walls) found in the room. Second, we do

not assume that we receive all of the first echoes reflected off of surfaces. Third,

we assume that there are errors in the location estimates we received from our

microphone placements provided by VIO.

In Figure 4.2, we show a flow diagram of our reconstruction algorithm. The

system starts by periodically transmitting acoustic signals into a room with a

loudspeaker, while the user captures echoes reflected back from the walls at
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multiple locations using a mobile device. By the nature of sound propagation, the

relative positions between the speaker, sampling locations, and the surrounding

walls are embedded in the arrival time of the echoes. To retrieve this information,

we first introduce the Image Source (IS) model (see Section 4.1) to help to

formulate and refine the problem. Next, we extract the ranging measurements

from the received signal at the sampling locations (see Section 4.2), and integrate

them with their corresponding location information provided by VIO (see

Section 4.3). Together, these distance measurements form the data input of our

reconstruction algorithm (see Section 4.4).

We formulate the geometry reconstruction problem as a multi-layered

optimization problem using Euclidean distance matrix (EDM) properties (see

Section 4.4.2), and apply techniques including semi-definite programming (SDP)

(see Section 4.4.3), mixed integer programming (MIP) (see Section 4.4.4), searching

algorithm (see Section 4.4.5), and clustering (see Section 4.4.6) to tackle the

problem. Using a dense sampling of chirp recordings with relative positioning, we

can create a high-resolution 3D image of reflective and absorbing surfaces in any

given space (see Section 4.6).

In our prototype, the audio signals are transmitted from a Bluetooth triggered

piezo speaker and recorded by a smartphone (see Section 4.5). The smartphone is

initialized from the speaker’s position and is used to trigger transmission and

recording of test waveforms, while annotating them with the visual odometry

coordinates. Room geometry reconstruction and the absorption imaging are

computed offline and then transmitted to an augmented reality phone application

as a series of colored 3D translucent polygons.

Finally, with a change of perspective, we show how the entire system can be
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used reversely to perform microphone localization once the room geometry is

acquired (see Section 4.7). One of the most attractive applications of microphone

tracking is indoor localization. The awareness of a user’s location can enhance a

variety of applications, including advertising, AR, and pervasive computing.

Current state-of-the-art localization systems often require custom transmitter

and receiver hardware, and rely on a large number of beacons to achieve

fine-grained localization [54, 65, 86, 105, 108]. In comparison, by exploiting

multipath reflections from the surrounding walls, our system requires only one

speaker and one off-the-shelf mobile device to achieve accurate localization.

4.1 Image Source Model

To model the echo propagation in a room, we assume the room to be a K-faced

convex polyhedron, and we adopt the image source (IS) model [2]. The main

principle of the IS model is to replace a reflection path from a real source with a

direct path from an image source. Assuming the location of the source is known

and the echoes obey the law of reflection, the image sources are obtained by

mirroring the real source to the walls. We refer to a received echo with n

reflection as nth-order echo and its corresponding image source an nth-order

image source. We show an example of a first and second-order image source in

Figure 4.3. The IS model directly links the location of the image sources and the

room geometry; knowing the location of an image source is equivalent to knowing

the location of a wall. Using the IS model, we can convert the room geometry

reconstruction problem into an image source localization problem, where typical

indoor localization techniques can be applied. The main difference is that instead
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Figure 4.3: Illustration of the first and second-order image sources with their
reflection paths.

of localizing the real source inside the room using line-of-sight (LOS) signals, we

aim to localize multiple image sources outside the room simultaneously using the

multipath reflections. To determine the location of an image source in 2D/3D, we

obtain ranging measurements to the image source from at least 3/4 different

locations (more locations will improve performance). This is achieved by

measuring the RIR from the received signal and converting the arrival time of the

echoes into ranging estimates, which we discuss in Section 4.2.

4.2 Acoustic Ranging

In Chapter 3 we showed how chirp pulse compression can be used to efficiently

collect responses over awide range of frequencies. But amorewell-known property

of pulse compression is its improved ranging resolution, which has beenwidely used

in RADAR systems. There are several variations of chirp signal, which generally fall

into two types: linear chirps and non-linear chirps. The main difference between

them is that linear chirps tend to have more tolerance to Doppler shift, while non-
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linear chirp can provide low time sidelobes. For our application, we use a linear

chirp in order to reduce the impact of user movement.

A linear chirp signal y(t) starts at t = 0 with a duration T and can be represented

as

y(t) =


Aej2π((f0−

∆f
2

)+∆ft
2T

)t if 0 ≤ t < T

0 otherwise
(4.1)

where A is the amplitude, f0 is the center frequency, and ∆f is the sweeping

bandwidth. When a chirp cross-correlates with itself, the resulting

auto-correlation can be represented as [55]

(y ⋆ y)(t) = A2TΛ(
t

T
)sinc(∆ftΛ(

t

T
))ej2πf0t

where Λ is the triangle function and sinc(x) := sin(πx)/πx is the cardinal sine

function. This auto-correlation function reaches its maximum at t = 0 and behaves

as the sinc function. Since the width of the main lobe of a sinc function is much

shorter, this results in better ranging resolution. For a linear frequency

modulation chirp, its ranging resolution γ is inversely proportional to the sweeping

bandwidth given by

γ =
c

2∆f

where c is the speed of sound (approximately 343m/s at 20◦C). Moreover, as the

energy of the signal does not change during pulse compression, the power

concentrated in the main lobe in turn amplifies the received signal. This gain is

inversely proportional to the width of the main lobe, and can be approximated as
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(a) A single tone of 20Hz.
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(b) A chirp sweeps from 0 to 20Hz.
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(c) The tone after matched filtering.
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(d) The chirp after matched filtering.

Figure 4.4: An illustration of the chirp pulse compression technique.

T∆f . We show an example of this pulse compression technique compared to a

single tone signal in Figure 4.4. The signals after matched filtering are shown in

Figure 4.4c and Figure 4.4d respectively, and we can see how a chirp behaves like a

sinc and exhibits much higher peak-to-sidelobe ratio in comparison to a single

tone signal.

In principle, to achieve the best signal reception and resolution, one would

select a chirp with a long duration and a large sweeping bandwidth. In practice,

however, we choose a chirp length of 300ms based on the RT60 reverberation time

of a typical size room [119]. Limiting the chirp length to the reverberation time

helps to maximize the SNR of the received signal without spending excessive
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energy. Our chirp has a frequency sweeping range of 20–23kHz such that it is

inaudible to humans while capturing room geometry. We can then lower the

chirp’s frequency into the audible range for capturing sound absorption in the

audible frequencies that most acoustic engineers are concerned about. Since the

sound wave becomes more directional at higher frequencies, we built a

quad-sector speaker array to help improve the transmission range in all directions

(Figure 4.14). As described in [78], many tweeter speakers exhibit non-ideal

impulse responses that can result in audible artifacts similar to clicking sounds. In

order to alleviate these artifacts, we add 10ms of fade-in and fade-out time to the

chirp’s ramp up and ramp out time.

In order to maximize the SNR of the received signal, we assume an additive

white Gaussian noise (AWGN) model for the acoustic channel and apply a matched

filter on the received signal. One side-effect of matched filtering a chirp signal is

that it produces undesirable sidelobes around the main peaks, as previously shown

in Figure 4.4d. This makes peak detection difficult when multipath reflections are

present. In order to reduce the effect of sidelobes, we apply an additional envelope

detector on the matched signal. We then search for the local maxima in the

detected envelope and map them back to the nearest peaks in the correlated

signal. We show an example of a real-world signal after applying a matched filter

and an envelope detector, and selecting peaks in Figure 4.5.

4.3 Visual Inertial Odometry for Localization

One of the critical enablers for being able to perform rich sonic sensing of

environments is the ability to collect recordings at known locations rapidly.
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Figure 4.5: Example of the raw signal after matched filtering, the envelope detector,
and the selection of peaks.

Recent advances in augmented reality (AR) [45, 87] have led to mobile phones that

can precisely track their relative positions over multiple meters using visual

odometry (VO) fused with onboard inertial measurement (IMU) data. The so-called

VIO systems track the motion of a field of feature points across image frames to

accurately estimate the device’s motion path. Apple and Google have released

ARKit and ARCore, respectively, both of which provide excellent VIO systems for

mobile phones.

Due to acoustic reciprocity, it is conceptually possible to swap microphones and

speakers at any pairwise recording locations. Using a fixed speaker and any number

of microphones that can be localized moving through space, we can approximate

arbitrarily dense sensing. In our prototype system, we use a single audio module to

both transmit and record data in order to guarantee synchronization. The recording

is performed by an external microphone placed near the mobile device, which is
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Figure 4.6: The cumulative distribution function of the localization error fromARKit.

constantly streaming its location back to MATLAB, which in turn choreographs the

audio playback and recording. In practice, the mobile device would perform the

recording locally and trigger the audio transmission either from awire or over a BLE

connection. We include a mount on the top of our speaker where a phone or tablet

should be placed to maintain a constant starting origin coordinate. As we describe

later in the evaluation section, this is useful for rendering objects like absorption

heat-maps in their correct global coordinate frame for viewing with AR.

In our experiment, we used ARKit running on iOS 11 on an iPad Pro in order to

evaluate the performance of currently available VIO systems on a mobile tablet.

We collected ground-truth data at a set of 120 coordinates across our

medium-size room shown in Figure 4.16c, by walking around the room while ARKit

was streaming the tablet’s coordinates at 30Hz. Each time we reach a

ground-truth marker, we pressed a way-point button on the screen. Figure 4.6

shows a cumulative density function of the localization error after the phone had

moved more than 100 meters over a 20-minute period. We see that the average

error was 16cm with a worst-case error of around 50cm. In Section 4.6 we evaluate
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the impact of this performance on our ability to reconstruct room geometry and

perform acoustic sensing. One can imagine that as AR systems evolve with the

addition of depth cameras and higher resolution VIO, this performance will only

continue to improve.

4.4 Reconstruction Algorithm

Assuming an ideal scenario where ranging measurements are precise and each

microphone recording captures echoes from all image sources, a minimum of 3/4

measurements would theoretically be enough to localize all image sources

simultaneously in 2D/3D using trilateration. However, this would still require a

mapping between the echoes to the image sources that produce them, which is

referred to as the echo labeling problem (see Section 4.4.2). The main challenge of

echo labeling is that the arrival time of the echoes is location-dependent, and

higher-order echoes from a wall can arrive earlier than the first-order echoes

from another wall.

Our solution adopts the same EDM formulation used in [35, 60] to select the

best combinations of echoes that explain the ranging measurements. However,

deriving an effective strategy to find the right combinations is non-trivial when

using a single self-tracking microphone. This is because the received signal is

often mixed with echoes from clutter in the environment, and the inaccuracies in

ranging measurements and localization are large enough such that the EDM

formulation is unreliable to determine the correct reconstruction. To solve this

problem, we propose using a SDP-based method that is more robust against

measurement uncertainty (see Section 4.4.3), and further refine our solution using
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combinatorial optimization (see Section 4.4.4).

Another challenge with unconstrained microphone locations is the

exponentially increased computational complexity. To reduce the computation

time, we propose a searching algorithm that utilizes the convexity of EDM space to

more efficiently determine the candidate combinations (see Section 4.4.5). Once

we have mapped the echoes to their image sources, we can localize them and

reconstruct the room geometry. In reality, using the minimum number of

measurements is often insufficient to locate all image sources. One reason is that

the possibility of receiving a reflection from a wall depends on both the

measurement location and the room geometry. In addition, each propagation path

can be individually blocked or badly attenuated by clutter and may not be captured

by the microphone. To deal with missing and/or spurious echoes, we divide all

microphone locations into subsets and derive sub-optimal solutions accordingly.

We later consolidate the sub-optimal solutions using a clustering algorithm with

geometric properties to precisely reconstruct the room geometry (see

Section 4.4.6).

4.4.1 Preliminaries

We denote Sn as the space of n× n symmetric matrices and En as the space of n× n

Euclidean distance matrices. A Euclidean distance matrix D ∈ En is defined by a set

of n points p1, ..., pn ∈ Rr where

Dij = ∥pi − pj∥22 , ∀i, j = 1, ..., n (4.2)

89



Let Sn
+ denote the cone of positive semi-definitematrices in Sn. We induce Löewner

partial order A ⪰ B if A − B ∈ Sn
+. We further denote the hollow space Sn

H := {Y ∈

Sn : diag(Y ) = 0} and the centered space Sn
C := {Y ∈ Sn : Y e = 0}, where diag(·) is

the operator taking the diagonal elements of a matrix and e ∈ Rn is the vector of

ones.

4.4.2 Echo Labeling and EDM

Correctly labeling the echoes we received to their corresponding walls is the key

to recovering the location of the image sources. In our algorithm, we use the same

EDM formulation that was first proposed in [35] as a building block, and we show

how it can be used to solve the echo labeling problem. For now, we assume an

ideal scenario where measurements are precise, and we show how to correctly

label the echoes we received. We later relax this assumption by adding noise.

Assuming we have K image sources in total and we collect echoes over N locations

with known coordinates, we denote their corresponding TOF distance at each

location as dn = [dn,1, ..., dn,K ], n = 1, ..., N . Since the phone is tracked using VIO, we

can also form the microphone EDM matrix Dmic ∈ EN using the distances between

the microphone locations. Then, by the definition of EDM, for each image source k

there exists exactly one echo combination of squared distances, denoted by

ck = [c2k,1, ..., c
2
k,N ] for ck,n ∈ dn, such that the augmented matrix D̄k given by

D̄k =

[Dmic]
[
cTk
]

[ck] 0



90



is also an EDM matrix in EN+1. For the rest of this dissertation, we denote an echo

combination that corresponds to the same image source as a good combination, or

otherwise a bad combination. With the EDM formulation, a naïve approach to

finding all the good combinations is to exhaustively search through all possible

combinations and verify whether their corresponding augmented matrices are

EDMs. In practice, however, binary verification of EDM is uninformative because it

is unlikely that any augmented EDM will be a real EDM due to ranging error

and/or numerical inaccuracy. Our goal is then redirected to finding the

augmented matrices that are the closest to real EDMs, which is referred to as the

Nearest EDM (NEDM) problem discussed in Section 4.4.3.

4.4.3 Nearest EDM Problem

The delta between an augmented matrix and its nearest EDM provides an

estimation of the goodness of a combination in a noisy environment, where good

combinations are a sufficient condition for small delta values. Nevertheless, to

ensure the necessity of the statement, the NEDM approach requires precise

microphone locations to robustly recover from noisy distance measurements. In

addition, since the total combinations grow exponentially with the number of

microphone locations and the number of distance measurements extracted per

location, the microphones need to be close enough together (e.g. using a

microphone y) to effectively reduce the number of feasible combinations and

determine a unique solution [35]. In this dissertation, we relax these constraints

and allow users to take measurements at arbitrary locations tracked by VIO. This

can potentially improve the accuracy in wall localization, due to geometric dilution

of precision (GDOP) [100, 123], but has the trade-off of introducing additional
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localization error and exponentially increased state space. Therefore, a robust and

efficient approach to solving NEDM problems is vital to the uniqueness and

correctness of our solution.

When the measurements are noisy, obtaining a set of points in low-dimensional

space that satisfies the desired distances can be extremely difficult. In fact, solving

NEDM problems with a low rank (low-dimension) constraint is non-convex and

NP-hard [29]; most approaches rely on either heuristics or approximation. One

popular approach to solving the NEDM problem is classical multidimensional

scaling (cMDS), which is quite efficient in computational complexity. The cMDS

starts by performing double centering on the augmented matrix and then projects

the data into lower dimensions using the leading principal components. This

method, however, inherits a similar drawback to principal component analysis

(PCA) in terms of being sensitive to outliers. In addition, cMDS has several features

that are undesirable when dealing with noisy data [21]. Instead of directly

projecting a target matrix onto En to find its closest approximation, cMDS projects

it onto the cone of Sn
+ and maps it back to En. This indirect mapping process makes

the dissimilarities between the two matrices intractable and causes the result to

be less robust. More generalized variations of MDS rely on distance scaling and

direct approximation of target distances by minimizing stress based cost function.

However, these iterative approaches do not guarantee a global optimum,

especially when input distances are noisy.

Instead, we adopt the SDP approach we find to be more robust against noisy

measurements in practice. SDP can be seen as a special case of conic optimization

(a subfield of convex optimization) and can be solved efficiently using interior point

methods [1].
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More importantly, EDM-based problems can be mathematically transformed

into SDP formulation by leveraging the close relationship between EDMs and

semi-definite matrices [61, 71, 77, 106]. Next, we show how this is done for the

NEDM problem. Given an EDM D ∈ En, we can rewrite Equation 4.2 as

Dij = pTi pi + pTj pj − 2pTi pj

= Yii + Yjj − 2Yij

where Y = pTp is the Gram matrix of the point set that realizes the EDM. Note

that each entry in a EDMn is defined as the squared distance between points, since
√
EDMn is non-convex when n > 3 [29]. Since the Gram matrix is positive semi-

definite, we observe a linear transformation K that maps Sn
+ onto En (K(Sn

+) = En)

given by

K(Y ) := diag(Y )eT + ediag(Y )T − 2Y (4.3)

And reversely, we can derive the Moore-Penrose generalized inverse K† of K

(KK†K = K) given by

K†(D) = −1

2
V offDiag(D)V (4.4)

where V := I − eeT/n is the geometric centering matrix and

offDiag(D) := D−Diag(diag(D)) denotes the orthogonal projection onto the hollow

matrices. This leads to a well-known result for the sufficiency of an EDM matrix

originally presented by Schoenberg [117] and later independently found in [136]:

D ∈ En ⇐⇒


−V DV ∈ Sn

+

D ∈ Sn
H

(4.5)
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From Equation 4.3, we can see an important property of the linear

transformation K: it is translational invariant, which means that the EDMs

realized by a point set P and its infinite translational symmetries P ′ will be

equivalent. To force the mapping K and K† to be bijective and prevent ambiguous

solutions, we can restrict the transformation to subspace Sn
C and Sn

H respectively,

and we have the mapping K : Sn
C → Sn

H a bijection and K† : Sn
H → Sn

C is its inverse.

Furthermore, if we restrict K and K† to the convex cone Sn
C

∩
Sn
+ and En, we then

have K : Sn
C

∩
Sn
+ → En, a bijection, and K† : En → Sn

C

∩
Sn
+, its inverse. This result

provides a key insight explaining the mapping between the convex cone of En and

Sn
+.

However, even though these two convex cones can be related, a direct mapping

between the two sets does not exist under the same dimensionality 3. In order to

prevent unbounded optimal solutions [29], we can define a transformation

KV : Sn−1 → Sn given by

KV (X) := K(VnXV T
n ) (4.6)

where Vn ∈ Rn×n−1 is the full rank skinny matrix such that V T
n e = 0. We then have

VnXV T
n , the Gram matrix of the point set, and KV (Sn−1

+ ) = En. Based on this

observation, we can derive a reformulation for the sufficiency of EDM matrices

similar to Equation 4.5:

D ∈ En ⇐⇒


−V T

n DVn ∈ Sn−1
+

D ∈ Sn
H

(4.7)

3This can be observed from Sn
C

∩
Sn
+ = ∅ or equivalently En

∩
Sn
+ = 0 (the origin).
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With Equation 4.7, we can transform the NEDM problem into a SDP based norm

minimization problem that can be generally modelled as

argmin
X

∥∥W ◦ (KV (X)− D̄)
∥∥2

F

(VnXV T
n )e = 0,

X ⪰ 0

(4.8)

where W is the weighted matrix that reflects the accuracy of the data, ◦ is the

Hadamard product, and D̄ is the target matrix we want to approximate. The first

constraint ensures that the recovered matrix belongs to Sn
H , and the second

constraint ensures it belongs to Sn−1
+ . The hard rank constraint is dropped as a

relaxation in order to prevent non-convexity. Note that X is solved in a lower

dimension (n − 1), and we can recover the optimal distance matrix by computing

KV (X). In rare cases where the rank constraint is not satisfied, the solution is

rounded into lower dimensions based on eigenvalue decomposition. We choose

the Frobenius norm for our objective function, since it naturally connects with the

Euclidean distance space and it is strictly convex. We select the optimizer MOSEK

[4] for solving the NEDM problem with SDP and the combinatorial optimization

problem, which will be discussed in Section 4.4.4, with mixed integer programming

(MIP).

A mini-benchmark on the NEDM performance in E5 is shown in Figure 4.7. We

simulated the EDMs based on random microphone locations in rooms of various

geometries and artificially added additional ranging error. We find SDP achieves

lower NEDM error on average compared to classical MDS and s-stress MDS

approaches, and the improvement grows more noticeable as ranging error
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Figure 4.7: SDP achieves the same or lower NEDM error (E5) in various simulated
room geometries, compared to classical MDS (cMDS) and s-stress MDS (ss-MDS).

increases. Although the improvement appears marginal, a small increment in the

NEDM error will result in hundreds more ambiguous solutions. We will discuss

this negative effect in detail in Section 4.4.4 and demonstrate its direct impact on

reconstruction accuracy later in Section 4.6.

4.4.4 Combinatorial Optimization

By solving the NEDM problem, we are able to score all echo combinations based on

their augmented matrices’ proximity to the closest EDM. We determine their

scores to be inversely proportional to their NEDM error reported in equation

Equation 4.8. In an ideal scenario, we can find all the good combinations by

selecting the ones with the highest scores/lowest errors. In reality, however,

random bad combinations could potentially produce a lower NEDM error due to

noisy measurement and inaccuracy in NEDM approximation. Moreover, this

problem gets worse when microphone locations are unconstrained, since we are
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Figure 4.8: Mean NEDM error (E5) compared between the good combinations (O)
and the bad combinations (X) with ranging error drawn from a standard Gaussian
distribution with different standard deviations.

unable to use the distances between microphones to trim down the candidate

combinations. To quantify the reliability of our NEDM approach in random room

geometries with noisy measurements, we run simulations to compare the

distribution of NEDM error between the good and bad combinations. The results

shown in Figure 4.8 indicate that good combinations typically have an error below

a meter, while bad combinations yield much higher error over a wider distribution.

Despite their distinct error distribution, the number of bad combinations is orders

of magnitude more than the number of good combinations that falls into the same

error percentile. As an example shown in Figure 4.9, we find a hundred times more

bad combinations that could have lower NEDM error than the good ones when the

error standard deviation is 4cm. Thus, selecting combinations with low NEDM

error is insufficient to determine the correct solution.

In order to refine our solution, we expand our objective function to minimize

the total NEDM error among multiple combinations while limiting the occurrence
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Figure 4.9: The average number of bad combinations with lower NEDM error per
good combination increases with ranging error, and SDP achieves more robust
result than s-stress MDS.

of each distance measurement across combinations. This in turn enforces

constraints on our distance selection between combinations and greatly improves

the chances of finding good combinations. The optimal selection is to find the set

of combinations such that their combined score is the highest while satisfying all

the constraints, which can be formulated as a combinatorial optimization problem.

Suppose we compute the score si for each echo combination ci by solving

si = NEDM(Dmic, ci). Then, we can solve the following combinatorial optimization

problem using mixed integer programming in the form of

max sTx

subject to ATx ≤ b

x ∈ {0, 1}n
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where s is the vector of scores derived from solving NEDM problems, x is the binary

vector indicating whether a combination is selected, b is the vector for constraining

the occurrence, and A is the constraint matrix that limits the selection between

combinations given by

Aij =


1, if dj ∈ ci

0, otherwise
∀i = 1, ..., |c|, j = 1, ..., N

where |c| is the total number of echo combinations. In our experiment, b is set as a

vector of ones to achieve the best performance, but ideally the constraint can be

more relaxed when ranging resolution is low and peaks are inseparable due to

close arrival times. Since the total number of surfaces is unknown, we encourage

the algorithm to find as many surfaces as possible by pruning the combinations

using an error threshold, and to solve the combinatorial optimization problem

with an objective function that maximizes the total score. This error threshold can

be determined by simple heuristics or based on a prior estimation of the ranging

error. While this greedy approach may allow some bad combinations to sneak

through, it greatly improves the discovery of good combinations and benefits the

following clustering algorithm (Section 4.4.6) and overall performance. The

objective function is biased toward combinations with low error due to the

non-linearity of the inverse proportion operation when calculating the scores. The

intuition is to increase the likelihood of selecting good combinations since the

ratio of bad combinations over good combinations decreases with NEDM error, as

shown in Figure 4.8.
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4.4.5 Gradient Search

Solving NEDMs for each combination inevitably becomes a computational

bottleneck due to large combination space. In situations where computation

power is limited and/or application is time sensitive, this indirectly impacts the

reconstruction performance, since we have to be more conservative about peak

selections.

In order to reduce the computation time, we implement an iterative

gradient-based heuristic to directly search for combinations below a certain

NEDM error threshold. Since the problem is essentially a combinatorial search,

our goal is to find the majority of the target combinations in order to increase

computational efficiency. Similar to iterative local search (ILS), our algorithm

dynamically refines its search direction by exploring neighborhood candidates of

the current solution. We exploit the convexity of EDM space and designed our

neighborhood function based on gradient descent.

The search starts by randomly selecting a combination and solving the NEDM

problem as described in equation Equation 4.8. At iteration t, we denote the

selected combination as ct and the resulting true EDM as KV (Xt). To select the

next combination ct+1, we exploit KV (Xt) and find the combination such that the

gradient of the objective function with respect to the new augmented matrix D̄t+1

is closest to zero. Although the gradient does not guarantee an optimal searching

direction, it can be computed efficiently and provide a good approximation by

looking one step ahead. Given our objective function f , the gradient is given as

▽D̄f = −2(W ◦W ◦ (KV (X)− D̄))
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Figure 4.10: Improved performance with gradient-based local search compared to
brute-force search.

In the process of iterative searching, we keep a history of the visited combinations

and restart randomly when the gradient leads to a previously visited combination,

in order to improve the exploration of our search. In addition, whenever the

gradient reaches a local minimum and the NEDM error is below the given error

threshold, we solve the combinatorial optimization previously mentioned in

Section 4.4.4 to dynamically trim the search space to increase diversity. These

constraints are removed when there are no feasible combinations left, and the

algorithm restarts with the history of the visited combinations. The algorithm

ends when a certain percentage of total iterations is reached or a certain number

of target combinations is found.

Since it is difficult to theoretically analyze the computational complexity for

combinatorial search problems, especially when the performance depends heavily

on room geometry/receiver locations, we use simulations to evaluate the
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performance of our heuristic. In Figure 4.10, we show a mini-benchmark of our

heuristic compared to brute force search in terms of the number of iterations

spent on finding target combinations. The proposed heuristic is around 10 times

faster in finding 25% of the target combinations and 7 times faster at the 50%

mark. In general, the percentage of target combinations required for

reconstruction could vary based on the ranging error and the number of

microphone locations. Experimentally, we find that 50% of the combinations are

good enough to properly reconstruct the room geometry.

4.4.6 Wall Estimation

In order to localize an unknown number of reflective surfaces within a reasonable

amount of computation time, we accept sub-optimal solutions of inaccurate image

sources and/or bad image sources. The final step of the algorithm is to eliminate

the outliers and determine the true location of the good image sources. This is

possible because bad image sources would be scattered due to the randomness of

the combinations, while the good image sources would converge into clusters at

their true locations. As shown in Figure 4.11, the corresponding surfaces, which

are the bisectors of image sources and the speaker location based on the image

source model, would also follow the same pattern. The echo combinations that

grow exponentially with the number of measurements now improve accuracy; we

can determine the true locations of the walls by clustering with fewer microphone

locations.

In order to minimize the impact of the reflections from clutter in the

environment, we recover the locations by selecting 4 random microphone

locations at a time (minimum for 3D reconstruction) and iterate through different

102



-2 0 2 4 6
X (m)

-1

0

1

2

3

4

5

6

7

Y 
(m

)

Est. walls
Est. room vertices

(a) With 6 microphone locations.

-2 0 2 4 6
X (m)

-1

0

1

2

3

4

5

6

7

Y 
(m

)

(b) With 8 microphone locations.

Figure 4.11: Top-down view of the clustering process in 3D. The detected surfaces
increase exponentially with measurements, improving the clustering accuracy and
overall reconstruction accuracy.

combinations of microphone locations. During this process, we apply clustering

on the combined results until the desired number of clusters are found. The

algorithm therefore discovers larger reflectors (walls) first since they provide more

consistent reflections and form clusters faster. To discover smaller reflectors, we
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Figure 4.12: 3D view of the wall reconstruction rendered with the clustering result.

can iteratively remove the processed clusters and continue the clustering process

with wider radius. In general, the resolution of features the system can detect as

surfaces is a function of the number of measurements and compute time.

Capturing the first dozen major features is quite feasible, but the complexity

increases quickly for higher resolution maps. In this paper, we chose a

density-based clustering algorithm DBSCAN [83], due to its robustness to outliers

and zero prior knowledge of the number of clusters or density distribution. One

drawback of the DBSCAN algorithm is that the clustering results are sensitive to

the minimum neighborhood points and neighbor distance. Through experiments,

we find the results to be the most stable when the neighborhood point is set to

three times the reconstruction dimensionality, and the neighbor distance is

determined based on our estimation of the ranging error. Once the clusters are

found, each corresponding surface is determined as the plane passes through the

geometrical center of the cluster with a normal vector pointing toward the

speaker.

While clustering copes with the problems of missing echoes and having an
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Figure 4.13: (Left) A simulated room geometry plotted with all possible first-order
and second-order image sources. (Right) Overlays of the reconstruction results
where each is computed using data from a single speaker. The ranging error
is drawn from a standard Gaussian distribution with std=0.03m, and the overall
reconstruction similarity is 93%.

unknown number of surfaces, the algorithm also captures the clusters from

higher-order reflections. In order to bypass the process of identifying and

eliminating higher-order image sources, we observe in Figure 4.13 that the virtual

surfaces generated by second-order echoes from two adjacent surfaces will always

cross the intersection of the surfaces. Similarly, if the reflected surfaces are not

adjacent to each other, then the virtual surface crosses the intersection found by

extending the surfaces. In fact, this result can be mathematically proven using

geometry and holds for both 2D and 3D scenarios. Our algorithm leverages this

geometry property to determine the room geometry as the smallest convex

polyhedron within the virtual surfaces that bound all of the microphone locations.

This heuristic ensures that the actual room geometry affected by second-order

105



Speaker Array

iPad Pro

Figure 4.14: Synesthesia experimental setup.

reflections and missing first-order reflections is minimized in the presence of

noise. In addition, this geometry property reveals an alternative way to

reconstruct the room geometry with the help of higher order reflections when

multiple transmitter locations are available.

4.5 Platform Implementation

An overview of our experimental setup is shown in Figure 4.14. Our prototype

consists of an omnidirectional tweeter speaker with custom hardware and a

mobile device. Our transmission signal is a linear frequency sweeping chirp from

20–23kHz with a sampling rate of 48kHz. Each of the four horns transmits the

signal to distribute it uniformly through the space. The transmitter synchronizes

using BLE with the mobile device while it records the room response. The

synchronization error is less than 1ms where 95% is within ±200µs, which results
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in a ranging error of ±6.8cm. We based our transmitter design and time

synchronization on the platform the authors described in [109]. In our version of

the design, the speakers all transmit simultaneously (instead of cycling). We

discuss the impact of ranging accuracy on system performance in Section 4.6.

4.6 Reconstruction Performance

In this section, we experimentally validate the performance in simulations and in a

variety of rooms with real recordings. To quantitatively measure our performance,

we defined an evaluation metric that captures the similarity between two arbitrary

polyhedra (e.g. ground truth and our reconstruction) in 3D space (see

Section 4.6.1). We conducted numerous simulations to evaluate the impact of room

geometry, the number of transmitters/receivers, and ranging error on the

reconstruction accuracy (see Section 4.6.2). We then validated the results in

real-world environments, and compared our performance with state-of-the-art

(see Section 4.6.3). Finally, we demonstrate its utility in estimating absorption

coefficient of reflectors in an AR virtualization (see Section 4.6.4).

4.6.1 Evaluation Metric

Tomeasure the similarity between the ground truth and our estimation of the room

geometry, namely polyhedra A and B, we use the following criteria based on their

overlapping volume and union volume, given by

Similarity =
A ∩B

A ∪B
(4.9)
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The similarity metric is strict since it reflects not only the ranging error, but also

captures the translation and orientation for each wall. When computing the

similarity in cases where some walls are missing and the estimated polyhedron is

not bounded, we artificially added the ground-truth wall so the similarity can be

determined, but also penalized by the percentage of the number of added walls to

the total number of walls. If the estimated polyhedron is bounded despite missing

walls, the same rule is applied when it results in better similarity to ensure a fair

comparison. For example, in Figure 4.13 we showed a simulated reconstruction of a

room from multiple speaker locations in 2D with small ranging error, in which we

achieved a similarity of 93%. To the best of our knowledge, this is the first work

that reports performance in 3D real-world environments with a normalized

evaluation metric that captures the rotation, translation, and scaling of the room

geometry at the same time.

4.6.2 Simulation

We randomly generated a set of room geometries with wall lengths from 5–10m

with a minimum angle of 30 degrees between walls. Speaker and measurement

locations are randomly selected in the room, each at least 50cm away from the

walls, and the sound pressure level (SPL) is set to 65dB at 1 meter consistent with

readily available commercial hardware. The wall absorption coefficient is set to 0.5

to simulate the absorption of common materials in the chirp’s sweeping

frequency [34]. When constructing the received signals, we add additional ranging

bias for each impulse response. For each parameter configuration, we run at least

20 simulations. We use ray tracing to validate first and second-order image

sources and to simulate path loss. Higher order reflections are dropped since they
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Figure 4.15: Simulated reconstruction similarity (2D) with (a) varying ranging errors
and (b) a varying number of transmitter locations and measurements.

are rarely detected in reality due to attenuation. Since the estimated room

geometry is both translational and rotational invariant, we use the Kabsch

algorithm [62] to find the optimal rotation matrix that minimizes the Root Mean

Squared (RMS) error on measurement locations to align the result with the global

coordinates system for better visualization.

In Figure 4.15a, we simulated the overall reconstruction similarity with ranging

errors drawn from a standard Gaussian distribution with varying standard

deviations (i.e. a standard deviation σ = 5cm implies a ±10cm ranging error in

around 95% of the time). Since each ranging measurement is sampled only once in

simulation, the absolute ranging error can be seen as a folded standard Gaussian

distribution where its mean is given by µ = σ
√
2/π. The reconstruction similarity

is found to be sensitive to the ranging accuracy and drops quickly as the ranging

error increases. Still, we are able to achieve 75% reconstruction accuracy on

average with a standard deviation of 5cm. The relative positioning between the

room, speaker, and microphone also have an impact on the reconstruction

accuracy, especially when ranging error is high. Most of the reconstruction error
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comes from peaks that arrive close in time, where the algorithm often fails to

isolate the peaks or selects false peaks that increase the number of bad

combinations.

In Figure 4.15b, we simulated how increasing the number of transmitter

locations and microphone measurements can contribute to reconstruction

similarity. Note that each reconstruction is independently computed using data

from a single speaker. With more transmitter locations and/or measurements, we

can effectively avoid scenarios where image sources cannot be localized due to

geometry constraint, which provides a significant gain in performance when their

numbers are low. Diminishing returns start when all walls are localizable, and

adding more measurements only improves slightly on estimation accuracy.

4.6.3 Real-world Environment

In Figure 4.16, we show photographs of three experiment environments. Two of

these environments are small and medium-size rooms with a shoe-box shape, and

the third is a slightly larger breakout room with an irregular polygon. In our

experiments, we placed the speaker close to the center of the room and collected

data at 10 random microphone locations in the presence of clutter. Below each

photograph, we show its reconstructed room geometry overlay on top of the

ground truth.

An analytic comparison between the proposed method with related work is not

trivial since most works have different assumptions and evaluation metrics. To

ensure a fair comparison, we compared our approach to [35], which shares similar

problem formulation. We ran the solver using the same collected dataset and

preprocessing tool, but applied different optimization techniques accordingly. As
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Figure 4.16: Experiment environments (Top) and their 3D reconstruction over
ground truth from different views (Middle & Bottom).

shown in Table 4.1, reconstruction using the approach proposed in [35] is

infeasible since the correct wall locations are overwhelmed by ambiguous

solutions. When applied with the proposed optimization, more erroneous

solutions are filtered, and the reconstruction accuracy gains 15% improvement.

We also show that the robustness in NEDM approximation plays an important role
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Room Size Max. Similarity Min. # of Locations
MDS [35] MDS+ SDP+ ≥70% ≥80% ≥90%

(a) 60.6 (m3) 48.2% 63.5% 94.6% 6* 6* 7*
(b) 103.7 (m3) 50.8% 68.4% 90.9% 6 8* 9*
(c) 132.2 (m3) 46.0% 61.1% 90.5% 9 10* 11*

Table 4.1: Overall system performance and minimum microphone locations to
achieve certain similarity threshold with SDP+ ( + with proposed optimization, *
all walls are discovered).
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Figure 4.17: Impact of localization error to reconstruction similarity. VIO average
highlighted.

in clustering accuracy. Switching the optimization technique from MDS to SDP

further improves the overall reconstruction accuracy by 25%. On average, our

approach is able to achieve more than 90% reconstruction similarity using a

maximum of 10 locations in all room environments. Across different rooms, the

number of locations required to achieve the same similarity level slightly increases

with the size of the room. We believe this is mainly caused by the attenuation of

the signal and can be compensated by proportionally increased output power. An
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Summary Proposed Dokmanica et al.[35] Jager et al.[60] Moore et al.[88] Zhou et al.[142]
# of speaker(s) 1 1 2 1 1
# of mic.(s) 1 5 5 1 2
Synchronized tx/rx Yes Yes Yes No Yes
Known # of walls No Yes Yes Yes No
Receive all 1st order echoes No Yes Yes Yes Yes

Method
EDM, SDP, combinatorial
optimization, clustering,
geometry properties, VIO

EDM, MDS EDM, MDS, graph theory Geometry properties IMU, measurement
gestures

Complexity High High Medium Medium Low
Evaluation environment Real-world Real-world Simulation Simulation Real-world

Cons Require localization of
the receiver.

Require careful
calibration of
the microphone
array.

Assume 2D rectangular
room shape.

Require localization
of the receiver and
additional user effort.
Limited sensing range.

Table 4.2: System comparison with related work.

increased number of microphone locations can effectively reduce the impact of

noise and spurious/missing echoes, which results in improved reconstruction

accuracy. We show the minimum number of microphone locations required to

achieve certain reconstruction accuracy.

In Figure 4.17, we show the impact of localization error on reconstruction

similarity. This localization error is artificially added to the ground truth of the

microphone locations in post-processing. We find the performance starts

degrading when the localization error exceeds 0.2m, but appears robust to the

typical levels of noise we see from ARKit traces (0.16m). Finally, in Table 4.2 we

summarize the assumptions and limitations of our proposed approach and related

work.

4.6.4 AR Demonstration App

As a way to demonstrate the effectiveness of this sonic sensing approach, we

developed an AR phone application that can visualize absorption on wall surfaces

in a room. We ran Synesthesia in a small room and collected data from 20

microphone locations with sound-absorbing pads hanging on a wall, with one

removed to increase reflectivity. After the model of the room was reconstructed,

we derived the exact locations on the walls where echoes are reflected, along with
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Figure 4.18: Visualization of sound absorption coefficient in AR. Red in color
indicates less absorption while blue denotes more.

the echo propagation paths. Next, we computed the combined frequency response

of the speaker and microphone using the intensity of the received LOS signal.

Finally, we estimated each reflection surface’s absorption coefficient based on the

intensity of the reflected signal and its propagation path.

The result is registered as circles in the 3D environment in AR, allowing us to

visualize the sound absorption. Figure 4.18 shows a photo of the AR app running,

where the colored circles represented the absorption coefficient of the reflection

surfaces. Each color is mapped to the absorption coefficient across a particular

frequency range. To create a denser absorption map, a user simply needs to take

additional measurements from more locations. Note that once the room model is

obtained, this process is much faster, since we can effectively trim down the

candidate combinations using the room geometry.
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4.7 Microphone Localization

In Section 4.3 and Section 4.4, we have shown that the room geometry, speaker, and

microphone locations can be expressed as the three variables of an equationwritten

in echo distances, and given the speaker and microphone locations, we are able to

accurately derive the room geometry. In other words, if we rewrite this equation

switching one known variable with an unknown, then the entire system can be used

in a reversedmanner to localize amicrophone given the roomgeometry and speaker

location. In this section, we discuss how to use the same EDM and SDP formulation

to perform microphone localization (see Section 4.7.1) and evaluate its performance

in real-world environments (see Section 4.7.2).

4.7.1 Revisit the EDM

In Section 4.4, we show that the positioning between image sources and

microphone locations can be described as pairwise distances between points in

space, or equivalently, an EDM. When reconstructing the room geometry, the

composition of the microphone EDM from known microphone locations is the key

foundation to recovering noisy ranging measurements from image sources of

unknown locations. In this reversed problem, we adopt the same idea, but instead

compose an EDM using the image sources of the room geometry. Our goal is then

to recover the best distance combination that agrees with the positioning between

the image sources and an unknown microphone location.

Assuming the room geometry is a K-face convex polyhedron P in 3D space, it
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can then be represented as the intersection of K half-spaces given by

P = {x ∈ R3 : ATx ≤ b} (4.10)

whereA is a 3×K matrix of which each columnAk represents the normal unit vector

of a plane and bk ∈ R is its translation. Given a fixed speaker location s = (sx, sy, sz),

we can compute all of its first-order image sources I bymirroring s about each plane

given by

Ik = s− 2Ak(A
T
k s− bk), ∀k = 1, ..., K (4.11)

These image sources serve as the anchor points in many TOF-based localization

systems, and they are inherently synchronized based on the IS model.

Higher-order image sources are discarded when constructing the EDM, since

higher-order reflections are less likely to be detected due to reduced amplitude

and geometry constraints. Similar to the EDM constructed in Section 4.4.2, we

transform the distances between the image sources into an EDM DI ∈ EK .

Suppose M TOF distances are extracted from the received signal and denoted by

d = [d1, ..., dm]. Then, in an ideal scenario, there exists a unique combination

c = [c21, ..., c
2
K ] for ck ∈ d such that the augmented matrix D̄I+ given by

D̄I+ =

[DI ]
[
cT
]

[c] 0


is also an EDM matrix in EK+1. In reality, we face the same challenges as in room

reconstruction (such as measurement inaccuracy, missing/spurious echoes, and

excessive computation time), but these challenges can be solved following the

same optimization process as previously discussed in Section 4.4.3, Section 4.4.6,
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Room Size 2D (X,Y) 3D (X,Y,Z)
Mean (m) Std. (m) Mean (m) Std. (m)

(a) 60.6 (m3) 0.097 0.047 0.106 0.041
(b) 103.7 (m3) 0.199 0.157 0.222 0.152
(c) 132.2 (m3) 0.260 0.122 0.316 0.155
Overall 0.191 0.135 0.222 0.153

Table 4.3: Mean localization error in 2D and 3D.

and Section 4.4.5. In addition, we can further eliminate invalid solutions using the

room geometry (Equation 4.10) as a constraint. One main difference, however, is

that the estimation accuracy now depends on the fixed number of reflective walls

in the space, rather than the number of sampling locations. More reflective

surfaces give more potential ranging anchors and thus better localization accuracy

and robustness against missing echoes.

4.7.2 Localization Performance

We empirically validate the localization performance in the same room

environments (see Figure 4.16) with real recordings sampled at random locations.

Note that each localization result is derived using one single recording without

averaging over multiple samples. In Figure 4.19, we illustrate both 2D and 3D

localization results along with the 1st order image sources we used to form the

EDM. The average localization error is summarized in Table 4.3, and its overall

cumulative distribution function is shown in Figure 4.20. On average, we are able

to achieve less than 20cm of localization error in 2D with a worst case of 43cm, and

less than 30cm of localization error in 3D with a worst case of 58cm. A clear trend

can be seen from Table 4.3: the average localization error increases with room

size. This performance loss in large rooms is expected, since the received signal

contains more spurious multipath reflections from the environment and it is
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Figure 4.19: Microphone localization results rendered in 2D (Top) and 3D (Bottom)
viewpoint.

harder to isolate them from background noise accurately due to greater path loss.

Since the NEDM optimization is quite sensitive to ranging error, we also observe a

high variance in localization accuracy.

Another observation worth noting is that since most room geometries have

vertical walls, their corresponding image sources will end up sitting on the same
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Figure 4.20: The overall cumulative distribution function of the localization error.

x-y plane. The lack of diversity in the z-axis, in turn, makes 3D localization more

difficult, especially when reflections from the ceiling/floor are blocked. On the

contrary, if the reflections from the ceiling/floor can be successfully captured,

most localization error tends to concentrate in the 2D dimensions due to ranging

inaccuracy induced by the obstacles in the environment.
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Chapter 5

Conclusion and Future Work

In this dissertation, we explored the capabilities of enhancing active acoustic

sensing using modern data-driven approaches. We utilized ultrasonic wide-band

signals to capture various properties of our surrounding environment and nearby

people. By using learning algorithms, we were able to extract enriched inferences

from raw data waveforms and fully utilize the information carried in their

reverberations. We demonstrated this ability in rigorous examples, including

occupancy estimation, room geometry sensing, acoustic model reconstruction,

and microphone localization. In summary, this dissertation makes the following

contributions:

1. Occupancy Estimation

We introduced an approach to estimate room occupancy by using reverberation

across multiple frequencies. We evaluated numerous characteristics of the

impulse signal and their impact on system performance. The estimation algorithm

adopts a semi-supervised learning scheme to enable an effortless training

procedure and minimize the model size. It is also robust against common

environmental interference and able to automatically recalibrate its model when

121



the room environment changes over time.

We implemented the algorithm on our embedded platform AURES, which

supports user-assisted training and labeling over BLE or 802.15.4 connectivity. To

improve energy efficiency and scalability, we proposed a volume control

mechanism and an energy-harvesting subsystem with benchmark test. We

evaluated our system in 10 different rooms on campus with various sizes and

geometries, and collected daily use data for 2 weeks, totaling over 60,000 data

samples. Our results showed an average recall rate of 85% for presence detection,

and less than 12% estimation error for people counting. In outdoor environments,

AURES showed potential in line detection and achieved less than 10% estimation

error with a sensing range of 6m.

2. Room Geometry Sensing, Acoustic Model Reconstruction, and Microphone

Localization

We proposed an approach for estimating the locations of reflective surfaces and

forming a high-resolution image of the space, given a single acoustic source with

multiple noisy microphone measurements. The same approach can also be used in

reverse to perform microphone localization given a known room geometry.

Our algorithm utilizes a pipeline of optimization techniques to eliminate

conventional assumptions on room geometry and detection of echoes. It is also

robust against ranging error in recording data and missing/spurious echoes from

the environment.

We presented the platform Synesthesia, which uses a single centrally located

speaker and visual inertial odometry on a mobile phone for tracking. We showed

through both simulation and experimentation that even with 20cm of uncertainty

in the microphone locations, which is larger than the average VIO error found in
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phones, we are still able to reconstruct the room geometry with more than 90%

accuracy. We also demonstrated an augmented reality tool that can visualize an

estimate of the sound absorption coefficient of materials in a room.

The same platform and algorithms can also be used to perform 3D localization

given the geometry of the room. On average, our system achieved less than 20cm

localization error in 2D and less than 30cm in 3D in various real-world environments.

5.1 Future Work

In this section, we discuss limitations and future improvements for our proposed

systems and explore possibilities of extending their capabilities to broader

applications.

5.1.1 Acoustic Impulse Signal

At its core, active acoustic sensing relies on the design of the impulse signal to

gather useful information. In both Section 3.2 and Section 4.2, we have shown how

temporal and spectral properties of the transmitted signal can impact our

perception of the physical world. One additional dimension yet to be explored is

the modulation on top of the signal. For example, in [79], rate adaptive Chirp

Spread Spectrum (CSS) was used to support multiple access between concurrent

localization beacons. The same technique can potentially be applied to multiple

occupancy sensing systems working together to cover a larger ground without

incurring interference. Another example can be found in [91], where OFDM was

applied to help improve the ranging accuracy. We envision using this technique to

improve the localization of acoustic reflectors and the reconstruction of room
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geometry.

5.1.2 People Counting and Beyond

Our people-counting systemhas a few practical limitations. In Section 3.2, we chose

our frequency range because it is supported by low-cost commercial audio codecs

and it is the lowest inaudible frequency that attenuates significantly less than higher

frequency narrow-band transducers. For this reason, the signal may be perceptible

to service animals. Though our target duty-cycles and volume levels are designed

to aggressively optimize energy and should be almost undetectable tomost animals,

more empirical testing is required. Aside from transducer cost, there is no reason

why this approach cannot operate at higher frequencies to improve performance. At

higher frequencies, sound becomesmore directional, so further investigationwould

be required to determine if reverberation is still as sensitive to person count.

To achieve high performance in large spaces, our system will need a

proportionally powerful transmitter that requires a larger amplifier and

transducer. And as the space increases in size, the ability to finely distinguish the

exact number of people diminishes. One possible improvement is to run multiple

AURES nodes in the same space that work collaboratively to estimate the

combined load. To improve the scalability of this scheme, we would require a

mechanism to coordinate transmissions so that they do not experience cross-talk.

Common multiple access schemes based on TDMA, FDMA, or coding could be

utilized for this purpose, and peer-to-peer time synchronization could be achieved

using on-board BLE or 802.15.4 connectivity [79].

Our current system also requires labeling of training data as mentioned in

Section 3.4.4. While the proposed algorithm greatly reduces the amount of
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labeling, and the mobile phone interface can simplify the training process, an

installer still needs to capture a snapshot when the room has a reasonable (≥10%)

occupancy level, which might be difficult in some cases. In the future, we intend to

investigate using a DNN model to train a generalized model with more training

data in a semi-supervised learning manner. We envision building a universal model

that can be rapidly deployed in rooms of various sizes/geometries, and

bootstrapped using just the empty room reverberation identified by our presence

detector. This DNN-based solution will ultimately free the system from any

manual inputs and eliminate the expensive labeling process carried out on a

per-room basis. As more training data are collected from different room

environments, the DNN model could fully utilize the combined result and

generalize more precisely the key features that reflect the occupancy. Our

geometry reconstruction algorithms may also be used to facilitate this process and

improve our estimation accuracy, since we could better model and isolate

reverberation coming from the room environment. The ability to isolate

reverberation from specific objects may further be exploited to recognize gestures

or ongoing activities along with people counting.

Aside from estimating occupancy in room environments, the same techniques

can potentially be utilized in many different contexts as well. For example, in

automobiles, we envision using in-car sound systems to estimate the number of

passengers and their positions for air quality optimization. Our algorithm may also

be trained to detect infants left in rear car seats for safety purposes. Instead of

monitoring human bodies, the algorithm could also learn to identify animals, such

as cats and dogs, to improve acoustic-based home security systems by reducing

pet-triggered false alarms or installation difficulties.
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5.1.3 Acoustic Imaging and Beyond

As previously discussed in Section 4.4.5, one of the main drawbacks of our acoustic

imaging system is its long computation time. Even with the proposed searching

optimization, it takes on average 1 hour to achieve more than 90% reconstruction

similarity in MATLAB with a dual Intel Core i7 CPU. We expect to see a substantial

speedup through improvements in peak selection (see Section 4.2) and searching

heuristics (see Section 4.4.5). Peak selection would likely benefit from applying

window functions to increase the peak-to-sidelobe ratio. However, since window

functions often introduce drawbacks such as reduced overall gain and wider

main-lobe, a trade-off between sensing range, ranging resolution, and

computational complexity would be expected as a result. To improve our

searching heuristic, relevant techniques from the literature of combinatorial

search may help to further reduce the runtime complexity. We envision combining

the local search with lookahead techniques, such as Monte Carlo Tree Search

(MCTS), to quickly converge to an initial set of good combinations and then

discover potential solutions in its neighborhood. On the other hand, we believe

with more optimized implementation, parallelization, and GPU acceleration, it is

possible to reduce the current computation time to a few minutes, or even

seconds. In most applications, we envision users capturing an image, pushing the

data to the cloud, and then retrieving it later for viewing.

We also plan to conduct more evaluations on our embedded mobile platform.

This will involve additional sensitivity analysis on the frequency response of

onboard microphones and a thorough comparison between different VIO

techniques supported by these platforms. To improve real-world performance of

VIO, user studies may be required to evaluate how the orientation of phones
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impacts its tracking accuracy and how well it performs in a more adverse

environment. A fusion of VIO with other mobile phone localization techniques

(wireless and acoustic) should also be studied for potential improvements on

localization accuracy. In addition, the quad-sector speaker array could potentially

provide more spatial information if each sector transmits the signal in a

time-division manner. While this approach may extend the time of data collection,

correlating echoes based on the sector that transmits the signal may greatly

improve the computation speed and reconstruction accuracy. Furthermore,

advanced techniques such as beamforming could also be applied on the speaker

array to enable finer control of the signal’s direction.

It is also evident that our problem formulation shares a close relationship with

Simultaneous Localization and Mapping (SLAM). For instance, the image sources

we introduced can be treated as unique landmarks in SLAM, even though its

quantity would be relatively limited compared to a typical SLAM problem.

Well-studied probabilistic models in SLAM literature, such as the Kalman filter (KF)

and particle filter, could potentially be utilized to help model missing/spurious

echoes and improve estimation accuracy. Reversely, the geometrical information

embedded in echoes could be exploited to perform Range-Only SLAM [14, 70]. This

may provide an opportunity to alleviate the need for fine-grain sensors or

transceiver arrays. The underlying EDM and SDP framework have also been

studied in other research areas and applications such as facial reduction [37],

Sensor Network Localization (SNL) [13], graph realization, and graph rigidity [121].

We believe relevant techniques, especially regularized SDP relaxation, may be

applied to derive more accurate and robust solutions. We will be closely following

these research areas in the future.
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