Figure 1

0.8 0.7 0.6 0.5 0.40.3 0.2 0.1 0 -0.1 -0.2 Figure 1. Relationships among autoantibodies in healthy donors and patients with systemic autoimmune diseases. A) The graphic summarizes anti-GPCR aab in healthy donor (HD), which showed concentrations significantly increased or decreased when compared to the disease cohorts (systemic lupus erythematosus or SLE, systemic sclerosis or SSc, granulomatosis with polyangiitis or GPA, and rheumatoid arthritis or RA). Further details are shown in **Supplementary Figure 1**. The x axis represents healthy controls. Graphics display concentrations of aab directed against B) EDNRA and C) CHRM2. Linear regression graphics exhibit the correlation between anti-EDNRA and anti-AGTR1 aab in sera from D) HD, E) SLE, F) SSc, G) GPA, and H) RA. Heatmaps of autoantibody *versus* autoantibody correlations demonstrate the spectrum of relationships between aab targeting I) EDNRA and AGTR1; J) CHRMs; K) F2R and FLR1; L) CXCR3 and CXCR4 (for nomenclature, see **Supplementary Table 2**, *aab dataset 1*). The bar ranging from yellow to blue represents negative to positive correlations, respectively. In the correlation matrix, each small square represents a pairwise correlation between aab as exemplified by D-H. The correlation matrices used to perform the hierarchical correlograms shown in Fig 11-L are provided as Source data.

Figure 2

Females

AGTR1

CXCR

ENG YBX1 (ADRB) (ADRB2

VEGFB

VEGFA

PIGF

PDGFB

PDGFA

HGF

FGF1

EGF

MET

KDR

D)

E)

C)

EGFR F2RL) F2B ENRB

GPCRs
Growth factors
Growth factor receptors
Signaling molecules

<u>>65</u>

Figure 2. Effects of gender, age and disease on the correlations between aab. We analyzed the relationships between the different aab in sera from HD and the effects of gender and age as shown by circular networks based on aab Spearman's rank correlation coefficients. Circle plots show the correlation matrix of aab, comparing each condition: A) all healthy donors (HD) evaluated, B) patients with systemic sclerosis (SSc; Supplementary Table 1, Cohort 1; Supplementary Table 2, aab dataset 1); subgroups of HD (Cohort 1) analyzed according to C-D) gender and E-F) age (< and \geq 65 years). Graphics also display comparison between G) HD and patients with H) ovarian cancer (OC; Supplementary Table 1, Cohort 2; Supplementary Table 2, aab dataset 2), and I) HD and patients with J) Alzheimer's disease (AD; Supplementary Table 1, Cohort 3; Supplementary Table 2, aab dataset 3). The nodes in the graphs represent variables (each aab) and a line between two nodes indicates the Spearman's rank correlation coefficient. Line width indicates the strength of association, stronger correlations leading to thicker lines. Only correlations >0.6 are shown. Multiple connections between nodes indicate clustering.

Figure 3. Aab relationships reflect the distribution patterns of aab concentrations. Gini index confidence intervals were obtained by bootstrap analysis. The red and grey shadows represent confidence intervals and each small circle indicates the Gini index value. The graphics exhibit comparisons between A) HD females and males, B) HD above and below 65 years (Supplementary Table 1, Cohort 1; Supplementary Table 2, aab dataset 1). Comparisons between C) HD and patients with systemic sclerosis (SSc, Supplementary Table 1, Cohort 1; Supplementary Table 2, aab dataset 1, D) HD and patients with ovarian cancer (OC, Supplementary Table 1, Cohort 2; Supplementary Table 2, aab dataset 2), or E) HD and patients with Alzheimer's disease (AD, Supplementary Table 1, Cohort 3; Supplementary Table 2, aab dataset 3).

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

n

Figure 4. Heatmaps of autoantibody correlations. The images exhibit Spearman's correlation of autoantibody (aab) datasets (Supplementary Table 2) A) 1, B) 2 and C) 3 in sera from the healthy donors (HD) cohorts 1 - 3 and patients (systemic sclerosis, SSc; ovarian cancer, OC; and Alzheimer's disease, AD), respectively (Supplementary Table 1). A correlation spectrum from 0 to 1, corresponding to weak and strong correlation, is shown.

B)

C)

Figure 5

Figure 5. Hierarchical clustering analysis reveals correlation signatures of autoantibodies according to gender, age and disease. Correlogram matrix displays clusters (modules) of autoantibody (aab) correlations in all healthy donors (HD) according to gender and age (< and \geq 65 years) compared to patients with systemic sclerosis (SSc; Supplementary Tab 1, *Cohort 1*; Supplementary Table 2, *aab dataset 1*). Clusters of correlation between aab are displayed in dendrograms on the top and the side of the correlation matrix. The bar ranging from yellow to blue represents negative to positive correlations, respectively. In the heat map matrix, each small square represents the pairwise correlations between aab. The correlation matrix used to perform the hierarchical correlogram of SSc is provided as Source data.

Figure 6

OC

Shared factors

Specific factors

Controls

Specific factors

specific factors

Figure 6. Multi-study factor analysis of aab. The multi-study factor analysis (MSFA) was performed to analyze aab from healthy donors (HD) and compare to patients with A) systemic sclerosis (SSc), B) ovarian cancer (OC), and C) Alzheimer's disease (AD). Supplementary tables 1 and 2 provide further details about HD and patient groups, as well as aab datasets analyzed. The images are heatmaps of estimated factor loadings of common and specific latent factors. Loadings close to 1 or -1 indicate aab that strongly influence factors in opposite directions.

D)

E)

Figure 7. Effect of HD-IgG and anti-EDNRA antibodies on migration of neutrophils and their distribution throughout the host. A) Expression of endothelin receptor type A (EDNRA) by human neutrophils. The fluorescence minus one control (FMO) was analyzed as shown in Supplementary Figure 5. B) Neutrophil chemotaxis toward 0.5 mg/ml IgG from healthy donors (HD-IgG) was analyzed by transwell migration assay in the presence or absence of the EDNRA antagonist sitaxsentan (sitax). A representative image of neutrophils (white dots in the figure) on bottom surface of transwell plates is shown. The migration index was calculated in relation to the spontaneous (medium) migration (index 100) C) Neutrophil migration towards intact human IgG, antigen-binding fragment (Fab), and the crystallized fragment (Fc) region. The results are representative of three independent experiments (n = 3). D) 0.5 mg/ml HD-IgG induced IL-8 production by peripheral blood mononuclear cells (PBMCs) after 24 hours stimulation in an EDNRA dependent-manner as demonstrated by the inhibition of IL-8 production in the presence of sitaxsentan. E) The level of IL-8 spontaneously released into the culture supernatants correlates with the level of EDNRA expression on CD14+ monocytes. IL-8 concentration was assessed by ELISA and EDNRA expression analyzed by flow cytometry (n = 11). Significant differences are denoted by asterisk when $p \le 0.05$ (Mann-Whitney test). F) Concentrations of anti-EDNRA aab in mouse sera were assessed after secondary immunization with membrane extracts from control Chinese hamster ovary (CHO) cells or CHO cells overexpressing human EDNRA (n = 5). EDNRA-immunization was carried out given into footpads 0.2 mg of membrane extracts prepared from CHO cells overexpressing human EDNRA (Celltrend, Germany). Three weeks after the primary immunization, mice were boosted

with the same amount of membrane emulsified with incomplete Freund adjuvant (IFA, Sigma-Aldrich, USA). In the control group, mice were treated with the same amount of membrane extract from untransfected CHO cells. Six weeks after booster immunization, all mice were sacrificed for sample collection and quantification of anti-EDNRA aab. **G**) Migration of human neutrophils (white dots in the figure) toward IgG from control and EDNRA-immunized mice (n = 3).

HD (cohort 1)	<65	≥65	total	Mean Age
male	42	24	66	60.3 ± 7.8
female	104	23	127	57.6 ± 7.2
total	146	47	193	58.5 ± 7.5
Systemic Sclerosis	<65	≥65	total	Mean Age
male	1	13	14	52.8 ± 9.4
female	62	8	70	56.9 ± 13
total	63	21	84	56.2 ± 12.5
HD (cohort 2)	<65	≥65	total	Mean Age
male	43	23	66	60.4 ± 7.9
female	104	25	129	57.7 ± 7.1
total	147	48	195	58.9 ± 7.5
Ovarian cancer	<65	≥65	total	Mean Age
male	0	0	0	0
female	141	66	207	59.1 ± 11.4
total	141	66	207	59.1 ± 11.4
HD (cohort 3)	<65	≥65	total	Mean Age
male	1	26	27	73.9 ± 6.5
female	11	65	76	72.5 ± 8.6
total	12	91	103	73.5 ± 7.5
Alzheimer´s disease	<65	≥65	total	Mean Age
male	4	21	25	73.4 ± 7.9
female	5	61	66	75.8 ± 7.4
total	9	82	91	74.9 ± 7.8

Supplementary Table 1. Demographics of healthy donors and patients. All healthy donors (HD) are German subjects not receiving medications known to have any effect on the immune response. Three different HD cohorts, cohort 1 (upper panel), cohort 2 (middle panel) and cohort 3 (lower panel) were used throughout the study for comparison with patients affected by systemic sclerosis (SSc), ovarian cancer (OC) and Alzheimer's disease (AD), respectively.

Supplementary Table 2

Aab dataset 1 – HD (cohort 1) and SSc	Full Name
G protein-coupled receptors	
AT1R or AGTR1	angiotensin II receptor type 1
ADRB1	beta-1 adrenergic receptor
ADRB2	beta-2 adrenergic receptor
CASR	calcium-sensing receptor
CXCR3	chemokine (C-X-C) motif receptor 3
CXCR4	chemokine (C-X-C) motif receptor 4
C3AR1	complement component 3a receptor 1
C5AR1	complement component 5a receptor 1
ETAR or <i>EDNRA</i>	endothelin receptor type A
ETBR EDNRB	endothelin receptor type B
M1 or CHRM1	cholinergic receptor muscarinic 1
M2 or CHRM2	cholinergic receptor muscarinic 2
M3 or CHRM3	cholinergic receptor muscarinic 3
M4 or CHRM4	cholinergic receptor muscarinic 4
M5 or CHRM5	cholinergic receptor muscarinic 5
PAR1 or F2R	Protease-activated receptor 1
PAR2 or F2RL1	Protease-activated receptor 2
Growth factors	
EGF	epidermal growth factor
FGF1	fibroblast growth factor 1
HGF	hepatocyte growth factor
PDGFA	platelet-derived growth factor alpha
PDGFB	platelet-derived growth factor beta
VEGFA	vascular endothelial growth factor A
VEGFB	vascular endothelial growth factor B
PIGF	Placental growth factor
Growth factor receptors	
EGFR	epidermal growth factor receptor
HGFR or <i>MET</i>	hepatocyte growth factor receptor
VEGFR1 or <i>FLT1</i>	vascular endothelial growth factor 1
VEGFR2 or <i>KDR</i>	vascular endothelial growth factor 2
Signaling molecules	
YBX1	Y-box-binding protein 1
ENG	Endoglin

Aab dataset 2 - HD (cohort 2) and OC	Full Name
G protein-coupled receptors	
AT1R or AGTR1	angiotensin II receptor type 1
CASR	calcium-sensing receptor
CXCR3	chemokine (C-X-C) motif receptor 3
CXCR4	chemokine (C-X-C) motif receptor 4
ETAR or <i>EDNRA</i>	endothelin receptor type A
ETBR EDNRB	endothelin receptor type B
PAR1 or F2R	Protease-activated receptor 1
PAR2 or <i>F2RL1</i>	Protease-activated receptor 2
Growth factor receptors	
EGF	epidermal growth factor
FGF1	fibroblast growth factor
HGF	hepatocyte growth factor
PDGFA	platelet-derived growth factor alpha
PDGFB	platelet-derived growth factor beta
VEGFA	vascular endothelial growth factor A
VEGFB	vascular endothelial growth factor B
PIGF	Placental growth factor
Growth factor receptors	
EGFR	epidermal growth factor receptor
HGFR or <i>MET</i>	hepatocyte growth factor receptor
VEGFR1 or <i>FLT1</i>	vascular endothelial growth factor 1
VEGFR2 or KDR	vascular endothelial growth factor 2
Signaling molecules	
YBX1	Y-box-binding protein 1
Scavenger receptors	
STAB1	Stabilin-1
STAB2	Stabilin-2

Aab dataset 3 – HD (cohort 3) and AD	Full Name
G protein-coupled receptors	
ADRB1	beta-1 adrenergic receptor
ADRB2	beta-2 adrenergic receptor
C5AR1	complement component 5a receptor 1
ETAR or EDNRA	endothelin receptor type A
M1 or CHRM1	cholinergic receptor muscarinic 1
M2 or CHRM2	cholinergic receptor muscarinic 2
M3 or CHRM3	cholinergic receptor muscarinic 3
M4 or <i>CHRM4</i>	cholinergic receptor muscarinic 4
M5 or CHRM5	cholinergic receptor muscarinic 5
PAR1 or F2R	Protease-activated receptor 1
Growth factors	
PDGFA	platelet-derived growth factor alpha polypeptide
VEGFA	vascular endothelial growth factor A
Growth factor receptors	
VEGFR1 or <i>FLT1</i>	vascular endothelial growth factor 1
VEGFR2 or <i>KDR</i>	vascular endothelial growth factor 2
Neurological or AD-associated Molecules	
$\alpha_1 AR$	Alpha 1 adrenoceptor
α2AR	Alpha 2 adrenoceptor
D1R	D1 Dopamine receptor
D2SR	D2s Dopamine receptor
D3R	D3 Dopamine receptor
D42R	D42 Dopamine receptor
D44R	D44 Dopamine receptor
D47R	D47 Dopamine receptor
HT1AR	5-hydroxytryptamine receptor 1
HT2AR	5-hydroxytryptamine receptor 2A
HT2BR	5-hydroxytryptamine receptor 2B
HT2CR	5-hydroxytryptamine receptor 2C
HT5AR	5-hydroxytryptamine receptor 5
HT6R	5-hydroxytryptamine receptor 6
HT7R	5-hydroxytryptamine receptor 7
NGF	Nerve growth factor beta
	Receptor for advanced glycation end
RAGE	products
Signaling molecules	N7.1 1' 1' 4' 1
<u>ТВА1</u> Емс	r-box-binding protein 1
	Endoglin
Scavenger receptors	Stabilia 1
51AD1 STAD2	Stabilin 2
SIAD2	Staumi-2

Supplementary Table 2. Autoantibody datasets. Three datasets of autoantibodies (aab) were analyzed in sera from three healthy donor (HD) cohorts and patients with systemic sclerosis (SSc, upper left panel) ovarian cancer (OC, lower left panel) and patients with Alzheimer's disease (AD, upper right panel).

Antibodies			
Antibody targets	Fluorochrome	Clone or number	Manufacturer
CD14	PE-Cy7/Alexa Fluor 647	HCD14/ M5E2	Biolegend
CD15	Brillant Violet 510	W6D3	Biolegend
Anti-Rabbit IgG	CFL405	Sc-362252	SantaCruz
Anti-Rabbit IgG	Brillant Violet 421	Poly4064	Biolegend
EDNRA	n.a.	sc-33535	Santa Cruz
Isotype 1	n.a.	sc-3888	Santa Cruz

Supplementary Table 3. Antibody panel used for the flow cytometric analyses of EDNRA expression.

HD

SLE

SSc

GPA

RA

Supplementary Figure 1

Supplementary Figure 1. Dysregulation of autoantibody concentrations in patients with autoimmune diseases. Graphics show concentrations of aab directed against A-J) 10 different GPCRs, comparing healthy donors (HD, n=197) to patients with autoimmune diseases. A total of 249 patients with systemic lupus erythematosus (SLE), 379 with systemic sclerosis (SSc), 128 with granulomatosis with polyangiitis (GPA), and 196 with rheumatoid arthritis (RA) were screened in this phase of the investigation. However, not all patients could be screened for the 10 aab due to sample limitation.

Supplementary Figure 2. Linear discriminant analysis of autoantibody signatures differentiates healthy subjects and patients. Density plots of the linear discriminating scores show the separation between individuals belonging to the disease groups compared to healthy donors (HD). A) HD versus patients with systemic sclerosis (SSc, **Supplementary Table 1**, *Cohort 1*; **Supplementary Table 2**, *aab dataset 1*, **B**) HD versus patients with ovarian cancer (OC, **Supplementary Table 1**, *Cohort 2*; **Supplementary Table 2**, *aab dataset 2*), and **C**) HD versus patients with Alzheimer's disease (AD, **Supplementary Table 1**, *Cohort 3*; **Supplementary Table 2**, *aab dataset 3*).

Supp	lementarv	Figure	3
Dupp	cincincui y	I Igui v	~

-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	

A)

B)

-0.4

0

-0.2

0.2

0.4

0.6

0.8

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D)

F)

E)

Supplementary Figure 3. Hierarchical clustering analysis reveals autoantibody correlation signatures according to gender, age and diseases. Correlogram matrices display clusters of aab. A) Heatmap displaying clusters of aab correlations from subgroups (females and males < and \geq 65 years) of healthy donors (HD; Supplementary Table 1, *Cohort 1*; Supplementary Table 2, *aab dataset 1*). B) HD *versus* ovarian cancer (OC; Supplementary Table 1, *Cohort 2*; Supplementary Table 2, *aab dataset 2*). C) HD in relation to patients with Alzheimer's disease (AD, Supplementary Table 1, *Cohort 3*; Supplementary Table 2, *aab dataset 3*). The correlation matrices used to perform the hierarchical correlogram of OC and AD are provided as Source data. Due to the low number of healthy males < 65 years of age (HD Cohort 3), we only performed hierarchical clustering analysis of this group according to gender. Supplementary table 1 provides further details about HD and patient groups. Analysis of non-subgrouped D) HD compared with systemic sclerosis (SSc), E) HD *versus* ovarian cancer (OC), F) and HD in relation to patients with Alzheimer's disease (AD) are shown. Dendrograms on the top and the side of the correlation matrix display clusters of correlation between aab. The bar ranging from yellow to blue represents negative to positive correlations, respectively. In the heat map matrix, each small square represents pairwise correlation between aab.

GO Term	GO Biological Process	Molecules	p-value_FDR
GO:0030334	regulation of cell migration	VEGFA, HGFR, ENG, VEGFR1, CXCR3, PAR1, VEGFB, CXCR4, C3AR1, HGF, FGF1, EDNRA, VEGFR2, PDGFA, EGFR	1.26 ⁻¹²
GO:0007200	phospholipase C-activating G-protein coupled receptor signaling pathway	M5, EDNRA, CASR, M1, M3, PAR1, M2, M4, AGTR1	1.26 ⁻¹²
GO:0040017	positive regulation of locomotion	VEGFB, HGFR, CASR, VEGFR1, CXCR3, PAR1, C3AR1, HGF, FGF1, EDNRA , VEGFR2, PDGFA, EGFR	1.26 ⁻¹²

Supplementary Figure 4. Network and gene ontology analysis of autoantibody targets. To help interpret the biological meaning of a putative physiological aab network we performed gene ontology analysis of aab targets (**Extended Data Tab 2**, *aab dataset 1*) using the STRING database. **A**) Different colored lines represent different forms of relationship evidences: red lines represent the presence of fusion evidence; green lines show neighborhood evidence; blue lines display co-occurrence evidence; purple lines exhibit experimental evidence; yellow lines demonstrate text mining evidence; and light blue lines display database evidence. The red frame indicates EDNRA in the center of the network. **B**) Lower panel lists physiologic functions regulated by interactions between GPCRs and growth factors or related signaling molecules. Enriched gene ontology (GO) biological processes were considered when false discovery rate (FDR) was less than 0.05.

Supplementary Figure 5. Gating strategy for EDNRA expression. For MFI values an isotype control (Supplementary Table 3) was used to compensate for changes in the cytometry instrument sensitivity. Considering the multiple fluorochromes in the antibody panel to analyze EDNRA expression (**Supplementary Table 3**), the fluorescence minus one (FMO) control was determined when all the antibodies were present in the flow cytometry tube, except the antibody used to measure the EDNRA expression.

B)

Supplementary Figure 6. Effect of HD-IgG on migration of the human pancreatic carcinoma Colo357 cell line. Chemotaxis of $3x10^5$ (cells/well) human pancreatic carcinoma Colo357 toward 0.5 mg/mL IgG from healthy donors (HD-IgG) was analyzed using Cell based OrisTM migration assay. A) migration area was determined by analysing B) migration images with the Fiji module of Image J software. Assays were performed in quadruplicates. One of three independent experiment is shown.

Fluorescence

Supplementary Figure 7. Exposure to sitaxsentan, a potent endothelin receptor type A antagonist, has no toxic effect on neutrophils. Neutrophil apoptosis or necrosis was assessed by flow cytometric analysis. Left histogram displays the apoptotic cells stained by FITC-annexin V; middle histogram shows the necrotic cells stained by ethidium homodimer-III; right histogram demonstrates healthy donor cells stained by Hoechst. Heat-killed cells were used as experimental control. Results are representative of three independent experiments. The effect of sitaxsentan on neutrophil survival was analyzed by flow cytometry using the Apoptotic/Necrotic/Healthy Cells Detection Kit (PromoCell, Heidelberg, Germany) according to the manufacturer's instructions.

Supplementary Figure 8. Normal human IgG has no effect on respiratory burst of phagocytes and T cell proliferation (A) 300 ng/ml phorbol-12-myristate-13-acetate (PMA) but not 0.5 mg/mL healthy donor (HD)-IgG induces the respiratory burst of polymorphonuclear *neutrophils* (PMN) and monocytes (MO). White blood cells were stimulated *in vitro* in the presence of PMA for 60 min and analyzed by flow cytometry following 400 ng/ml dihydrorhodamine (DHR) 123 staining. Neutrophils and monocytes were gated according to size (forward scatter, FSC), granularity (side scatter, SSC) and pattern of CD14 expression. The median fluorescence intensity (MFI) of respiratory burst from three different experiments is shown. (B) PBMCs were isolated by Ficoll-Paque density gradient sedimentation. After 5 days at 37°C in the absence or presence of 5 μ g/ml phytohemagglutinin (PHA)/10 U/ml of IL-2 robust cell proliferation was observed, but, unaffected by HD-IgG (n = 3).

A)

P25101 Q61614 P21450 Q29010 Q95L55 W5PE99 A5A8K3	EDNRA_HUMAN EDNRA_MOUSE EDNRA_BOVIN EDNRA_PIG EDNRA_SHEEP W5PE99_SHEEP A5A8K3_RABIT	1 1 1 1 1	METLCLRASFWLALVGCVISDNPERYSTNLSNHVDDFTTFRGTELSFLVTTHOPTNLVLP MSIFCLAAYFWLTMVGGVMADNPERYSANLSSHMEDFTPFPGTEINFLGTTHRPPNLALP METFWLRLSFWVALVGGVISDNPESYSTNLSIHVDSVATFHGTELSFVVTTHOPTNLALP METFCFRVSFWVALLGCVISDNPESYSTNLSTHVDDFTTFRGTEFSLVVTTHRPTNLALP METFWLRVSFWVALVGGVISDNPESYSTNLSIHVDSVTTFRGTELSFVVTTHOPTNLALP METFLLRVSFWVALVGGVISDNPESYSTNLSIHVDSVTTFRGTELSFVVTTHOPTNLALP METFLLRVSFWVALVGGVISDNPESYSTNLSIHVDSVTTFRGTELSFVVTTHOPTNLALP METFCLRASFWLVLIGCVISDNPERYSTNLSNHMDEFTTFHGPELNLLVTTHRPTNLVLP	60 60 60 60 60 60
P25101 Q61614 P21450 Q29010 Q95L55 W5PE99 A5A8K3	EDNRA_HUMAN EDNRA_MOUSE EDNRA_BOVIN EDNRA_PIG EDNRA_SHEEP W5PE99_SHEEP A5A8K3_RABIT	61 61 61 61 61 61 61	SNGSMHNYCPQQTKITSAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIA SNGSMHGYCPQQTKITAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIA SNGSMHNYCPQQTKITSAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIA SNGSMHNYCPQQTKITSAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIA SNGSMHNYCPQQTKITSAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIA SNGSMHNYCPQQTKITSAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIA SNGSMHNYCPQQTKITSAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIA	120 120 120 120 120 120 120
P25101 Q61614 P21450 Q29010 Q95L55 W5PE99 A5A8K3	EDNRA_HUMAN EDNRA_MOUSE EDNRA_BOVIN EDNRA_PIG EDNRA_SHEEP W5PE99_SHEEP A5A8K3_RABIT	121 121 121 121 121 121 121 121	SLALGDLIYVVIDLPINVFKLLAGRWPFDHNDFGVFLCKLFPFLQKSSVGITVLNLCALS SLALGDLIYVVIDLPINVFKLLAGRWPFDHNDFGVFLCKLFPFLQKSSVGITVLNLCALS SLALGDLIYVVIDLPINVFKLLAGRWPFEONDFGVFLCKLFPFLQKSSVGITVLNLCALS SLALGDLIYVVIDLPINVFKLLAGRWPFEONDFGVFLCKLFPFLQKSSVGITVLNLCALS SLALGDLIYVVIDLPINVFKLLAGRWPFEONDFGVFLCKLFPFLQKSSVGITVLNLCALS SLALGDLIYVVIDLPINVFKLLAGRWPFEONDFGVFLCKLFPFLQKSSVGITVLNLCALS SLALGDLIYVVIDLPINVFKLLAGRWPFEONDFGVFLCKLFPFLQKSSVGITVLNLCALS SLALGDLIYVVIDLPINVFKLLAGRWPFEONDFGVFLCKLFPFLQKSSVGITVLNLCALS	180 180 180 180 180 180
P25101 Q61614 P21450 Q29010 Q95L55 W5PE99 A5A8K3	EDNRA_HUMAN EDNRA_MOUSE EDNRA_BOVIN EDNRA_PIG EDNRA_SHEEP W5PE99_SHEEP A5A8K3_RABIT	181 181 181 181 181 181 181	VDRYRAVASWSRVQGIGIPLVTAIEIVSIWILSFILAIPEAIGFVMVPFEYRGEQHKTCM VDRYRAVASWSRVQGIGIPLITAIEIVSIWILSFILAIPEAIGFVMVPFEYKGAQHRTCM VDRYRAVASWSRVQGIGIPLVTAIEIVSIWILSFILAIPEAIGFVMVPFEYKGAQHRTCM VDRYRAVASWSRVQGIGIPLVTAIEIVSIWILSFILAIPEAIGFVMVPFEYKGAQHRTCM VDRYRAVASWSRVQGIGIPLVTAIEIVSIWILSFILAIPEAIGFVMVPFEYKGAQHRTCM VDRYRAVASWSRVQGIGIPLVTAIEIVSIWILSFILAIPEAIGFVMVPFEYKGAQHRTCM VDRYRAVASWSRVQGIGIPLVTAIEIVSIWILSFILAIPEAIGFVMVPFEYKGAQHRTCM VDRYRAVASWSRVQGIGIPLVTAIEIVSIWILSFILAIPEAIGFVMVPFEYKGAQHRTCM	240 240 240 240 240 240 240
P25101 Q61614 P21450 Q29010 Q95L55 W5PE99 A5A8K3	EDNRA_HUMAN EDNRA_MOUSE EDNRA_BOVIN EDNRA_PIG EDNRA_SHEEP W5PE99_SHEEP A5A8K3_RABIT	241 241 241 241 241 241 241 241	LNATSKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ LNATSKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ LNATSKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ LNATSKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ LNATSKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ LNATSKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ LNATSKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ	300 300 300 300 300 300 300
P25101 Q61614 P21450 Q29010 Q95L55 W5PE99 A5A8K3	EDNRA_HUMAN EDNRA_MOUSE EDNRA_BOVIN EDNRA_PIG EDNRA_SHEEP W5PE99_SHEEP A5A8K3_RABIT	301 301 301 301 301 301 301	RREVAKTVFCLVVIFALCWFPLHLSRILKKTVYNEMDKNRCELLSFLLLMDYIGINLATM RREVAKTVFCLVVIFALCWFPLHLSRILKKTVYDEMDKNRCELLSFLLLMDYIGINLATM RREVAKTVFCLVVIFALCWFPLHLSRILKKTVYDEMDTNRCELLSFLLLMDYIGINLATM RREVAKTVFCLVVIFALCWFPLHLSRILKKTVYDEMDKNRCELLSFLLLMDYIGINLATM RREVAKTVFCLVVIFALCWFPLHLSRILKKTVYDEMDTNRCELLSFLLLMDYIGINLATM RREVAKTVFCLVVIFALCWFPLHLSRILKKTVYDEMDTNRCELLSFLLLMDYIGINLATM RREVAKTVFCLVVIFALCWFPLHLSRILKKTVYDEMDTNRCELLSFLLLMDYIGINLATM	360 360 360 360 360 360
P25101 Q61614 P21450 Q29010 Q95L55 W5PE99 A5A8K3	EDNRA_HUMAN EDNRA_MOUSE EDNRA_BOVIN EDNRA_PIG EDNRA_SHEEP W5PE99_SHEEP A5A8K3_RABIT	361 361 361 361 361 361 361	NSCINPIALYFVSKKFKNCFQSCLCCCCYQSKSLMTSVPMNGTSIQWKNHDQNNHNTDRS NSCINPIALYFVSKKFKNCFQSCLCCCCHQSKSLMTSVPMNGTSIQWKNHEQNNHNTERS NSCINPIALYFVSKKFKNCFQSCLCCCCYQSKSLMTSVPMNGTSIQWKNHEQNNHNTERS NSCINPIALYFVSKKFKNCFQSCLCCCCYQSKSLMTSVPMNGTSIQWKNPEQNNHNTERS NSCINPIALYFVSKKFKNCFQSCLCCCCYQSKSLMTSVPMNGTSIQWKNPEQNNHNTERS NSCINPIALYFVSKKFKNCFQSCLCCCCYQSKSLMTSVPMNGTSIQWKNPEQNNHNTERS NSCINPIALYFVSKKFKNCFQSCLCCCCYQSKSLMTSVPMNGTSIQWKNPEQNNHNTERS	420 420 420 420 420 420 420
P25101 Q61614 P21450 Q29010 Q95L55 W5PE99 A5A8K3	EDNRA_HUMAN EDNRA_MOUSE EDNRA_BOVIN EDNRA_PIG EDNRA_SHEEP WSPE99_SHEEP A5A8K3_RABIT	421 421 421 421 421 421 421 421	SHKDSMN SHKDSIN SHKDSIN SHKDSIN SHKDSIN	427 427 427 427 427 427 427

P25101 Q61614	EDNRA_HUMAN EDNRA_MOUSE	1 1	METLCLRASFWLALVGCVISDNPERYSTNLSNHVDDFTTFRGTELSFLVTTHOPTNLVLP MSIFCLAAYFWLTMVGGVMADNPERYSANLSSHMEDFTPFPGTEINFLGTTHRPPNLALP * * * * * ***************************	60 60
P25101	EDNRA_HUMAN	61	SNGSMHNYCPQQTKITSAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIA	120
Q61614	EDNRA_MOUSE	61	SNGSMHGYCPQQTKITTAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIA	120
P25101	EDNRA_HUMAN	121	SLALGDLIYVVIDLPINVFKLLAGRWPFDHNDFGVFLCKLFPFLQKSSVGITVLNLCALS	180
Q61614	EDNRA_MOUSE	121	SLALGDLIYVVIDLPINVFKLLAGRWPFDHNDFGVFLCKLFPFLQKSSVGITVLNLCALS	180
P25101	EDNRA_HUMAN	181	VDRYRAVASWSRVQGIGIPLVTAIEIVSIWILSFILAIPEAIGFVMVPFEYRGEQHKTCM	240
Q61614	EDNRA_MOUSE	181	VDRYRAVASWSRVQGIGIPLITAIEIVSIWILSFILAIPEAIGFVMVPFEYKGELHRTCM	240
P25101	EDNRA_HUMAN	241	LNATSKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ	300
Q61614	EDNRA_MOUSE	241	LNATSKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ	300
P25101	EDNRA_HUMAN	301	RREVAKTVFCLVVIFALCWFPLHLSRILKKTVYNEMDKNRCELLSFLLLMDYIGINLATM	360
Q61614	EDNRA_MOUSE	301	RREVAKTVFCLVVIFALCWFPLHLSRILKKTVYDEMDKNRCELLSFLLLMDYIGINLATM	360
P25101	EDNRA_HUMAN	361	NSCINPIALYFVSKKFKNCFQSCLCCCCYQSKSLMTSVPMNGTSIQWKNHDQNNHNTDRS	420
Q61614	EDNRA_MOUSE	361	NSCINPIALYFVSKKFKNCFQSCLCCCCHQSKSLMTSVPMNGTSIQWKNQEQNNHNTERS	420
P25101 Q61614	EDNRA_HUMAN EDNRA_MOUSE	421 421	SHKDSMN SHKDSMN ******	427 427

Supplementary Figure 9. Sequence alignment of endothelin receptor type A. A) A multiple sequence alignment of endothelin receptor type A (EDNRA) show high conservation (87.58% identical) among different species and between **B**) *Homo sapiens* and *Mus musculus* (92.27% identical). Alignment of EDNRA was performed using Clustal Omega program (https://www.uniprot.org/align/) and EDNRA UniProt identifiers.