## Supporting information for: Cr<sub>2.37</sub>Ga<sub>3</sub>Se<sub>8</sub>: A Quasi-Two-Dimensional Magnetic Semiconductor

Yazhou Zhou,<sup>a‡</sup> Lingyi Xing,<sup>b‡</sup> Gregory J. Finkelstein,<sup>c</sup> Xin Gui,<sup>a</sup> Madalynn G. Marshall,<sup>a</sup> Przemyslaw Dera,<sup>c</sup> Rongying Jin,<sup>b</sup> Weiwei Xie <sup>a\*</sup>

<sup>a</sup> Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA 70803

<sup>b</sup> Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA 70803

<sup>c</sup> Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, HI, USA 96822

## Content

| <b>Table S1.</b> Bonds length (Å) in $Cr_{2.37}Ga_3Se_8$ at room temperature                          | S2 |
|-------------------------------------------------------------------------------------------------------|----|
| Table S2. Anisotropic thermal displacements of Cr <sub>2.37</sub> Ga <sub>3</sub> Se <sub>8</sub>     | S2 |
| Figure S1. EDS of Cr <sub>2.37</sub> Ga <sub>3</sub> Se <sub>8</sub>                                  | S3 |
| Table S3. Element ratio of Cr <sub>2.37</sub> Ga <sub>3</sub> Se <sub>8</sub> resulting from EDS      | S3 |
| Figure S2. Experimental and calculated X-ray diffraction patterns with different models               | S4 |
| Table S4. Lattice parameters with LeBail fitting                                                      | S4 |
| Figure S3. Band structure of Cr <sub>2.5</sub> Ga <sub>3</sub> Se <sub>8</sub> with spin polarization |    |

|     | Se1        | Se2                       | Se3        | Se4        | Se5      | Se6        |
|-----|------------|---------------------------|------------|------------|----------|------------|
| Gal | 2.370(2)   | 2.425(2)                  |            | 2.368(3)   | 2.423(2) |            |
| Ga2 | 2.377(3)×2 |                           | 2.401(3)   |            | 2.442(3) |            |
| Cr1 |            | 2.524(3)×2,<br>2.559(3)×2 | 2.588(3)   |            |          | 2.513(3)   |
| Cr2 |            | 2.549(1)×2                | 2.615(3)×2 |            |          | 2.500(3)×2 |
| Cr3 | 2.701(2)×4 |                           |            | 2.727(2)×2 |          |            |

Table S1. Bonds length (Å) in  $Cr_{2.37}Ga_3Se_8$  at room temperature

 Table S2. Anisotropic thermal displacements for Cr<sub>2.37</sub>Ga<sub>3</sub>Se<sub>8</sub> at room temperature

| Atom | U11       | U22       | U33       | U23        | U13        | U12        |
|------|-----------|-----------|-----------|------------|------------|------------|
| Se1  | 0.0109(4) | 0.0181(5) | 0.0217(5) | -0.0105(4) | 0.0042(3)  | 0.0001(4)  |
| Se2  | 0.0091(4) | 0.0068(4) | 0.0082(4) | -0.0005(3) | 0.0042(3)  | -0.0004(3) |
| Se3  | 0.0091(4) | 0.0074(5) | 0.0070(6) | 0          | 0.0028(4)  | 0          |
| Se4  | 0.0402(8) | 0.0083(6) | 0.0262(8) | 0          | 0.0254(7)  | 0          |
| Se5  | 0.0093(7) | 0.0064(5) | 0.0116(6) | 0          | 0.0045(4)  | 0          |
| Se6  | 0.0098(5) | 0.0077(5) | 0.0096(6) | 0          | 0.0036(4)  | 0          |
| Ga1  | 0.0171(5) | 0.0132(5) | 0.0158(5) | 0.0028(4)  | 0.0081(4)  | 0.0011(4)  |
| Ga2  | 0.0132(6) | 0.0119(6) | 0.0110(7) | 0          | 0.0028(5)  | 0          |
| Cr1  | 0.0084(8) | 0.0063(8) | 0.0104(9) | 0          | 0.0041(7)  | 0          |
| Cr2  | 0.0089(8) | 0.0068(9) | 0.0083(9) | 0          | 0.0042(7)  | 0          |
| Cr3  | 0.009(2)  | 0.009(2)  | 0.007(2)  | 0          | 0.0003(14) | 0          |



**Figure S1.** Two pieces of  $Cr_{2.37}Ga_3Se_8$  sample are used to obtain energy dispersive spectrum. Three points and two areas in each sample are focused to get spectrum. Results of element ratio are displaying in *Table S3*.

|          | Areas       | Cr      | Ga      | Se      |
|----------|-------------|---------|---------|---------|
| Sample A | Free Draw 1 | 2.38(3) | 2.95(5) | 8.00(8) |
|          | Free Draw 2 | 2.39(5) | 3.05(5) | 8.00(9) |
|          | EDS Spot 4  | 2.36(3) | 2.95(5) | 8.00(9) |
|          | EDS Spot 5  | 2.39(1) | 3.10(2) | 8.00(3) |
|          | EDS Spot 6  | 2.36(1) | 3.05(2) | 8.00(4) |
| Sample B | Free Draw 1 | 2.34(5) | 2.99(7) | 8.00(7) |
|          | Free Draw 2 | 2.35(6) | 3.02(4) | 8.0(1)  |
|          | EDS Spot 1  | 2.31(5) | 2.93(6) | 8.00(5) |
|          | EDS Spot 2  | 2.36(3) | 3.00(8) | 8.0(1)  |
|          | EDS Spot 3  | 2.39(4) | 3.05(5) | 8.00(4) |

Table S3. Element ratio of Cr<sub>2.37</sub>Ga<sub>3</sub>Se<sub>8</sub> sample from energy dispersive spectrum



**Figure S2.** Compared with experiment curve, calculated X-ray diffraction patterns using different crystal structures represent by  $Cr_{2.37}Ga_3Se_8$  (monoclinic structure) and  $Cr_{1.24}Ga_{1.4}Se_4$  (hexagonal structure) are clearly different in 20 range around 17° and 29.5°, emphasized by dashed box. Importantly, these peaks in experiment pattern do not come from  $Ga_2Se_3$  impurity.

Table S4. Lattice parameters for LeBail refinement in Cr<sub>2.37</sub>Ga<sub>3</sub>Se<sub>8</sub> powder X-ray diffraction

| <i>a</i> (Å) | <b>b</b> (Å) | <i>c</i> (Å) | α   | β           | γ   |
|--------------|--------------|--------------|-----|-------------|-----|
| 12.9711(4)   | 7.5269(2)    | 13.9813(4)   | 90° | 117.281(1)° | 90° |



**Figure S3.** Band structure of  $Cr_{2.5}Ga_3Se_8$  with spin polarization. Due to Cr vacancy on 2*b* site, Fermi level of  $Cr_{2.37}Ga_3Se_8$  should be shifted to the red dash line.