
How Detrimental is Coincidental Correctness to

Defect Detection?

Anonymous Author(s)

Abstract— According to the PIE and RIP models, three conditions
must be satisfied for program failure to occur: 1) the defect’s
location must execute or be reached; 2) the program’s state must
become infected; and 3) the infection must propagate to the
output. Weak coincidental correctness (or weak CC) occurs when
the program produces the correct output, while condition 1) is
satisfied but 2) and 3) are not satisfied. Strong coincidental
correctness (or strong CC) occurs when the output is correct, while
both conditions 1) and 2) are satisfied, but not 3). In the literature,
typically coincidental correctness (CC) refers to strong CC.

Researchers have recognized the presence of CC and analytically
demonstrated that it is a safety-reducing factor for spectrum-
based fault localization (SBFL). However, they did not empirically
validate that fact, which we do in this paper. Specifically, using the
Defects4J benchmark, we comparatively evaluated the
performance of SBFL using 52 different suspiciousness metrics
when: a) both weak and strong CC tests are present (TwsCC); b) no
weak nor strong CC tests are present (TnoCC); c) weak CC tests are
present (TwCC); and d) strong CC tests are present (TsCC). Similarly,
using five multi-fault Java programs, we evaluated the
performance of greedy Test Suite Reduction (TSR) in the presence
and absence of CC. That is, we empirically studied the impact of
CC on defect detection using two commonly used techniques.

Using 49 out of the 52 metrics, our results showed with statistical
significance that SBFL performs better when using TwCC, TsCC, and
TnoCC than when using TwsCC. They also showed that TnoCC yields
the best performance followed by TsCC, and then TwCC. However,
the effect sizes were mostly trivial, except for three metrics.
Compared to TwsCC, our TSR results showed that TnoCC, TsCC, and
TwCC resulted in respectively %49, %47, and %6 more detected
defects. Therefore, our empirical study suggests that CC is
detrimental to defect detection, and that weak CC is more
detrimental than strong CC.

Keywords— coincidental correctness, failed error propagation,

fault masking, spectrum-based fault localization, coverage-based

fault localization, test suite reduction, test suite minimization

I. INTRODUCTION

Voas presented the PIE model [33] that identifies three
conditions to be satisfied for program failure to occur: 1) the
defect is executed, 2) the program is infected, and 3) the
infection has propagated to the output. Amman and Offutt
supported this same notion in their RIP (reachability-infection-
propagation) model described in [3]. They later extended that
model into the RIPR model by adding the Reveal condition,
which requires the incorrect final infected state to be actually
observed (e.g., by the tester or a test oracle) [4]. Coincidental

Correctness (CC) [14][17][34] occurs when the program
produces the correct output, while conditions 1) and 2) are
satisfied but not 3). Some researchers referred to CC using
different terms such as fault masking [12] and failed error
propagation [5]. Others [28] differentiated two variants of it that
we adopt in this paper: a) Strong Coincidental Correctness (or
strong CC), which is identical to the original definition; and b)
Weak Coincidental Correctness (or weak CC), which occurs
when the program produces the correct output, while condition
1) is satisfied but 2) and 3) are not satisfied.

Coincidental correctness might result in overestimating the
reliability of programs as it hides bugs that might subsequently
surface following unrelated code modifications. In addition, it
might reduce the effectiveness of various quality enhancing
techniques. In fact, several researchers have recognized the
negative impact of coincidental correctness on the effectiveness
of defect detection techniques [6][7][8][13][16][17][34]. Others
have empirically shown that both weak and strong CC are
prevalent in widely used benchmarks [28], and have analytically
demonstrated that weak CC is a safety reducing factor in
spectrum-based fault localization (SBFL) [28]; i.e., when weak
CC tests are present, the defect will be assigned a suspiciousness
score smaller than when they are not present. However, we are
not aware of any major empirical study that assessed the impact
of CC (in either of its forms) on SBFL or any other defect
detection technique. This paper achieves that by studying the
impact of weak CC and strong CC on the effectiveness of two
widely used defect detection techniques, namely, SBFL and
coverage-based Test Suite Reduction (TSR) [40][32][27].

Our study considers the following four categories of test
suites:

1) TwsCC: both weak and strong CC tests are present.

2) TnoCC: no weak nor strong CC tests are present.

3) TwCC: weak CC tests are present (but no strong CC tests).

4) TsCC: strong CC tests are present (but no weak CC tests).
For SBFL, we use the Defects4J benchmark and 52 existing
suspiciousness metrics. For TSR, we use five multi-fault Java
programs and a commonly used greedy TSR technique. Our goal
is to assess how detrimental CC is on defect detection by
answering the following research questions:

RQ1: Does SBFL perform better when using TwCC, TsCC,
or TnoCC than when using TwsCC?
RQ2: Does TSR perform better when using TwCC, TsCC,
or TnoCC than when using TwsCC?

The main contributions of our work are as follows:
 Quantifying the impact of coincidental correctness on two

commonly used defect detection techniques, namely,
SBFL and TSR.

 Considering both forms of coincidental correctness, weak
CC and strong CC.

 Identifying the SBFL metrics that are most resilient to CC,
and those that are most vulnerable. For example, Overlap
[29] and Russel & Rao [29] seemed unaffected by CC,
whereas Fossum [36], Tarwid [36], and Ochiai [2] were
highly affected.

 Most importantly, this paper provides empirical evidence
that coincidental correctness is harmful to defect
detection, which provides motivation for researchers to
investigate effective solutions to mitigate its effect.

Section II provides a motivating example (borrowed from
[1]) illustrating how CC could potentially reduce the
effectiveness of SBFL, TSR, and test case prioritization.
Sections III and IV respectively present our SBFL and TSR
empirical results. Section V surveys related work, and Section
VI concludes.

II. MOTIVATING EXAMPLE

This example illustrates how CC can have a negative impact
on SBFL, TSR, and test case prioritization. The function shown
in Figure 1 computes the median of three input numbers; it is
frequently used in SBFL literature [23]. The defect is at Line 6,
which assigns y to m as opposed to assigning it x. Figure 1 also
shows six test cases and their corresponding statement coverage
information. The only failing test case is t6, which as expected,
executes the defect at Line 6. Meanwhile, t1 also executes the
defect at Line 6 but outputs the correct result, which makes it a
CC test case. t1 is a weak CC test as opposed to a strong CC test
since it executes the defect but does not cause an infection at
Line 6. It erroneously assigns y to m as opposed to assigning x,

but since x and y are both 3, the program state does not get
infected.

The fact that t1 is a CC test diminishes the correlation
between the execution of Line 6 and failure, which translates
into lessening the effectiveness of SBFL. In other words,
including t1 in the test suite yields a suspiciousness score at Line
6 that is lower than the score computed when t1 is excluded. For
example, the value of the Tarantula suspiciousness score [23]
for Line 6 is 0.833 when t1 is included and 1.0 when excluded.

A widely adopted TSR approach discards redundant tests
while ensuring that the reduced test suite also covers the
program elements covered by the original test suite. In our
example, the test suite would be reduced to T1 = {t1, t2, t3, t4} or
to T2 = {t2, t3, t4, t6} since these are the only minimal test suites
that cover all statements covered by the original test suite.
Consequently, there will only be a 50% chance that the reduced
test suite will reveal the defect since: 1) T1 and T2 are equally
likely to be generated; and 2) only T2 includes the failing test t6.
Excluding the weak CC test t1 from the original test suite would
mean that only T2 will be generated by test suite reduction;
clearly, a more desirable outcome.

A classical test case prioritization approach gives higher
execution priority to the test cases that cover the most not yet
covered program elements. A large number of prioritization
outcomes are possible for our example, of which we list only
two that represent extreme cases, namely, T1 = <t1, t3, t4, t2, t5, t6>
and T2 = <t6, t3, t4, t2, t5, t1>. Clearly, T2 is superior to T1, since the
defect is revealed by the first executed test in T2 as opposed to
the last executed test in T1. Here also, excluding t1 from the
original test suite would result in a more effective prioritization.
Actually, in case t1 is excluded, t6 will always be executed either
first or second.

III. IMPACT OF CC ON SBFL

A. SBFL Techniques

Spectrum-based fault localization (or SBFL) assigns each

covered program element a suspiciousness score reflecting its

correlation with failure [2][13][22][25][26][30], it then provides

the developer with a list of these elements ranked based on their

likelihood of being faulty. Typically, SBFL techniques use

statement coverage, but they might also use other types of

coverage, such as branch and def-use. The experiments

conducted in this paper involve statement coverage and 52

SBFL suspiciousness metrics that we identified in recent SBFL

literature. The computation of these metrics depends on one or

more of the following entities:

 𝑎𝑒𝑝: The number of passing test cases that execute the

profile element.

 𝑎𝑒𝑓: The number of failing test cases that execute the

profile element.

 𝑎𝑛𝑝: The number of passing test cases that do no execute

the profile element.

 𝑎𝑛𝑓: The number of failing test cases that do not execute

the profile element.

int median(int x, int y, int z) {

Test Cases

t1 t2 t3 t4 t5 t6

3
,

3
,

5

1
,

2
,

3

3
,

2
,

1

5
,

5
,

5

5
,

3
,

4

2
,

1
,

3

1: int m = z;      

2: if (y < z)      

3: if (x < y)    

4: m = y; 

5: else if (x<z)   

6: m = y; // bug: m = x;  

7: else  

8: if (x > y)  

9: m = y; 

10: else if (x>z) 

11: m = x;

12: return m;
}

P P P P P F

Figure 1. Java code and corresponding statement coverage

information

 𝑃 or (aep + anp): The total number of passing test cases.

 𝐹 or (aef + anf): The total number of failing test cases.

For example, the Ochiai [2] suspiciousness metric takes on the

following form:
𝑎𝑒𝑓

√(𝑎𝑒𝑓+𝑎𝑛𝑓)(𝑎𝑒𝑓+𝑎𝑒𝑝)

Table 1 lists all of the 52 suspiciousness metrics we used. Note
that we excluded any metric that did not involve P, or aep. The
reason is that for such metric the presence or absence of CC test
cases will have no effect on the computed value. For example,
given a test suite that contains nCC coincidentally correct test
cases, i.e., tests that executed the faulty location but did not
induce a failure. To account for the presence of these CC tests,
aep must be replaced by (aep ˗ nCC) to arrive at a more faithful
suspiciousness value [28] of the faulty location. Considering the
Ample [13] and Binary [29] metrics below:

Ample =|
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
 −

𝑎𝑒𝑝

𝑎𝑒𝑝+𝑎𝑛𝑝
|, Binary = {

0 if 𝑎𝑒𝑓 < 𝐹

1 if 𝑎𝑒𝑓 = 𝐹

A non-zero value of nCC will affect Ample (through aep) but not
Binary, this is why our study includes Ample but not Binary (see
Table 1).

In most cases, the developer is not interested in the raw

suspiciousness scores but in the ranked list of suspicious

program locations instead. Accordingly, in order to quantify the

effectiveness of SBFL, we compute the EXAM score [35],

which reflects the percentage of lines that are ranked higher than

the faulty location. That is, a lower EXAM score indicates better

performance. In case the faulty line is tied with other lines w.r.t.

suspiciousness score, we rank it in the middle of them.

Finally, our instrumentation is carried out at the Java

bytecode level using the ASM framework, whereas the ranking

is conducted at the Java line level. The reason stems from the

fact that it is easier to present bug locations in terms of readable

Java lines as opposed to bytecode lines. Furthermore, the

Defects4J benchmark provides the fault locations in the context

of Java lines.

B. Subject Programs

The subject programs comprised 5 libraries from the
Defects4J benchmark: JFreeChart (Chart), Closure, Apache
commons-lang (Lang), Apache commons-math (Math), and
Joda-Time (Time), with a total count of 357 versions, each
containing a single bug. Our study also relies on the availability
of test suites in which each test case is classified as weak CC,
strong CC, failing, or true passing (a non-CC passing test). Abou
Assi et al [1] extended the Defect4J benchmark in order to
provide such information. They manually classified each test
case under one of the above categories. We make use of such
information to build TwsCC, TnoCC, TsCC, and TwCC for each version
we included in our study. It is worth noting that compared to the
failing tests, the numbers of CC tests they identified were
considerable. For example, executing the 357 test suites from all
five libraries on their respective defective versions involved 580
failures, 4187 strong CC tests, 4821 weak CC tests, and 563,314
non-CC passing tests [1]. Out of the 357 versions, we ignore 30
versions due to incomplete CC information or profiling errors.

C. RQ1: Does SBFL perform better when using TwCC, TsCC,

or TnoCC than when using TwsCC?

We computed the EXAM score for each of the versions
using each of the 52 SBFL metrics and each of the four different
categories of test suites. The plots in Figure 2 contrast the
EXAM scores for when TwsCC is used to when TnoCC is used, i.e.,
it shows for each metric the effect of discarding both weak and
strong CC tests. Similarly, Figure 3 shows the same type of
information but in relation to TwCC, i.e., it shows the effect of
discarding the strong CC tests while keeping the weak CC tests.
For space consideration, we show the plots associated with TsCC
in the online appendix [41]. Tables 2-4 provide summarized
statistics about all three sets of plots, namely, the p-values and
effect sizes related to each plot. For example, Table 2 shows with
statistical significance but negligible effect size that, for 46
metrics, SBFL performs better when using TnoCC than when
using TwsCC.

Each scatter plot in Figure 2 is associated with one of the 52
SBFL metrics. The green data points correspond to when the
EXAM score improved (got smaller) when discarding the weak
and strong CC tests. The red data points correspond to when the
EXAM score worsened; the blue data points correspond to when
the score remained unchanged. Note how the blue data points
fall on the lines dividing the plots. Also, each plot is annotated
with the p-value and the effect size computed according to Cliff’s
delta [31], which is a non-parametric measure that quantifies
whether the elements in one group are larger than those of
another group. The effect size is considered trivial (|delta| <
0.147), small (0.147 ≤ |delta| < 0.33), moderate (0.33 ≤ |delta| <
0.474), or large (> 0.474).
We now summarize our results related to discarding both weak
and strong CC tests (TnoCC) based on Figure 2 and Table 2:

1) Two metrics were not affected by the presence of weak
and strong CC tests, namely, Overlap [29] and Russel &
Rao [29]. Note how the corresponding plots only show
blue data points, a p-value of 1, and an effect size of 0.
These two metrics were resilient to CC despite the fact
that they depend on aep.

2) Most metrics exhibited few cases in which the EXAM
score slightly worsened; i.e., red data points showing
right above the dividing line. However, Michael [36]
additionally exhibited few red points noticeably above
the dividing line, reflected in a p-value of 0.927, and an
effect size of 0.004.

3) The remaining 49 metrics benefited from discarding the
weak and strong CC tests to varying extents. We list
them in descending order, i.e., in the order of being most
vulnerable to the presence of weak and strong CC tests:

a. Fossum and Tarwid [36] exhibited a p-value of
0, and moderate effect sizes of 0.387 and 0.421,
respectively.

b. Ochiai exhibited a p-value of 0, and a small
effect size of 0.147.

c. Forty-six metrics exhibited a p-value of 0 and
trivial effect sizes in the range [0.004, 0.119].

Figure 3 and Table 4 show the results related to discarding the
strong CC tests while keeping the weak CC tests (TwCC):

1) Here also Overlap and Russel & Rao were not affected
by the presence of weak CC tests, and similarly
exhibiting a p-value of 1, and an effect size of 0.

2) Michael [36] also exhibited few red points noticeably
above the dividing line. However, the p-value decreased
to 0.844 (still not significant), and the effect size
increased to 0.004 (still trivial).

3) Fossum and Tarwid [36] exhibited a p-value of 0, and
small effect sizes of 0.153 and 0.178, respectively.
Noting that in the context of TnoCC, their effective sizes
were moderate.

4) The remaining 47 metrics exhibited trivial effect sizes,
while the p-value was 0 for 23 of them, and < 0.01 for
13 of them.

Tarantula [23]:

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
+

𝑎𝑒𝑝

𝑎𝑒𝑝+𝑎𝑛𝑝

Ochiai [2]:

𝑎𝑒𝑓

√(𝑎𝑒𝑓+𝑎𝑛𝑓)(𝑎𝑒𝑓+𝑎𝑒𝑝)
 Ochiai2 [29]:

𝑎𝑒𝑓𝑎𝑛𝑝

√(𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑛𝑓)(𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑝 + 𝑎𝑛𝑝)

Kulczynski [10]:
𝑎𝑒𝑓

𝑎𝑛𝑓+𝑎𝑒𝑝
 Kulczynski2 [29]:

1

 2
(

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
+

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑒𝑝
) 𝐷𝑠𝑡𝑎𝑟2 [35]:

(𝑎𝑒𝑓)
2

𝑎𝑛𝑓+𝑎𝑒𝑝

𝐷𝑠𝑡𝑎𝑟3 [35]:
(𝑎𝑒𝑓)

3

𝑎𝑛𝑓+𝑎𝑒𝑝
 O [29] : {

−1 if 𝑎𝑛𝑓 > 0

𝑎𝑛𝑝 otherwise
 Op [29]: 𝑎𝑒𝑓 −

𝑎𝑒𝑝

𝑎𝑒𝑝+𝑎𝑛𝑝+1

Wong2 [37]: 𝑎𝑒𝑓 − 𝑎𝑒𝑝

Wong3 [37]: 𝑎𝑒𝑓 − ℎ, 𝑤ℎ𝑒𝑟𝑒

ℎ = {

𝑎𝑒𝑝 𝑖𝑓 𝑎𝑒𝑝 ≤ 2

2 + 0.1(𝑎𝑒𝑝 − 2) 𝑖𝑓 2 < 𝑎𝑒𝑝 ≤ 10

2.8 + 0.001(𝑎𝑒𝑝 − 10) 𝑖𝑓 𝑎𝑒𝑝 > 10

Wong3’ [29]: {

−1000 𝑖𝑓 𝑎𝑒𝑝 + 𝑎𝑒𝑓 = 0

𝑊𝑜𝑛𝑔3 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

CBI Inc [29]:
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑒𝑝
−

𝑎𝑒𝑓+𝑎𝑛𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑛𝑝+𝑎𝑒𝑝
 CBI Log [29]:

2

1

𝐶𝐵𝐼 𝐼𝑛𝑐
+

log (𝑎𝑒𝑓+𝑎𝑛𝑓)

log (𝑎𝑒𝑓)

CBI Sqrt [29]:

2

1

𝐶𝐵𝐼 𝐼𝑛𝑐
+

√𝑎𝑒𝑓+𝑎𝑛𝑓

√𝑎𝑒𝑓

Russel & Rao [29]:
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝+𝑎𝑛𝑝
 Tarwid [36]:

(𝐹+𝑃)(𝑎𝑒𝑓)−(𝑎𝑒𝑓+𝑎𝑛𝑓)(𝑎𝑒𝑓+𝑎𝑒𝑝)

(𝐹+𝑃)(𝑎𝑒𝑓)+(𝑎𝑒𝑓+𝑎𝑛)(𝑎𝑒𝑓+𝑎𝑒𝑝)
 Jaccard [2]:

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝

Zoltar [20]:
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝+
10000𝑎𝑛𝑓𝑎𝑒𝑝

𝑎𝑒𝑓

 Anderberg [29]:
𝑎𝑒𝑓

𝑎𝑒𝑓+2(𝑎𝑛𝑓+𝑎𝑒𝑝)
 Sørensen-Dice [29]:

2𝑎𝑒𝑓

2𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝

Dice [29]:
2𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝
 Goodman [29]:

2𝑎𝑒𝑓−𝑎𝑛𝑓−𝑎𝑒𝑝

2𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝
 Barinel [29]:

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑒𝑝

Hamann [29]:
𝑎𝑒𝑓+𝑎𝑛𝑝−𝑎𝑛𝑓−𝑎𝑒𝑝

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝+𝑎𝑛𝑝
 Simple Matching [29]:

𝑎𝑒𝑓+𝑎𝑛𝑝

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝+𝑎𝑛𝑝
 Sokal [29]:

2(𝑎𝑒𝑓+𝑎𝑛𝑝)

2(𝑎𝑒𝑓+𝑎𝑛𝑝)+𝑎𝑛𝑓+𝑎𝑒𝑝

Rogers & Tan. [29]:
𝑎𝑒𝑓+𝑎𝑛𝑝

𝑎𝑒𝑓+𝑎𝑛𝑝+2(𝑎𝑛𝑓+𝑎𝑒𝑝)
 Hamming [29]: 𝑎𝑒𝑓 + 𝑎𝑛𝑝 Euclid [29]: √𝑎𝑒𝑓 + 𝑎𝑛𝑝

Rogot1 [29]:
1

2
(

𝑎𝑒𝑓

2𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝
+

𝑎𝑛𝑝

2𝑎𝑛𝑝+𝑎𝑛𝑓+𝑎𝑒𝑝
)

Rogot2 [29]:

1

4
(

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑒𝑝
+

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
+

𝑎𝑛𝑝

𝑎𝑛𝑝+𝑎𝑒𝑝
+

𝑎𝑛𝑝

𝑎𝑛𝑝+𝑎𝑛𝑓
)

M1 [29]:
𝑎𝑒𝑓+𝑎𝑛𝑝

𝑎𝑛𝑓+𝑎𝑒𝑝

M2 [29]:

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑝+2(𝑎𝑛𝑓+𝑎𝑒𝑝)

Arithmetic Mean [29]:

2𝑎𝑒𝑓𝑎𝑛𝑝 − 2𝑎𝑛𝑓𝑎𝑒𝑝

(𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑛𝑓) + (𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑝 + 𝑎𝑛𝑝)

Geometric Mean [29]:
𝑎𝑒𝑓𝑎𝑛𝑝 − 𝑎𝑛𝑓𝑎𝑒𝑝

√(𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑛𝑓)(𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑝 + 𝑎𝑛𝑝)

Cohen [29]:
2𝑎𝑒𝑓𝑎𝑛𝑝 − 2𝑎𝑛𝑓𝑎𝑒𝑝

(𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑒𝑝) + (𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑛𝑓 + 𝑎𝑛𝑝)

BB & Buser [29]:
√𝑎𝑒𝑓𝑎𝑛𝑝+𝑎𝑒𝑓

√𝑎𝑒𝑓𝑎𝑛𝑝+𝑎𝑒𝑓+𝑎𝑒𝑝+𝑎𝑛𝑓

Scott [29]:

4𝑎𝑒𝑓𝑎𝑛𝑝 − 4𝑎𝑛𝑓𝑎𝑒𝑝 − (𝑎𝑛𝑓 − 𝑎𝑒𝑝)2

(2𝑎𝑒𝑓 + 𝑎𝑛𝑓 + 𝑎𝑒𝑝)(2𝑎𝑛𝑝 + 𝑎𝑛𝑓 + 𝑎𝑒𝑝)

Fleiss [29]:
4𝑎𝑒𝑓𝑎𝑛𝑝−4𝑎𝑛𝑓𝑎𝑒𝑝−(𝑎𝑛𝑓−𝑎𝑒𝑝)2

(2𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝)+(2𝑎𝑛𝑝+𝑎𝑛𝑓+𝑎𝑒𝑝)
 Overlap [29]:

𝑎𝑒𝑓

min (𝑎𝑒𝑓,𝑎𝑛𝑓,𝑎𝑒𝑝)
 Braun-Banquet [36]:

𝑎𝑒𝑓

max (𝑎𝑒𝑓+𝑎𝑒𝑝,𝑎𝑒𝑓+𝑎𝑛𝑓)

Dennis [36]:
(𝑎𝑒𝑓𝑎𝑛𝑝)−(𝑎𝑒𝑝𝑎𝑛𝑓)

√(𝐹+𝑃)(𝑎𝑒𝑓+𝑎𝑒𝑝)(𝑎𝑒𝑓+𝑎𝑛𝑓)
 Mountford [36]:

𝑎𝑒𝑓

0.5(𝑎𝑒𝑓𝑎𝑒𝑝+𝑎𝑒𝑓𝑎𝑛𝑓)+𝑎𝑒𝑝𝑎𝑛𝑓
 Fossum [36]:

(𝐹+𝑃)(𝑎𝑒𝑓−0.5)2

(𝑎𝑒𝑓+𝑎𝑒𝑝)(𝑎𝑒𝑓+𝑎𝑛𝑓)

Pearson [36]:
(𝐹+𝑃)(𝑎𝑒𝑓𝑎𝑛𝑝−𝑎𝑒𝑝𝑎𝑛𝑓)2

(𝑎𝑒𝑓+𝑎𝑒𝑝)(𝑎𝑛𝑓+𝑎𝑛𝑝)(𝑎𝑒𝑝+𝑎𝑛𝑝)(𝑎𝑒𝑓+𝑎𝑛𝑓)
 Gower [36]:

𝑎𝑒𝑓+𝑎𝑛𝑝

√(𝑎𝑒𝑓+𝑎𝑒𝑝)(𝑎𝑛𝑓+𝑎𝑛𝑝)(𝑎𝑒𝑝+𝑎𝑛𝑝)(𝑎𝑒𝑓+𝑎𝑛𝑓)
 Michael [36]:

4(𝑎𝑒𝑓𝑎𝑛𝑝−𝑎𝑒𝑝𝑎𝑛𝑓)

(𝑎𝑒𝑓+𝑎𝑛𝑝)2+(𝑎𝑒𝑝+𝑎𝑛𝑓)2

Pierce [36]:
𝑎𝑒𝑓𝑎𝑛𝑓+𝑎𝑛𝑓𝑎𝑒𝑝

𝑎𝑒𝑓𝑎𝑛𝑓+2𝑎𝑛𝑓𝑎𝑛𝑝+𝑎𝑒𝑝𝑎𝑛𝑝

Harmonic Mean [29]:

(𝑎𝑒𝑓𝑎𝑛𝑝 − 𝑎𝑛𝑓𝑎𝑒𝑝) ((𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑛𝑓) + (𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑝 + 𝑎𝑛𝑝))

(𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑛𝑓)(𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑝 + 𝑎𝑛𝑝)

Ample [13]: |
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
 −

𝑎𝑒𝑝

𝑎𝑒𝑝+𝑎𝑛𝑝
| Ample2 [29]:

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
 −

𝑎𝑒𝑝

𝑎𝑒𝑝+𝑎𝑛𝑝

Table 1- SBFL suspiciousness metrics

Figure 2 – TwsCC vs. TnoCC (no weak nor strong CC tests present)

Figure 3 – TwsCC vs. TwCC (no strong CC tests present)

As shown in Tables 2-4, the performance of SBFL improved
most with TnoCC, followed by TsCC, and then TwCC. In all three
cases, the impact of discarding the CC tests was statistically
significant for 49 out of 52 metrics. However, the effect sizes
were mostly trivial, except in the case of Fossum, Tarwid, and
Ochiai.

To answer RQ1, our study showed with statistical
significance that SBFL performs better when using TwCC, TsCC,
and TnoCC than when using TwsCC. It also showed that TnoCC yields
the best performance followed by TsCC, and then TwCC. In other
words, it provides empirical evidence that CC is detrimental to
SBFL, and that weak CC is more detrimental than strong CC.

IV. IMPACT OF CC ON TSR

A. Greedy TSR

Given a program P, a test suite T, and a set of test
requirements TR that are covered by T. Coverage-based Test
suite reduction (or TSR) aims at finding T', a minimal subset of
T, that covers all test requirements in TR. The conjecture is that
(the smaller) T' would be as effective as T in revealing defects
[32]. A widely used form of coverage-based TSR selects test
cases from T to include in T’ in a way that maximizes the
proportion of profile elements that are covered. It attempts to
cover as many of the elements covered by T with as few test
cases as possible. A coverage-maximizing subset of a test suite
is an instance of the set-cover problem, which is NP-complete
but which admits a greedy approximation algorithm [9][18].
The greedy algorithm selects the test that covers the largest
number of elements not covered by the previously selected tests.
Note that this algorithm might encounter ties; i.e., different tests
might each cover the maximal number of elements. In order to
break the tie, we randomly select one of the tied test cases, which
means that applying the algorithm several times might yield
different minimized test suites. For that reason, when reducing a
test suite in our experiments, we apply 10 instances of the above
greedy TSR then report the resulting average. Note that more
sophisticated approaches were devised for tie breaking
[15][21][27]. For example, Lin and Huang [27] used one type of
coverage as the primary criterion (branch) and another type of
coverage (def-use) for tie breaking. Eghbali and Tahvildari [15]
selected one test over another based on the coverage frequency
of the program elements covered so far. However, randomly
resolving ties is widely accepted in the literature.

B. Subject Programs

In the context of TSR, it is more realistic to use multi-fault
programs and system test suites, which required us to look for
an alternative to Defects4J. Therefore, we conducted our
experiments using NanoXML releases r1 through r5, and the
JTidy HTML syntax checker and pretty printer release 3. The
NanoXML releases and test suites were download from the SIR
repository (sir.unl.edu), whereas JTidy was made available by
authors of work related to coincidental correctness [28].

JTidy contains two real faults; whereas, each of the
NanoXML releases is associated with several versions that are
seeded with single faults. We created multi-fault versions out of
each of the NanoXML releases by randomly selecting five of the
provided defects. However, we discarded some defects due to

one or more of the following constraints: 1) no two defects could
involve the same statement; 2) no two defects could consistently
be triggered by the same test cases; and 3) a defect must induce
a failure in at least one test case. As a result, the NanoXML
defects varied from 3 to 4, and NanoXML r4 was entirely
discarded.

The JTidy test suite comprised 1000 tests, of which five are
XML files and the rest are HTML files. Table 5 provides
information about our subject programs: a) number of defects;
b) test suite sizes; c) total number of failures; d) number of
failures per defect; e) number of non-CC passing tests; and f)
number of weak and strong CC tests (determined per Section
IV.C). Note how: 1) Nano r1 and Nano r3 do not have any weak
CC tests, and Nano r5 has no strong CC tests; and 2) the number
of weak CC tests is relatively high, which agrees with the
findings in [28]. (All subject programs and test suites are
downloadable [41]).

TnoCC improves SBFL?

p-value

0]0,0.01[[0.01,0.05[[0.05,1]

ef
fe

ct
 s

iz
e

trivial
|delta|<0.147

46 0 0 3

small
0.147 ≤ |delta| < 0.33

1 0 0 0

moderate
0.33 ≤ |delta| < 0.474

2 0 0 0

large
|delta| ≥ 0.474

0 0 0 0

Table 2 – TwsCC vs. TnoCC (no weak nor strong CC tests present)

TsCC improves SBFL?

p-value

0
]0,0.01[[0.01,0.05[[0.05,1]

ef
fe

ct
 s

iz
e

trivial
|delta|<0.147

44 3 0 3

small
0.147 ≤ |delta| < 0.33

2 0 0 0

moderate
0.33 ≤ |delta| < 0.474

0 0 0 0

large
|delta| ≥ 0.474

0 0 0 0

Table 3- TwsCC vs. TsCC (no weak CC tests present)

TwCC improves SBFL?

p-value

0]0,0.01[[0.01,0.05[[0.05,1]

ef
fe

ct
 s

iz
e

trivial
|delta|<0.147

23 13 11 3

small
0.147 ≤ |delta| <

0.33
2 0 0 0

moderate
0.33 ≤ |delta| <

0.474
0 0 0 0

large
|delta| ≥ 0.474

0 0 0 0

Table 4 – TwsCC vs. TwCC (no strong CC tests present)

C. RQ2: Does TSR perform better when using TwCC, TsCC, or

TnoCC than when using TwsCC?

Here also we need to build TwsCC, TnoCC, TwCC, and TsCC for

each of our five subject programs. To do so, we specified two

code checkers for each of the 15 defects: 1) a weak checker that

detects weak CC by monitoring whether the defect is reached;

and 2) a strong checker that detects strong CC by monitoring

whether the program state is infected. We augmented the fixed

versions of the subjects with the code checkers, and executed the

test suites in order to categorize each test case as strong CC, or

weak CC, or neither (resulting in the tests’ breakdown shown in

Table 5). Below is an illustrating example involving JTidy

(org.w3c.tidy.Clean.java):

Buggy version:
 if (name_end > style.length() || style.charAt(name_end)…

Fixed version:
 if (name_end >= style.length() || style.charAt(name_end)…

Fixed version augmented with code checkers:
 weakCC = true; // weak checker triggered
 if (name_end == style.length())
 strongCC = true; // strong checker triggered
 if (name_end >= style.length() || style.charAt(name_end)…

For each subject, we performed test suite reduction using
statement profiles. Since the greedy reduction algorithm is not
deterministic, we applied it 10 times for each subject and
computed the average sizes of the reduced test suites and the
average numbers of the revealed defects. Tables 6 reports our
results in terms of the average percentage of revealed defects
(df%).

As shown in Table 5, the number of failures per bug is in
some cases unrealistically high. For that reason we limited that
number to 1 randomly picked failure. Table 6 reports the results
for the case of 1 failure per bug. It shows for each subject
program df% computed using TwsCC, TnoCC, TsCC, and TwCC. It
additionally contrasts the results of when using TnoCC, TsCC, and
TwCC to when TwsCC is used.

 Considering Table 6, applying TSR on Nano r1 yielded a
df% of 69% using TwsCC, 100% using TnoCC, and 100% using TsCC.
That is an improvement Δdf% of 44.9% for both TnoCC and TsCC

over TwsCC. Note how the entries for TwCC are left blank, and the
results for TnoCC and TsCC are identical. The reason is due to the
fact that Nano r1 has no strong CC tests (see Table 5). The
results for Nano r3 are very similar, both TnoCC and TsCC resulted
in a df% of 100%, and TwCC was discarded due the lack of strong
CC tests.

Applying TSR on Nano r5 yielded a df% of 55% using TwsCC,
100% using TnoCC, and 100% using TwCC. However, here the
entries for TsCC are left blank since Nano r5 has no weak CC
tests. The results were very different for Nano r2, as neither
weak CC nor strong CC had any impact on df%.

Applying TSR on JTidy yielded a df% of 50% using TwsCC,
100% using TnoCC, 80% using TsCC, and 50% using TwCC.

In regard to defect detection (df%), the results for JTidy, Nano
r1, and Nano r3 suggest that discarding weak CC tests drastically
improves TSR (their respective Δdf% are 60%, 44.9% and 81%).
The results for Nano r5 suggest that discarding strong CC tests
improves TSR (Δdf% is 17.6%). The results for JTidy also
suggest that both weak and strong CC tests need to be discarded
to improve TSR. Meanwhile, the results for Nano r2 suggest that
discarding any form of CC tests has no impact on TSR (Δdf% is
0%).

To summarize, compared to TwsCC, our TSR results showed
that TnoCC, TsCC, and TwCC resulted in respectively %49, %47, and
%6 more detected defects.

The above observations are all based on the case of 1 failure
per bug and on using statement profiles. To enhance our
confidence in our findings, we opted to slightly change our
experimental setup by using branch profiling and limiting the
number of failures per bug to up 2 and up to 3.

Tables 7 and 8 present the results also when using statement
profiles but while using up to 2 and 3 failures per bug,
respectively. Tables 9-11 present similar information as Tables
6-8 except that branch profiling is used. Following a
comparative examination, we are convinced that the conclusions
drawn from Table 6 are fundamentally the same that one can
draw from Tables 7-11.

To answer RQ2, our (relatively small) study showed that
TSR performs better when using TwCC, TsCC, and TnoCC than
when using TwsCC. It also showed that TnoCC yields the best
performance followed by TsCC, and then TwCC. In other words, it

Program #Bugs #Tests #Failures #Failures/Bug
Passing Test Cases

#no CC #weak CC #strong CC

Nano r1 3 214 38 27,10,1 14 162 0

Nano r2 3 214 41 36,4,1 141 17 15

Nano r3 4 216 29 16,8,4,1 19 168 0

Nano r5 3 216 32 30,1,1 135 0 49

JTidy 2 1000 22 17,5 79 874 25

Table 5 – Information about the number of bugs and the test suites breakdown

suggests that CC is detrimental to TSR, and that weak CC is
more detrimental than strong CC.

V. THREATS TO VALIDITY

Our SBFL related study is sizable as it involved the
Defects4J benchmark. However, our TSR related study is
relatively smaller, which is due to the lack of sizable benchmarks
comprising multi-fault programs. Our intent is to extend the
Defects4J benchmark with multi-fault versions, starting with the
Closure library since it already contains test cases that result in
large levels of coverage; i.e., the Closure test cases are better
categorized as system tests than unit tests.

One internal threat to the validity of our experiments relates
to the fact that the EXAM score is computed at the Java line
number level as opposed to the more granular bytecode level,
which might lessen the accuracy of our results. In addition, it
should be noted that the EXAM score ranking is just one
approach of many presented in the literature, thus, better
alternative approaches might exist.

Our work was limited to only two coverage-based defect
detection techniques, others should also be investigated; e.g.,
test case prioritization and test case selection.

TwsCC TnoCC TsCC TwCC

df% df% Δdf% df% Δdf% df% Δdf%

JTidy 50 100 100.0 80 60.0 50 0.0

Nano r1 69 100 44.9 100 44.9 67 -2.9

Nano r2 94 94 0.0 94 0.0 94 0.0

Nano r3 55 100 81.8 100 81.8 54 -1.8

Nano r5 85 100 17.6 84 -1.2 100 17.6

 Table 6 – Impact of TnoCC, TsCC, and TwCC on TSR using

statement coverage given 1 failure per bug

TwsCC TnoCC TsCC TwCC

df% df% Δdf% df% Δdf% df% Δdf%

JTidy 50 100 100.0 95 90.0 50 0.0

Nano r1 70 100 42.9 100 42.9 71 1.4

Nano r2 100 100 0.0 100 0.0 100 0.0

Nano r3 59 100 69.5 100 69.5 61 3.4

Nano r5 93 100 7.5 94 1.1 100 7.5

Table 7 – Impact of TnoCC, TsCC, and TwCC on TSR using

statement coverage given up to 2 failures per bug

TwsCC TnoCC TsCC TwCC

df% df% Δdf% df% Δdf% df% Δdf%

JTidy 50 100 100.0 100 100.0 50 0.0

Nano r1 72 100 38.9 100 38.9 71 -1.4

Nano r2 100 100 0.0 100 0.0 100 0.0

Nano r3 62 100 61.3 100 61.3 63 1.6

Nano r5 99 100 1.0 98 -1.0 100 1.0

Table 8 – Impact of TnoCC, TsCC, and TwCC on TSR using

statement coverage given up to 3 failures per bug

TwsCC TnoCC TsCC TwCC

df% df% Δdf% df% Δdf% df% Δdf%

JTidy 100 100 0.0 100 0.0 100 0.0

Nano r1 68 100 47.1 100 47.1 68 0.0

Nano r2 94 93 -1.1 95 1.1 96 2.1

Nano r3 52 100 92.3 100 92.3 53 1.9

Nano r5 100 100 0.0 100 0.0 100 0.0

Table 9 – Impact of TnoCC, TsCC, and TwCC on TSR using

branch coverage given 1 failure per bug

TwsCC TnoCC TsCC TwCC

df% df% Δdf% df% Δdf% df% Δdf%

JTidy 100 100 0.0 100 0.0 100 0.0

Nano r1 70 100 42.9 100 42.9 70 0.0

Nano r2 100 100 0.0 100 0.0 100 0.0

Nano r3 59 100 69.5 100 69.5 58 -1.7

Nano r5 100 100 0.0 100 0.0 100 0.0

Table 10 – Impact of TnoCC, TsCC, and TwCC on TSR using

branch coverage given up to 2 failures per bug

TwsCC TnoCC TsCC TwCC

df% df% Δdf% df% Δdf% df% Δdf%

JTidy 100 100 0.0 100 0.0 100 0.0

Nano r1 73 100 37.0 100 37.0 71 -2.7

Nano r2 100 100 0.0 100 0.0 100 0.0

Nano r3 61 100 63.9 100 63.9 60 -1.6

Nano r5 100 100 0.0 100 0.0 100 0.0

Table 11 – Impact of TnoCC, TsCC, and TwCC on TSR using

branch coverage given up to 3 failures per bug

VI. RELATED WORK

This section presents work related to coincidental
correctness. Wong et al [36], and Yoo and Harman [40],
respectively provide comprehensive surveys on SBFL and TSR.

Laski et al [24] studied coincidental correctness while
referring to it as error masking. They mutated the internal
program state then checked whether the program produced the
correct output. Their approach assesses the quality of a test suite
and the presence of CC within.

Masri and Abou Assi [28] showed that both strong and weak
CC is prevalent, and analytically demonstrated that weak CC is
a safety reducing factor for SBFL. They also presented
techniques for cleansing test suites from CC. Specifically, they
segregated test cases into two clusters based on their execution
profiles; a passing test was deemed as CC if it fell within the
cluster that contained most of the failing tests. They also
presented a second technique in which only passing tests are
partitioned into two clusters, conjecturing that the CC test cases
will be grouped within the same cluster.

Hierons [17] recognized the negative effect of CC when
augmenting Partition Analysis with Boundary Value Analysis.
He also showed how Boundary Value Analysis can be enhanced
in order to reduce the likelihood of CC even in an environment
that involves non-determinism and floating point numbers.

Baudry et al [8] defined a dynamic basic block (DBB) as a
set of statements that is covered by the same test cases. They
empirically observed that test suites containing more DBB’s
resulted in improved SBFL. They also observed that the actual
faulty DBB’s were not always ranked as the most suspicious,
which they attributed to CC.

Wang et al [34] presented a coverage refinement approach
to reduce the influence of coincidental correctness on fault
localization. The work introduces a concept called context-
pattern, which is unique for each fault type and describes the
program behavior before and after the faulty code. Coverage
results for all statements are refined with the context-pattern
following a context-pattern matching

Bandyopadhyay and Ghosh [7] considered any passing test
that is similar to failing tests as CC. They proposed an iterative
approach that leverages user feedback to improve the detection
of CC tests and consequently SBFL.

Clark and Hierons [12] leveraged information theory to
study strong coincidental correctness, which they termed fault
masking. They derived an information theoretic measure, termed
squeeziness, which quantifies the likelihood of a function f to
nullify the propagation of an infectious state. The squeeziness of
function f: I→O is Sq(f) = H(I) - H(O), which is the loss of
information after applying f to I. Their proposed measure
somewhat relates to mutual information and the measure
presented in [28] for quantifying the amount of information
flowing between two variables connected by a dynamic
dependence chain. Clark and Hierons [12] also demonstrated
that there is a strong statistical correlation between squeeziness
and fault masking, whereas the correlation between DRR and
fault masking was not as strong.

Androutsopoulos et al [5] provided a more thorough
information theoretic analysis of strong CC, which they termed
Failed Error Propagation or FEP. They devised five metrics
that aim at predicting the occurrence of strong CC, of which two
showed a high predictive power. Their experiments showed that
10% of the 7,140,000 involved test cases were strong CC tests.

In a position paper, Clark et al [11] proposed information
theory as the basis for solving several software engineering
problems including the mitigation of coincidental correctness to
increase the testability of programs.

VII. CONCLUSIONS

We conducted a study that aimed at assessing the impact of
coincidental correctness (CC), in both of its forms weak and
strong, on the effectiveness of SBFL and coverage-based TSR.
Our observations suggested that CC is detrimental to defect
detection, and that weak CC is more detrimental than strong CC.
We expect that our findings would motivate researchers to
investigate effective solutions to mitigate its effect.

REFERENCES

[1] Rawad Abou Assi, Chadi Trad, Marwan Maalouf, and Wes Masri. Does
the Testing Level affect the Prevalence of Coincidental Correctness?
https://arxiv.org/abs/1808.09233 (2018).

[2] Abreu R., Zoeteweij P. and Van Gemund A. J. C. On the Accuracy of
Spectrum-based Fault Localization. TAIC-PART, pp. 89-98, 2007.

[3] Ammann P. and Offutt J. Introduction to Software Testing. Cambridge
University Press, 2008.

[4] Ammann P. and Offutt J. Introduction to Software Testing. Cambridge
University Press, 2nd edition, 2016.

[5] Kelly Androutsopoulos, David Clark, Haitao Dan, Robert M. Hierons,
Mark Harman. An analysis of the relationship between conditional
entropy and failed error propagation in software testing. ICSE 2014: 573-
583.

[6] Thomas Ball, Mayur Naik, Sriram K. Rajamani. From symptom to cause:
localizing errors in counterexample traces. POPL 2003: 97-105.

[7] Aritra Bandyopadhyay, Sudipto Ghosh. Tester Feedback Driven Fault
Localization. ICST 2012: 41-50.

[8] B. Baudry, F. Fleurey, and Y. Le Traon, Improving test suites for efficient
fault localization, In Proc.of ICSE’06, pages 82- 91, May, 2006.

[9] V. Chvatal. 1979. A Greedy Heuristic for the Set-Covering Problem.
Math. Oper. Res. 4, 3 (Aug. 1979), 233–235.

[10] S. Choi, S. Cha, and C. C. Tappert, “A survey of binary similarity and
distance measures,” J. Systemics, Cybern. Inf., vol. 8, no. 1, pp. 43–48,
Jan. 2010.

[11] David Clark, Robert Feldt, Simon M. Poulding, Shin Yoo. Information
Transformation: An Underpinning Theory for Software Engineering.
ICSE (2) 2015: 599-602.

[12] David Clark, Robert M. Hierons. Squeeziness: An information theoretic
measure for avoiding fault masking. Inf. Process. Lett. 112(8-9): 335-340
(2012)

[13] Dallmeier V., Lindig C., and Zeller A. 2005.b. Lightweight defect
localization for Java. In A. P. Black, editor, ECOOP 2005: 19th European
Conference, Glasgow, UK, July 25–29, 2005. Proceedings, volume 3568
of LNCS, pages 528–550. Springer-Verlag.

[14] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. 1978. Hints on Test Data
Selection: Help for the Practicing Programmer. Computer 11, 4 (Apr.
1978), 34-41.

[15] S. Eghbali and L. Tahvildari, “Test case prioritization using
lexicographical ordering,” IEEE Transactions on Software Engineering,
vol. 42, no. 12, pp. 1178–1195, 2016.

[16] István Forgács, Antonia Bertolino. Preventing untestedness in data-flow
based testing. Softw. Test., Verif. Reliab. 12(1): 29-58 (2002).

[17] R. M. Hierons. Avoiding coincidental correctness in boundary value
analysis. ACM Transactions on Software Engineering and Methodology.
Volume 15, Issue 3 (July 2006). Pages: 227 - 241.

[18] D.S. Hochbaum, Approximation algorithms for NP-hard problems, PWS
Publishing, Boston, MA, 1997.

[19] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure
and its Potential Impact. Empirical Software Engineering: An
International Journal, Volume 10, No. 4, pages 405-435, 2005.

[20] Tom Janssen, Rui Abreu, Arjan J. C. van Gemund. Zoltar: A Toolset for
Automatic Fault Localization. ASE 2009: 662-664.

[21] B. Jiang, Z. Zhang, W. K. Chan, and T. Tse, “Adaptive random test case
prioritization,” in Proceedings of the International Conference on
Automated Software Engineering. IEEE, 2009, pp. 233–244.

[22] Jones J. and Harrold M. J. “Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique,” Proc. 20th IEEE/ACM Int’l
Conf. Automated Software Eng. (ASE ’05), pp. 273-282, 2005.

[23] Jones J., Harrold M. J., and Stasko J.. Visualization of Test Information
to Assist Fault Localization. In Proceedings of the 24th International
Conference on Software Engineering, pp. 467-477, May 2001.

[24] J. W. Laski, W. Szermer, and P. Luczycki. Error masking in computer
programs. Software Testing, Verication and Reliability, 1995.

[25] Liblit B., Aiken A., Zheng A., and Jordan M. Bug Isolation via Remote
Program Sampling. Proc. ACM SIGPLAN 2003 Int’l Conf. Programming
Language Design and Implementation (PLDI ’03), pp. 141-154, 2003.

[26] Liblit B., Naik M., Zheng A., Aiken A., and Jordan M. Scalable Statistical
Bug Isolation. Proc. ACM SIGPLAN 2005 Int’l Conf. Programming
Language Design and Implementation (PLDI ’05), pp. 15-26, 2005.

[27] J.-W. Lin and C.-Y. Huang, “Analysis of test suite reduction with
enhanced tie-breaking techniques,” Information and Software
Technology, vol. 51, no. 4, pp. 679–690, 2009.

[28] Wes Masri, Rawad Abou Assi. Prevalence of coincidental correctness and
mitigation of its impact on fault localization. ACM Trans. Softw. Eng.
Methodol. 23(1): 8:1-8:28 (2014).

[29] Naish L., Lee H.J., and Ramamohanarao K. A model for spectra-based
software diagnosis. ACM Transactions on Software Engineering and
Methodology. 20, 3, Article 11 (August 2011).

[30] Renieris M. and Reiss S. Fault localization with nearest-neighbor queries.
In Proceedings of the 18th IEEE Conference on Automated Software
Engineering, pp. 30-39, 2003.

[31] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine,
“Exploring methods for evaluating group differences on the nsse and
other surveys: Are the t-test and cohensd indices the most appropriate
choices,” in annual meeting of the Southern Association for Institutional
Research, 2006.

[32] Rothermel G, Harrold M, Ronne J, Hong C. Empirical studies of test suite
reduction. Software Testing, Verification, and Reliability December
2002; 4(2):219–249.

[33] Jeffrey M. Voas: PIE: A Dynamic Failure-Based Technique. IEEE Trans.
Software Eng. 18(8): 717-727 (1992).

[34] Wang X., Cheung S.C., Chan W.K., Zhang Z. Taming coincidental
correctness: Coverage refinement with context patterns to improve fault
localization. IEEE 31st International Conference on Software
Engineering, pp. 45-55, 2009.

[35] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar Method for
Effective Software Fault Localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2014.

[36] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, Franz Wotawa. A
Survey on Software Fault Localization. IEEE Trans. Software Eng. 42(8):
707-740 (2016).

[37] W. E.Wong, Y. Qi, L. Zhao, and K. Y. Cai, “Effective fault localization
using code coverage,” in Proc. 31st Annu. Int. Comput. Software Appl.
Conf. (COMPSAC), Beijing, China, Jul. 2007, pp. 449–456.

[38] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization. ACM
Transactions on Software Engineering and Methodology (TOSEM),
22(4):31, 2013.

[39] Meng Yan, Yicheng Fang, David Lo, Xin Xia, Xiaohong Zhang. File-
Level Defect Prediction: Unsupervised vs. Supervised Models. ESEM
2017: 344-353.

[40] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[41] Online Appendix: (double-blind)

