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Abstract— According to the PIE and RIP models, three conditions 
must be satisfied for program failure to occur: 1) the defect’s 
location must execute or be reached; 2) the program’s state must 
become infected; and 3) the infection must propagate to the 
output. Weak coincidental correctness (or weak CC) occurs when 
the program produces the correct output, while condition 1) is 
satisfied but 2) and 3) are not satisfied. Strong coincidental 
correctness (or strong CC) occurs when the output is correct, while 
both conditions 1) and 2) are satisfied, but not 3). In the literature, 
typically coincidental correctness (CC) refers to strong CC. 

Researchers have recognized the presence of CC and analytically 
demonstrated that it is a safety-reducing factor for spectrum-
based fault localization (SBFL). However, they did not empirically 
validate that fact, which we do in this paper. Specifically, using the 
Defects4J benchmark, we comparatively evaluated the 
performance of SBFL using 52 different suspiciousness metrics 
when: a) both weak and strong CC tests are present (TwsCC); b) no 
weak nor strong CC tests are present (TnoCC); c) weak CC tests are 
present (TwCC); and d) strong CC tests are present (TsCC). Similarly, 
using five multi-fault Java programs, we evaluated the 
performance of greedy Test Suite Reduction (TSR) in the presence 
and absence of CC. That is, we empirically studied the impact of 
CC on defect detection using two commonly used techniques. 

Using 49 out of the 52 metrics, our results showed with statistical 
significance that SBFL performs better when using TwCC, TsCC, and 
TnoCC than when using TwsCC. They also showed that TnoCC yields 
the best performance followed by TsCC, and then TwCC. However, 
the effect sizes were mostly trivial, except for three metrics. 
Compared to TwsCC, our TSR results showed that TnoCC, TsCC, and 
TwCC resulted in respectively %49, %47, and %6 more detected 
defects. Therefore, our empirical study suggests that CC is 
detrimental to defect detection, and that weak CC is more 
detrimental than strong CC. 
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I.  INTRODUCTION 

Voas presented the PIE model [33] that identifies three 
conditions to be satisfied for program failure to occur: 1) the 
defect is executed, 2) the program is infected, and 3) the 
infection has propagated to the output. Amman and Offutt 
supported this same notion in their RIP (reachability-infection-
propagation) model described in [3]. They later extended that 
model into the RIPR model by adding the Reveal condition, 
which requires the incorrect final infected state to be actually 
observed (e.g., by the tester or a test oracle) [4]. Coincidental 

Correctness (CC) [14][17][34] occurs when the program 
produces the correct output, while conditions 1) and 2) are 
satisfied but not 3). Some researchers referred to CC using 
different terms such as fault masking [12] and failed error 
propagation [5]. Others [28] differentiated two variants of it that 
we adopt in this paper: a) Strong Coincidental Correctness (or 
strong CC), which is identical to the original definition; and b) 
Weak Coincidental Correctness (or weak CC), which occurs 
when the program produces the correct output, while condition 
1) is satisfied but 2) and 3) are not satisfied. 

Coincidental correctness might result in overestimating the 
reliability of programs as it hides bugs that might subsequently 
surface following unrelated code modifications. In addition, it 
might reduce the effectiveness of various quality enhancing 
techniques. In fact, several researchers have recognized the 
negative impact of coincidental correctness on the effectiveness 
of defect detection techniques [6][7][8][13][16][17][34]. Others 
have empirically shown that both weak and strong CC are 
prevalent in widely used benchmarks [28], and have analytically 
demonstrated that weak CC is a safety reducing factor in 
spectrum-based fault localization (SBFL) [28]; i.e., when weak 
CC tests are present, the defect will be assigned a suspiciousness 
score smaller than when they are not present. However, we are 
not aware of any major empirical study that assessed the impact 
of CC (in either of its forms) on SBFL or any other defect 
detection technique. This paper achieves that by studying the 
impact of weak CC and strong CC on the effectiveness of two 
widely used defect detection techniques, namely, SBFL and 
coverage-based Test Suite Reduction (TSR) [40][32][27].  

Our study considers the following four categories of test 
suites: 

1) TwsCC: both weak and strong CC tests are present. 

2) TnoCC: no weak nor strong CC tests are present. 

3) TwCC: weak CC tests are present (but no strong CC tests). 

4) TsCC: strong CC tests are present (but no weak CC tests). 
For SBFL, we use the Defects4J benchmark and 52 existing 
suspiciousness metrics. For TSR, we use five multi-fault Java 
programs and a commonly used greedy TSR technique. Our goal 
is to assess how detrimental CC is on defect detection by 
answering the following research questions: 

RQ1: Does SBFL perform better when using TwCC, TsCC, 
or TnoCC than when using TwsCC? 
RQ2: Does TSR perform better when using TwCC, TsCC, 
or TnoCC than when using TwsCC? 



 
The main contributions of our work are as follows: 
 Quantifying the impact of coincidental correctness on two 

commonly used defect detection techniques, namely, 
SBFL and TSR.  

 Considering both forms of coincidental correctness, weak 
CC and strong CC. 

 Identifying the SBFL metrics that are most resilient to CC, 
and those that are most vulnerable. For example, Overlap 
[29] and Russel & Rao [29] seemed unaffected by CC, 
whereas Fossum [36], Tarwid [36], and Ochiai [2] were 
highly affected. 

 Most importantly, this paper provides empirical evidence 
that coincidental correctness is harmful to defect 
detection, which provides motivation for researchers to 
investigate effective solutions to mitigate its effect. 

 

Section II provides a motivating example (borrowed from 
[1]) illustrating how CC could potentially reduce the 
effectiveness of SBFL, TSR, and test case prioritization. 
Sections III and IV respectively present our SBFL and TSR 
empirical results.  Section V surveys related work, and Section 
VI concludes. 

II. MOTIVATING EXAMPLE 

This example illustrates how CC can have a negative impact 
on SBFL, TSR, and test case prioritization. The function shown 
in Figure 1 computes the median of three input numbers; it is 
frequently used in SBFL literature [23]. The defect is at Line 6, 
which assigns y to m as opposed to assigning it x. Figure 1 also 
shows six test cases and their corresponding statement coverage 
information. The only failing test case is t6, which as expected, 
executes the defect at Line 6. Meanwhile, t1 also executes the 
defect at Line 6 but outputs the correct result, which makes it a 
CC test case. t1 is a weak CC test as opposed to a strong CC test 
since it executes the defect but does not cause an infection at 
Line 6. It erroneously assigns y to m as opposed to assigning x, 

but since x and y are both 3, the program state does not get 
infected.  

The fact that t1 is a CC test diminishes the correlation 
between the execution of Line 6 and failure, which translates 
into lessening the effectiveness of SBFL. In other words, 
including t1 in the test suite yields a suspiciousness score at Line 
6 that is lower than the score computed when t1 is excluded. For 
example, the value of the Tarantula suspiciousness score [23] 
for Line 6 is 0.833 when t1 is included and 1.0 when excluded. 

A widely adopted TSR approach discards redundant tests 
while ensuring that the reduced test suite also covers the 
program elements covered by the original test suite. In our 
example, the test suite would be reduced to T1 = {t1, t2, t3, t4} or 
to T2 = {t2, t3, t4, t6} since these are the only minimal test suites 
that cover all statements covered by the original test suite. 
Consequently, there will only be a 50% chance that the reduced 
test suite will reveal the defect since: 1) T1 and T2 are equally 
likely to be generated; and 2) only T2 includes the failing test t6. 
Excluding the weak CC test t1 from the original test suite would 
mean that only T2 will be generated by test suite reduction; 
clearly, a more desirable outcome. 

A classical test case prioritization approach gives higher 
execution priority to the test cases that cover the most not yet 
covered program elements.  A large number of prioritization 
outcomes are possible for our example, of which we list only 
two that represent extreme cases, namely, T1 = <t1, t3, t4, t2, t5, t6>  
and T2 = <t6, t3, t4, t2, t5, t1>. Clearly, T2 is superior to T1, since the 
defect is revealed by the first executed test in T2 as opposed to 
the last executed test in T1. Here also, excluding t1 from the 
original test suite would result in a more effective prioritization. 
Actually, in case t1 is excluded, t6 will always be executed either 
first or second. 

III. IMPACT OF CC ON SBFL  

A. SBFL Techniques  

Spectrum-based fault localization (or SBFL) assigns each 

covered program element a suspiciousness score reflecting its 

correlation with failure [2][13][22][25][26][30], it then provides 

the developer with a list of these elements ranked based on their 

likelihood of being faulty. Typically, SBFL techniques use 

statement coverage, but they might also use other types of 

coverage, such as branch and def-use. The experiments 

conducted in this paper involve statement coverage and 52 

SBFL suspiciousness metrics that we identified in recent SBFL 

literature. The computation of these metrics depends on one or 

more of the following entities: 

 𝑎𝑒𝑝: The number of passing test cases that execute the 

profile element. 

 𝑎𝑒𝑓: The number of failing test cases that execute the 

profile element. 

 𝑎𝑛𝑝: The number of passing test cases that do no execute 

the profile element. 

 𝑎𝑛𝑓: The number of failing test cases that do not execute 

the profile element. 

 

 
 
 
int median(int x, int y, int z) {  
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1:    int m = z;       

2:    if (y < z)       

3:          if (x < y)       

4:                m = y;       

5:          else if (x<z)       

6:                m = y;    // bug: m = x;       

7:    else        

8:          if (x > y)       

9:                m = y;       

10:        else if (x>z)       

11:               m = x;       

12:   return m; 
} 

P P P P P F 

Figure 1. Java code and corresponding statement coverage 

information 



 𝑃 or (aep + anp): The total number of passing test cases. 

 𝐹 or (aef + anf): The total number of failing test cases. 

For example, the Ochiai [2] suspiciousness metric takes on the 

following form:          
𝑎𝑒𝑓

√(𝑎𝑒𝑓+𝑎𝑛𝑓)(𝑎𝑒𝑓+𝑎𝑒𝑝)
 

Table 1 lists all of the 52 suspiciousness metrics we used. Note 
that we excluded any metric that did not involve P, or aep. The 
reason is that for such metric the presence or absence of CC test 
cases will have no effect on the computed value. For example, 
given a test suite that contains nCC coincidentally correct test 
cases, i.e., tests that executed the faulty location but did not 
induce a failure. To account for the presence of these CC tests, 
aep must be replaced by (aep ˗ nCC) to arrive at a more faithful 
suspiciousness value [28] of the faulty location. Considering the 
Ample [13] and Binary [29] metrics below:  

Ample =|
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
 −

𝑎𝑒𝑝

𝑎𝑒𝑝+𝑎𝑛𝑝
|,     Binary = {

0 if 𝑎𝑒𝑓 < 𝐹

1 if  𝑎𝑒𝑓 = 𝐹
 

A non-zero value of nCC will affect Ample (through aep) but not 
Binary, this is why our study includes Ample but not Binary (see 
Table 1).  

In most cases, the developer is not interested in the raw 

suspiciousness scores but in the ranked list of suspicious 

program locations instead. Accordingly, in order to quantify the 

effectiveness of SBFL, we compute the EXAM score [35], 

which reflects the percentage of lines that are ranked higher than 

the faulty location. That is, a lower EXAM score indicates better 

performance. In case the faulty line is tied with other lines w.r.t. 

suspiciousness score, we rank it in the middle of them.  

Finally, our instrumentation is carried out at the Java 

bytecode level using the ASM framework, whereas the ranking 

is conducted at the Java line level. The reason stems from the 

fact that it is easier to present bug locations in terms of readable 

Java lines as opposed to bytecode lines. Furthermore, the 

Defects4J benchmark provides the fault locations in the context 

of Java lines. 

B. Subject Programs  

The subject programs comprised 5 libraries from the 
Defects4J benchmark: JFreeChart (Chart), Closure, Apache 
commons-lang (Lang), Apache commons-math (Math), and 
Joda-Time (Time), with a total count of 357 versions, each 
containing a single bug. Our study also relies on the availability 
of test suites in which each test case is classified as weak CC, 
strong CC, failing, or true passing (a non-CC passing test). Abou 
Assi et al [1] extended the Defect4J benchmark in order to 
provide such information. They manually classified each test 
case under one of the above categories. We make use of such 
information to build TwsCC, TnoCC, TsCC, and TwCC for each version 
we included in our study. It is worth noting that compared to the 
failing tests, the numbers of CC tests they identified were 
considerable. For example, executing the 357 test suites from all 
five libraries on their respective defective versions involved 580 
failures, 4187 strong CC tests, 4821 weak CC tests, and 563,314 
non-CC passing tests [1]. Out of the 357 versions, we ignore 30 
versions due to incomplete CC information or profiling errors. 

 

C. RQ1: Does SBFL perform better when using TwCC, TsCC, 

or TnoCC than when using TwsCC? 

We computed the EXAM score for each of the versions 
using each of the 52 SBFL metrics and each of the four different 
categories of test suites. The plots in Figure 2 contrast the 
EXAM scores for when TwsCC is used to when TnoCC is used, i.e., 
it shows for each metric the effect of discarding both weak and 
strong CC tests. Similarly, Figure 3 shows the same type of 
information but in relation to TwCC, i.e., it shows the effect of 
discarding the strong CC tests while keeping the weak CC tests. 
For space consideration, we show the plots associated with TsCC 
in the online appendix [41]. Tables 2-4 provide summarized 
statistics about all three sets of plots, namely, the p-values and 
effect sizes related to each plot. For example, Table 2 shows with 
statistical significance but negligible effect size that, for 46 
metrics, SBFL performs better when using TnoCC than when 
using TwsCC. 

Each scatter plot in Figure 2 is associated with one of the 52 
SBFL metrics. The green data points correspond to when the 
EXAM score improved (got smaller) when discarding the weak 
and strong CC tests. The red data points correspond to when the 
EXAM score worsened; the blue data points correspond to when 
the score remained unchanged. Note how the blue data points 
fall on the lines dividing the plots. Also, each plot is annotated 
with the p-value and the effect size computed according to Cliff’s 
delta [31], which is a non-parametric measure that quantifies 
whether the elements in one group are larger than those of 
another group. The effect size is considered trivial (|delta| < 
0.147), small (0.147 ≤ |delta| < 0.33), moderate (0.33 ≤ |delta| < 
0.474), or large (> 0.474). 
We now summarize our results related to discarding both weak 
and strong CC tests (TnoCC) based on Figure 2 and Table 2: 

1) Two metrics were not affected by the presence of weak 
and strong CC tests, namely, Overlap [29] and Russel & 
Rao [29]. Note how the corresponding plots only show 
blue data points, a p-value of 1, and an effect size of 0. 
These two metrics were resilient to CC despite the fact 
that they depend on aep. 

2) Most metrics exhibited few cases in which the EXAM 
score slightly worsened; i.e., red data points showing 
right above the dividing line. However, Michael [36] 
additionally exhibited few red points noticeably above 
the dividing line, reflected in a p-value of 0.927, and an 
effect size of 0.004. 

3) The remaining 49 metrics benefited from discarding the 
weak and strong CC tests to varying extents. We list 
them in descending order, i.e., in the order of being most 
vulnerable to the presence of weak and strong CC tests: 

a. Fossum and Tarwid [36] exhibited a p-value of 
0, and moderate effect sizes of 0.387 and 0.421, 
respectively.  

b. Ochiai exhibited a p-value of 0, and a small 
effect size of 0.147.  

c. Forty-six metrics exhibited a p-value of 0 and 
trivial effect sizes in the range [0.004, 0.119]. 

Figure 3 and Table 4 show the results related to discarding the 
strong CC tests while keeping the weak CC tests (TwCC): 



1) Here also Overlap and Russel & Rao were not affected 
by the presence of weak CC tests, and similarly 
exhibiting a p-value of 1, and an effect size of 0.  

2) Michael [36] also exhibited few red points noticeably 
above the dividing line. However, the p-value decreased 
to 0.844 (still not significant), and the effect size 
increased to 0.004 (still trivial). 

3) Fossum and Tarwid [36] exhibited a p-value of 0, and 
small effect sizes of 0.153 and 0.178, respectively. 
Noting that in the context of TnoCC, their effective sizes 
were moderate. 

4) The remaining 47 metrics exhibited trivial effect sizes, 
while the p-value was 0 for 23 of them, and < 0.01 for 
13 of them. 

Tarantula [23]:           

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
+

𝑎𝑒𝑝

𝑎𝑒𝑝+𝑎𝑛𝑝

 
Ochiai [2]:             

𝑎𝑒𝑓

√(𝑎𝑒𝑓+𝑎𝑛𝑓)(𝑎𝑒𝑓+𝑎𝑒𝑝)
 Ochiai2 [29]: 

𝑎𝑒𝑓𝑎𝑛𝑝

√(𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑛𝑓)(𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑝 + 𝑎𝑛𝑝)
 

Kulczynski [10]:             
𝑎𝑒𝑓

𝑎𝑛𝑓+𝑎𝑒𝑝
 Kulczynski2 [29]:      

1

 2
(

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
+

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑒𝑝
) 𝐷𝑠𝑡𝑎𝑟2 [35]:         

(𝑎𝑒𝑓)
2

𝑎𝑛𝑓+𝑎𝑒𝑝
 

𝐷𝑠𝑡𝑎𝑟3 [35]:                  
(𝑎𝑒𝑓)

3

𝑎𝑛𝑓+𝑎𝑒𝑝
 O [29] :                    {

−1 if 𝑎𝑛𝑓 > 0

𝑎𝑛𝑝 otherwise
 Op [29]:              𝑎𝑒𝑓 −

𝑎𝑒𝑝

𝑎𝑒𝑝+𝑎𝑛𝑝+1
 

Wong2 [37]:            𝑎𝑒𝑓 − 𝑎𝑒𝑝  

Wong3 [37]:         𝑎𝑒𝑓 − ℎ,       𝑤ℎ𝑒𝑟𝑒  

ℎ = {

𝑎𝑒𝑝 𝑖𝑓 𝑎𝑒𝑝 ≤ 2

2 + 0.1(𝑎𝑒𝑝 − 2) 𝑖𝑓 2 < 𝑎𝑒𝑝 ≤ 10

2.8 + 0.001(𝑎𝑒𝑝 − 10) 𝑖𝑓 𝑎𝑒𝑝 > 10

  
Wong3’ [29]:    {

−1000 𝑖𝑓 𝑎𝑒𝑝 + 𝑎𝑒𝑓 = 0

𝑊𝑜𝑛𝑔3 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

CBI Inc [29]:      
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑒𝑝
−

𝑎𝑒𝑓+𝑎𝑛𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑛𝑝+𝑎𝑒𝑝
 CBI Log [29]:       

2

1

𝐶𝐵𝐼 𝐼𝑛𝑐
+

log (𝑎𝑒𝑓+𝑎𝑛𝑓)

log (𝑎𝑒𝑓)

 
CBI Sqrt [29]:      

2

1

𝐶𝐵𝐼 𝐼𝑛𝑐
+

√𝑎𝑒𝑓+𝑎𝑛𝑓

√𝑎𝑒𝑓

 

Russel & Rao [29]:    
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝+𝑎𝑛𝑝
 Tarwid [36]: 

(𝐹+𝑃)(𝑎𝑒𝑓)−(𝑎𝑒𝑓+𝑎𝑛𝑓)(𝑎𝑒𝑓+𝑎𝑒𝑝)

(𝐹+𝑃)(𝑎𝑒𝑓)+(𝑎𝑒𝑓+𝑎𝑛)(𝑎𝑒𝑓+𝑎𝑒𝑝)
 Jaccard [2]:              

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝
 

Zoltar [20]:           
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝+
10000𝑎𝑛𝑓𝑎𝑒𝑝

𝑎𝑒𝑓

 Anderberg [29]:      
𝑎𝑒𝑓

𝑎𝑒𝑓+2(𝑎𝑛𝑓+𝑎𝑒𝑝)
 Sørensen-Dice [29]:     

2𝑎𝑒𝑓

2𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝
 

Dice [29]:           
2𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝
 Goodman [29]:         

2𝑎𝑒𝑓−𝑎𝑛𝑓−𝑎𝑒𝑝

2𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝
 Barinel [29]:                           

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑒𝑝
 

Hamann [29]:      
𝑎𝑒𝑓+𝑎𝑛𝑝−𝑎𝑛𝑓−𝑎𝑒𝑝

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝+𝑎𝑛𝑝
 Simple Matching [29]:    

𝑎𝑒𝑓+𝑎𝑛𝑝

𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝+𝑎𝑛𝑝
 Sokal [29]:        

2(𝑎𝑒𝑓+𝑎𝑛𝑝)

2(𝑎𝑒𝑓+𝑎𝑛𝑝)+𝑎𝑛𝑓+𝑎𝑒𝑝
 

Rogers & Tan. [29]:      
𝑎𝑒𝑓+𝑎𝑛𝑝

𝑎𝑒𝑓+𝑎𝑛𝑝+2(𝑎𝑛𝑓+𝑎𝑒𝑝)
 Hamming [29]:           𝑎𝑒𝑓 + 𝑎𝑛𝑝 Euclid [29]:       √𝑎𝑒𝑓 + 𝑎𝑛𝑝 

Rogot1 [29]:     
1

2
(

𝑎𝑒𝑓

2𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝
+

𝑎𝑛𝑝

2𝑎𝑛𝑝+𝑎𝑛𝑓+𝑎𝑒𝑝
) 

Rogot2 [29]: 

  
1

4
(

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑒𝑝
+

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
+

𝑎𝑛𝑝

𝑎𝑛𝑝+𝑎𝑒𝑝
+

𝑎𝑛𝑝

𝑎𝑛𝑝+𝑎𝑛𝑓
) 

M1 [29]:             
𝑎𝑒𝑓+𝑎𝑛𝑝

𝑎𝑛𝑓+𝑎𝑒𝑝
 

M2 [29]: 

                          
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑝+2(𝑎𝑛𝑓+𝑎𝑒𝑝)
 

Arithmetic Mean [29]: 

2𝑎𝑒𝑓𝑎𝑛𝑝 − 2𝑎𝑛𝑓𝑎𝑒𝑝

(𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑛𝑓) + (𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑝 + 𝑎𝑛𝑝)
 

Geometric Mean [29]: 
𝑎𝑒𝑓𝑎𝑛𝑝 − 𝑎𝑛𝑓𝑎𝑒𝑝

√(𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑛𝑓)(𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑝 + 𝑎𝑛𝑝)

 

Cohen [29]: 
2𝑎𝑒𝑓𝑎𝑛𝑝 − 2𝑎𝑛𝑓𝑎𝑒𝑝

(𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑒𝑝) + (𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑛𝑓 + 𝑎𝑛𝑝)
 

 

BB & Buser [29]:     
√𝑎𝑒𝑓𝑎𝑛𝑝+𝑎𝑒𝑓

√𝑎𝑒𝑓𝑎𝑛𝑝+𝑎𝑒𝑓+𝑎𝑒𝑝+𝑎𝑛𝑓
 

 

Scott [29]: 

4𝑎𝑒𝑓𝑎𝑛𝑝 − 4𝑎𝑛𝑓𝑎𝑒𝑝 − (𝑎𝑛𝑓 − 𝑎𝑒𝑝)2

(2𝑎𝑒𝑓 + 𝑎𝑛𝑓 + 𝑎𝑒𝑝)(2𝑎𝑛𝑝 + 𝑎𝑛𝑓 + 𝑎𝑒𝑝)
 

Fleiss [29]:      
4𝑎𝑒𝑓𝑎𝑛𝑝−4𝑎𝑛𝑓𝑎𝑒𝑝−(𝑎𝑛𝑓−𝑎𝑒𝑝)2

(2𝑎𝑒𝑓+𝑎𝑛𝑓+𝑎𝑒𝑝)+(2𝑎𝑛𝑝+𝑎𝑛𝑓+𝑎𝑒𝑝)
 Overlap [29]:     

𝑎𝑒𝑓

min (𝑎𝑒𝑓,𝑎𝑛𝑓,𝑎𝑒𝑝)
 Braun-Banquet [36]:

𝑎𝑒𝑓

max (𝑎𝑒𝑓+𝑎𝑒𝑝,𝑎𝑒𝑓+𝑎𝑛𝑓)
 

Dennis [36]: 
(𝑎𝑒𝑓𝑎𝑛𝑝)−(𝑎𝑒𝑝𝑎𝑛𝑓)

√(𝐹+𝑃)(𝑎𝑒𝑓+𝑎𝑒𝑝)(𝑎𝑒𝑓+𝑎𝑛𝑓)
 Mountford [36]:    

𝑎𝑒𝑓

0.5(𝑎𝑒𝑓𝑎𝑒𝑝+𝑎𝑒𝑓𝑎𝑛𝑓)+𝑎𝑒𝑝𝑎𝑛𝑓
 Fossum [36]:    

(𝐹+𝑃)(𝑎𝑒𝑓−0.5)2

(𝑎𝑒𝑓+𝑎𝑒𝑝)(𝑎𝑒𝑓+𝑎𝑛𝑓)
 

Pearson [36]:   
(𝐹+𝑃)(𝑎𝑒𝑓𝑎𝑛𝑝−𝑎𝑒𝑝𝑎𝑛𝑓)2

(𝑎𝑒𝑓+𝑎𝑒𝑝)(𝑎𝑛𝑓+𝑎𝑛𝑝)(𝑎𝑒𝑝+𝑎𝑛𝑝)(𝑎𝑒𝑓+𝑎𝑛𝑓)
 Gower [36]:  

𝑎𝑒𝑓+𝑎𝑛𝑝

√(𝑎𝑒𝑓+𝑎𝑒𝑝)(𝑎𝑛𝑓+𝑎𝑛𝑝)(𝑎𝑒𝑝+𝑎𝑛𝑝)(𝑎𝑒𝑓+𝑎𝑛𝑓)
 Michael [36]:   

4(𝑎𝑒𝑓𝑎𝑛𝑝−𝑎𝑒𝑝𝑎𝑛𝑓)

(𝑎𝑒𝑓+𝑎𝑛𝑝)2+(𝑎𝑒𝑝+𝑎𝑛𝑓)2
 

Pierce [36]:          
𝑎𝑒𝑓𝑎𝑛𝑓+𝑎𝑛𝑓𝑎𝑒𝑝

𝑎𝑒𝑓𝑎𝑛𝑓+2𝑎𝑛𝑓𝑎𝑛𝑝+𝑎𝑒𝑝𝑎𝑛𝑝
 

Harmonic Mean [29]: 

(𝑎𝑒𝑓𝑎𝑛𝑝 − 𝑎𝑛𝑓𝑎𝑒𝑝) ((𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑛𝑓) + (𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑝 + 𝑎𝑛𝑝))

(𝑎𝑒𝑓 + 𝑎𝑒𝑝)(𝑎𝑛𝑝 + 𝑎𝑛𝑓)(𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑝 + 𝑎𝑛𝑝)
 

Ample [13]:        |
𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
 −

𝑎𝑒𝑝

𝑎𝑒𝑝+𝑎𝑛𝑝
| Ample2 [29]:         

𝑎𝑒𝑓

𝑎𝑒𝑓+𝑎𝑛𝑓
 −

𝑎𝑒𝑝

𝑎𝑒𝑝+𝑎𝑛𝑝
 

Table 1- SBFL suspiciousness metrics 



 

 

 
Figure 2 – TwsCC vs. TnoCC (no weak nor strong CC tests present) 

 



 

 

 
Figure 3 – TwsCC vs. TwCC (no strong CC tests present) 



As shown in Tables 2-4, the performance of SBFL improved 
most with TnoCC, followed by TsCC, and then TwCC. In all three 
cases, the impact of discarding the CC tests was statistically 
significant for 49 out of 52 metrics. However, the effect sizes 
were mostly trivial, except in the case of Fossum, Tarwid, and 
Ochiai.  

To answer RQ1, our study showed with statistical 
significance that SBFL performs better when using TwCC, TsCC, 
and TnoCC than when using TwsCC. It also showed that TnoCC yields 
the best performance followed by TsCC, and then TwCC. In other 
words, it provides empirical evidence that CC is detrimental to 
SBFL, and that weak CC is more detrimental than strong CC. 

 

IV. IMPACT OF CC ON TSR 

A. Greedy TSR  

Given a program P, a test suite T, and a set of test 
requirements TR that are covered by T. Coverage-based Test 
suite reduction (or TSR) aims at finding T', a minimal subset of 
T, that covers all test requirements in TR. The conjecture is that 
(the smaller) T' would be as effective as T in revealing defects 
[32]. A widely used form of coverage-based TSR selects test 
cases from T to include in T’ in a way that maximizes the 
proportion of profile elements that are covered. It attempts to 
cover as many of the elements covered by T with as few test 
cases as possible. A coverage-maximizing subset of a test suite 
is an instance of the set-cover problem, which is NP-complete 
but which admits a greedy approximation algorithm [9][18].  
The greedy algorithm selects the test that covers the largest 
number of elements not covered by the previously selected tests. 
Note that this algorithm might encounter ties; i.e., different tests 
might each cover the maximal number of elements. In order to 
break the tie, we randomly select one of the tied test cases, which 
means that applying the algorithm several times might yield 
different minimized test suites. For that reason, when reducing a 
test suite in our experiments, we apply 10 instances of the above 
greedy TSR then report the resulting average. Note that more 
sophisticated approaches were devised for tie breaking 
[15][21][27]. For example, Lin and Huang [27] used one type of 
coverage as the primary criterion (branch) and another type of 
coverage (def-use) for tie breaking. Eghbali and Tahvildari [15] 
selected one test over another based on the coverage frequency 
of the program elements covered so far. However, randomly 
resolving ties is widely accepted in the literature. 

B. Subject Programs  

In the context of TSR, it is more realistic to use multi-fault 
programs and system test suites, which required us to look for 
an alternative to Defects4J. Therefore, we conducted our 
experiments using NanoXML releases r1 through r5, and the 
JTidy HTML syntax checker and pretty printer release 3. The 
NanoXML releases and test suites were download from the SIR 
repository (sir.unl.edu), whereas JTidy was made available by 
authors of work related to coincidental correctness [28]. 

JTidy contains two real faults; whereas, each of the 
NanoXML releases is associated with several versions that are 
seeded with single faults. We created multi-fault versions out of 
each of the NanoXML releases by randomly selecting five of the 
provided defects. However, we discarded some defects due to 

one or more of the following constraints: 1) no two defects could 
involve the same statement; 2) no two defects could consistently 
be triggered by the same test cases; and 3) a defect must induce 
a failure in at least one test case. As a result, the NanoXML 
defects varied from 3 to 4, and NanoXML r4 was entirely 
discarded.  

The JTidy test suite comprised 1000 tests, of which five are 
XML files and the rest are HTML files. Table 5 provides 
information about our subject programs: a) number of defects; 
b) test suite sizes; c) total number of failures; d) number of 
failures per defect; e) number of non-CC passing tests; and f) 
number of weak and strong CC tests (determined per Section 
IV.C). Note how: 1) Nano r1 and Nano r3 do not have any weak 
CC tests, and Nano r5 has no strong CC tests; and 2) the number 
of weak CC tests is relatively high, which agrees with the 
findings in [28]. (All subject programs and test suites are 
downloadable [41]). 

TnoCC improves SBFL? 
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trivial 
|delta|<0.147 

46 0 0 3 

small 
0.147 ≤ |delta| < 0.33 

1 0 0 0 

moderate 
0.33 ≤ |delta| < 0.474 

2 0 0 0 

large 
|delta| ≥ 0.474 

0 0 0 0 

Table 2 – TwsCC vs. TnoCC (no weak nor strong CC tests present) 

 

 

TsCC improves SBFL? 
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|delta|<0.147 

44 3 0 3 

small 
0.147 ≤ |delta| < 0.33 

2 0 0 0 

moderate 
0.33 ≤ |delta| < 0.474 

0 0 0 0 

large 
|delta| ≥ 0.474 

0 0 0 0 

Table 3- TwsCC vs. TsCC (no weak CC tests present) 

 

TwCC improves SBFL? 

 

p-value 
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trivial 
|delta|<0.147 

23 13 11 3 

small 
0.147 ≤ |delta| < 

0.33 
2 0 0 0 

moderate 
0.33 ≤ |delta| < 

0.474 
0 0 0 0 

large 
|delta| ≥ 0.474 

0 0 0 0 

Table 4 – TwsCC vs. TwCC (no strong CC tests present) 



C. RQ2: Does TSR perform better when using TwCC, TsCC, or 

TnoCC than when using TwsCC? 

Here also we need to build TwsCC, TnoCC, TwCC, and TsCC for 

each of our five subject programs. To do so, we specified two 

code checkers for each of the 15 defects: 1) a weak checker that 

detects weak CC by monitoring whether the defect is reached; 

and 2) a strong checker that detects strong CC by monitoring 

whether the program state is infected. We augmented the fixed 

versions of the subjects with the code checkers, and executed the 

test suites in order to categorize each test case as strong CC, or 

weak CC, or neither (resulting in the tests’ breakdown shown in 

Table 5). Below is an illustrating example involving JTidy 

(org.w3c.tidy.Clean.java): 
 

Buggy version: 
 if (name_end > style.length() || style.charAt(name_end)…  
 
Fixed version: 
 if (name_end >= style.length() || style.charAt(name_end)…  
 
Fixed version augmented with code checkers:  
 weakCC = true;   // weak checker triggered 
 if (name_end == style.length())  
  strongCC = true;   // strong checker triggered 
 if (name_end >= style.length() || style.charAt(name_end)…   

 

For each subject, we performed test suite reduction using 
statement profiles. Since the greedy reduction algorithm is not 
deterministic, we applied it 10 times for each subject and 
computed the average sizes of the reduced test suites and the 
average numbers of the revealed defects. Tables 6 reports our 
results in terms of the average percentage of revealed defects 
(df%). 

As shown in Table 5, the number of failures per bug is in 
some cases unrealistically high. For that reason we limited that 
number to 1 randomly picked failure. Table 6 reports the results 
for the case of 1 failure per bug. It shows for each subject 
program df% computed using TwsCC, TnoCC, TsCC, and TwCC. It 
additionally contrasts the results of when using TnoCC, TsCC, and 
TwCC to when TwsCC is used.  

 Considering Table 6, applying TSR on Nano r1 yielded a 
df% of 69% using TwsCC, 100% using TnoCC, and 100% using TsCC. 
That is an improvement Δdf% of 44.9% for both TnoCC and TsCC 

over TwsCC. Note how the entries for TwCC are left blank, and the 
results for TnoCC and TsCC are identical. The reason is due to the 
fact that Nano r1 has no strong CC tests (see Table 5). The 
results for Nano r3 are very similar, both TnoCC and TsCC resulted 
in a df% of 100%, and TwCC was discarded due the lack of strong 
CC tests. 

Applying TSR on Nano r5 yielded a df% of 55% using TwsCC, 
100% using TnoCC, and 100% using TwCC. However, here the 
entries for TsCC are left blank since Nano r5 has no weak CC 
tests. The results were very different for Nano r2, as neither 
weak CC nor strong CC had any impact on df%. 

Applying TSR on JTidy yielded a df% of 50% using TwsCC, 
100% using TnoCC, 80% using TsCC, and 50% using TwCC. 

In regard to defect detection (df%), the results for JTidy, Nano 
r1, and Nano r3 suggest that discarding weak CC tests drastically 
improves TSR (their respective Δdf% are 60%, 44.9% and 81%). 
The results for Nano r5 suggest that discarding strong CC tests 
improves TSR (Δdf% is 17.6%). The results for JTidy also 
suggest that both weak and strong CC tests need to be discarded 
to improve TSR. Meanwhile, the results for Nano r2 suggest that 
discarding any form of CC tests has no impact on TSR (Δdf% is 
0%). 

To summarize, compared to TwsCC, our TSR results showed 
that TnoCC, TsCC, and TwCC resulted in respectively %49, %47, and 
%6 more detected defects. 

The above observations are all based on the case of 1 failure 
per bug and on using statement profiles. To enhance our 
confidence in our findings, we opted to slightly change our 
experimental setup by using branch profiling and limiting the 
number of failures per bug to up 2 and up to 3. 

Tables 7 and 8 present the results also when using statement 
profiles but while using up to 2 and 3 failures per bug, 
respectively. Tables 9-11 present similar information as Tables 
6-8 except that branch profiling is used. Following a 
comparative examination, we are convinced that the conclusions 
drawn from Table 6 are fundamentally the same that one can 
draw from Tables 7-11.  

To answer RQ2, our (relatively small) study showed that 
TSR performs better when using TwCC, TsCC, and TnoCC than 
when using TwsCC. It also showed that TnoCC yields the best 
performance followed by TsCC, and then TwCC. In other words, it 

 

Program #Bugs #Tests #Failures #Failures/Bug 
Passing Test Cases 

#no CC #weak CC #strong CC 

Nano r1 3 214 38 27,10,1 14 162 0 

Nano r2 3 214 41 36,4,1 141 17 15 

Nano r3 4 216 29 16,8,4,1 19 168 0 

Nano r5 3 216 32 30,1,1 135 0 49 

JTidy 2 1000 22 17,5 79 874 25 

Table 5 – Information about the number of bugs and the test suites breakdown 

 

 

 



suggests that CC is detrimental to TSR, and that weak CC is 
more detrimental than strong CC. 

V. THREATS TO VALIDITY  

Our SBFL related study is sizable as it involved the 
Defects4J benchmark. However, our TSR related study is 
relatively smaller, which is due to the lack of sizable benchmarks 
comprising multi-fault programs. Our intent is to extend the 
Defects4J benchmark with multi-fault versions, starting with the 
Closure library since it already contains test cases that result in 
large levels of coverage; i.e., the Closure test cases are better 
categorized as system tests than unit tests. 

One internal threat to the validity of our experiments relates 
to the fact that the EXAM score is computed at the Java line 
number level as opposed to the more granular bytecode level, 
which might lessen the accuracy of our results. In addition, it 
should be noted that the EXAM score ranking is just one 
approach of many presented in the literature, thus, better 
alternative approaches might exist. 

Our work was limited to only two coverage-based defect 
detection techniques, others should also be investigated; e.g., 
test case prioritization and test case selection. 

 
TwsCC TnoCC TsCC TwCC 

df% df% Δdf% df% Δdf% df% Δdf% 

JTidy 50 100 100.0 80 60.0 50 0.0 

Nano r1 69 100 44.9 100 44.9 67 -2.9 

Nano r2 94 94 0.0 94 0.0 94 0.0 

Nano r3 55 100 81.8 100 81.8 54 -1.8 

Nano r5 85 100 17.6 84 -1.2 100 17.6 

 

 Table 6 – Impact of TnoCC, TsCC, and TwCC on TSR using 

statement coverage given 1 failure per bug  

 

 
TwsCC TnoCC TsCC TwCC 

df% df% Δdf% df% Δdf% df% Δdf% 

JTidy 50 100 100.0 95 90.0 50 0.0 

Nano r1 70 100 42.9 100 42.9 71 1.4 

Nano r2 100 100 0.0 100 0.0 100 0.0 

Nano r3 59 100 69.5 100 69.5 61 3.4 

Nano r5 93 100 7.5 94 1.1 100 7.5 

 

Table 7 – Impact of TnoCC, TsCC, and TwCC on TSR using 

statement coverage given up to 2 failures per bug  

 

 
TwsCC TnoCC TsCC TwCC 

df% df% Δdf% df% Δdf% df% Δdf% 

JTidy 50 100 100.0 100 100.0 50 0.0 

Nano r1 72 100 38.9 100 38.9 71 -1.4 

Nano r2 100 100 0.0 100 0.0 100 0.0 

Nano r3 62 100 61.3 100 61.3 63 1.6 

Nano r5 99 100 1.0 98 -1.0 100 1.0 

 

Table 8 – Impact of TnoCC, TsCC, and TwCC on TSR using 

statement coverage given up to 3 failures per bug  

 
TwsCC TnoCC TsCC TwCC 

df% df% Δdf% df% Δdf% df% Δdf% 

JTidy 100 100 0.0 100 0.0 100 0.0 

Nano r1 68 100 47.1 100 47.1 68 0.0 

Nano r2 94 93 -1.1 95 1.1 96 2.1 

Nano r3 52 100 92.3 100 92.3 53 1.9 

Nano r5 100 100 0.0 100 0.0 100 0.0 

 

Table 9 – Impact of TnoCC, TsCC, and TwCC on TSR using 

branch coverage given 1 failure per bug  

 

 
TwsCC TnoCC TsCC TwCC 

df% df% Δdf% df% Δdf% df% Δdf% 

JTidy 100 100 0.0 100 0.0 100 0.0 

Nano r1 70 100 42.9 100 42.9 70 0.0 

Nano r2 100 100 0.0 100 0.0 100 0.0 

Nano r3 59 100 69.5 100 69.5 58 -1.7 

Nano r5 100 100 0.0 100 0.0 100 0.0 

 

Table 10 – Impact of TnoCC, TsCC, and TwCC on TSR using 

branch coverage given up to 2 failures per bug  

 

 
TwsCC TnoCC TsCC TwCC 

df% df% Δdf% df% Δdf% df% Δdf% 

JTidy 100 100 0.0 100 0.0 100 0.0 

Nano r1 73 100 37.0 100 37.0 71 -2.7 

Nano r2 100 100 0.0 100 0.0 100 0.0 

Nano r3 61 100 63.9 100 63.9 60 -1.6 

Nano r5 100 100 0.0 100 0.0 100 0.0 

 

Table 11 – Impact of TnoCC, TsCC, and TwCC on TSR using 

branch coverage given up to 3 failures per bug  

 



VI. RELATED WORK 

This section presents work related to coincidental 
correctness. Wong et al [36], and Yoo and Harman [40], 
respectively provide comprehensive surveys on SBFL and TSR. 

Laski et al [24] studied coincidental correctness while 
referring to it as error masking. They mutated the internal 
program state then checked whether the program produced the 
correct output. Their approach assesses the quality of a test suite 
and the presence of CC within. 

Masri and Abou Assi [28] showed that both strong and weak 
CC is prevalent, and analytically demonstrated that weak CC is 
a safety reducing factor for SBFL. They also presented 
techniques for cleansing test suites from CC. Specifically, they 
segregated test cases into two clusters based on their execution 
profiles; a passing test was deemed as CC if it fell within the 
cluster that contained most of the failing tests. They also 
presented a second technique in which only passing tests are 
partitioned into two clusters, conjecturing that the CC test cases 
will be grouped within the same cluster.  

Hierons [17] recognized the negative effect of CC when 
augmenting Partition Analysis with Boundary Value Analysis. 
He also showed how Boundary Value Analysis can be enhanced 
in order to reduce the likelihood of CC even in an environment 
that involves non-determinism and floating point numbers. 

Baudry et al [8] defined a dynamic basic block (DBB) as a 
set of statements that is covered by the same test cases. They 
empirically observed that test suites containing more DBB’s 
resulted in improved SBFL. They also observed that the actual 
faulty DBB’s were not always ranked as the most suspicious, 
which they attributed to CC. 

Wang et al [34] presented a coverage refinement approach 
to reduce the influence of coincidental correctness on fault 
localization. The work introduces a concept called context-
pattern, which is unique for each fault type and describes the 
program behavior before and after the faulty code. Coverage 
results for all statements are refined with the context-pattern 
following a context-pattern matching 

Bandyopadhyay and Ghosh [7] considered any passing test 
that is similar to failing tests as CC. They proposed an iterative 
approach that leverages user feedback to improve the detection 
of CC tests and consequently SBFL. 

Clark and Hierons [12] leveraged information theory to 
study strong coincidental correctness, which they termed fault 
masking. They derived an information theoretic measure, termed 
squeeziness, which quantifies the likelihood of a function f to 
nullify the propagation of an infectious state. The squeeziness of 
function f: I→O is Sq(f) = H(I) - H(O), which is the loss of 
information after applying f to I. Their proposed measure 
somewhat relates to mutual information and the measure 
presented in [28] for quantifying the amount of information 
flowing between two variables connected by a dynamic 
dependence chain. Clark and Hierons [12] also demonstrated 
that there is a strong statistical correlation between squeeziness 
and fault masking, whereas the correlation between DRR and 
fault masking was not as strong.  

Androutsopoulos et al [5] provided a more thorough 
information theoretic analysis of strong CC, which they termed 
Failed Error Propagation or FEP. They devised five metrics 
that aim at predicting the occurrence of strong CC, of which two 
showed a high predictive power. Their experiments showed that 
10% of the 7,140,000 involved test cases were strong CC tests. 

In a position paper, Clark et al [11] proposed information 
theory as the basis for solving several software engineering 
problems including the mitigation of coincidental correctness to 
increase the testability of programs.  

VII. CONCLUSIONS   

We conducted a study that aimed at assessing the impact of 
coincidental correctness (CC), in both of its forms weak and 
strong, on the effectiveness of SBFL and coverage-based TSR. 
Our observations suggested that CC is detrimental to defect 
detection, and that weak CC is more detrimental than strong CC. 
We expect that our findings would motivate researchers to 
investigate effective solutions to mitigate its effect. 
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