Supporting Information

Palladium-Catalyzed Synthesis of 2,3-Diaryl-N-methylindoles from *ortho*-Alkynylanilines and Aryl Pinacol Boronic Esters

Yue-Gui Luo,^{*a*} R. Sidick Basha,^{*a*} Daggula Mallikarjuna Reddy,^{*a*} Yong-Jing Xue,^{*a*} Te-Hsuan Chen,^{*a*} and Chin-Fa Lee^{*a,b,c**}

Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R.O.C

^b Research Center for Sustainable Energy and Nanotechnology (RCSEN), Taiwan

^cInnovation and Development Center of Sustainable Agriculture (IDCSA), Taiwan

E-mail: cfalee@dragon.nchu.edu.tw

Tables of Contents

а

1	Experimental and General Procedure	S2
2	References	S12
3	NMR spectra of compounds	S13
4	Crystal description and data	S53

1. Experimental and General Procedure

General information

All commercial available chemicals were used as received. Experiments were conducted under N₂ atmosphere by using standard Schlenk techniques. Melting points were determined by Büchi 535 apparatus. ¹H, ¹³C and ¹⁹F NMR spectra were measured at Varian Unity Inova-600 or a Varian Mercury-400 instrument by using CDCl₃ solvent. Chemical shifts are indicated in δ values with reference to TMS and CDCl₃ internal standards. ¹⁹F chemical shifts were determined in δ values by using PhCF₃ internal standard. Coupling constant value are measured in hertz (Hz). Standard abbreviations for multiplicity are given as s = singlet, d = doublet, t = triplet and m = multiplet. GC-MS analysis were obtained on a Agilent Technologies 5977A GC equipped with Agilent 7890B MS. High-resolution mass spectra (HRMS) were undertaken on a Jeol JMS-HX 110 spectrometer by the services given at National Chung Hsing University. Column chromatography was carried out on Merck silica gel 60 (230–400 mesh). Aminoalkyne and Aryl boronic esters were all synthesized through literature procedures.¹

General procedure for synthesis of compound 3

Aminoalkyne (0.2 mmol, 1 equiv), arylpinacol boronic ester (0.3 mmol, 1.5 equiv), $Pd(OAc)_2$ (2.25 mg, 5 mol %), and $Cu(OAc)_2 \cdot H_2O$ (60 mg, 1.5 equiv) was charged under nitrogen atmosphere and the solvent ethanol (1.5 mL) was added. The resulting mixture was stirred at 74 °C for 12 h. Then, the reaction mixture was cooled down to room temperature and diluted with ethyl acetate (20 mL), and it was filtered through a celite pad and the filtrate was concentrated under vacuum. The obtained crude residue was purified by silica gel column chromatography.

General procedure for synthesis of compound 5

A Schlenk tube with Teflon coated magnetic stir bar was charged with B_2pin_2 (0.75 mmol), $[Ir(OMe)(cod)]_2$ (1 mol %), dtbpy (2 mol %), arenes (1.0 mmol) and THF (2 mL). The tube was heated at 66 °C for 24 h under nitrogen atmosphere. The resulting mixture was filtered through a celite pad and the filtrate was concentrated under vacuum. The obtained crude arylboronic ester was charged with aminoalkyne (0.2 mmol), $Pd(OAc)_2$ (2.25 mg, 5 mol %), and $Cu(OAc)_2 \cdot H_2O$ (60 mg, 1.5 equiv). To this mixture ethanol (1.5 mL) was added and heated at 74 °C for 12 h under nitrogen atmosphere. Then, the reaction mixture was filtered through a celite pad and the residue was purified on column chromatography to

afford the desired product **5**. Similar reaction procedure was followed for the synthesis of **31**.

Procedure for Sequential Coupling Reaction

To a mixture of 2-iodo-*N*,*N*-dimethylaniline (247 mg, 1.0 mmol), $PdCl_2(PPh_3)_2$ (14 mg, 2.0 mol %), CuI (2 mg, 1.0 mol %), ethynylbenzene (1.2 equiv, 125 µL), and triethylamine (5 mL) under nitrogen atmosphere. The reaction was performed at room temperature for 2 h. After completion of the reaction, it was filtered through a pad of celite and it was concentrated under reduced pressure. Then the residue was treated with Methyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (78.6 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), and Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv) in ethanol (1.5 mL) at 74 °C under nitrogen atmosphere for 12 h. Then, the mixture was filtered through a pad of celite and was concentrated under reduced pressure. Then the residue was purified by silica gel column chromatography to afford **3**j.

1-Methyl-2,3-diphenyl-1*H*-indole (3a)²

Following the general procedure, using *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (61.2 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3a** as the white solid (34.2 mg, 60% yield). m.p. 113-115 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.66 (s, 3H), 7.14 – 7.24 (m, 2H), 7.26 – 7.41 (m, 11H), 7.80 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 30.9, 109.6, 115.0, 119.5, 120.1, 122.1, 125.4, 126.9, 128.0, 128.1, 128.3, 129.8, 131.1, 131.8, 135.1, 137.2, 137.7.

1-Methyl-3-phenyl-2-(4-propylphenyl)-1*H*-indole (3b)

Following the general procedure, using *N*,*N*-dimethyl-2-((4-propylphenyl)ethynyl)aniline (52.6 mg, 0.2 mmol), 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (61.2 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ \cdot H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl

ether in hexane) to provide **3b** as the white solid (36.0 mg, 55% yield). m.p. 94-96 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.94 (t, *J* = 7.2 Hz, 3H), 1.62 – 1.68 (m, 2H), 2.59 (t, *J* = 7.6 Hz, 2H), 3.61 (s, 3H), 7.13 – 7.36 (m, 12H), 7.79 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 24.3, 30.8, 37.8, 109.5, 114.8, 119.5, 120.1, 122.0, 125.3, 127.0, 128.1, 128.4, 129.0, 129.8, 130.9, 135.4, 137.2, 137.9, 142.5. HRMS (EI) calcd for C₂₄H₂₃N [M]⁺ 325.1830, found 325.1825.

1-Methyl-3-phenyl-2-(o-tolyl)-1H-indole (3c)

Following the general procedure, using *N*,*N*-dimethyl-2-(*o*-tolylethynyl)aniline (47 mg, 0.2 mmol), 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (61.2 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3c** as the colorless oil (42.2 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ 1.99 (s, 3H), 3.49 (s, 3H), 7.11 (t, *J* = 6.0 Hz, 1H), 7.16 – 7.31 (m, 10H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 19.8, 30.2, 109.4, 114.9, 119.6, 120.0, 121.8, 125.3, 125.7, 126.7, 128.1, 128.7, 128.9, 130.1, 131.6, 131.7, 135.4, 137.05, 137.1, 138.6. HRMS (EI) calcd for C₂₂H₁₉N [M]⁺ 297.1517, found 297.1511.

1-Methyl-3-phenyl-2-(p-tolyl)-1H-indole (3d)

Following the general procedure, using *N*,*N*-dimethyl-2-(*p*-tolylethynyl)aniline (47 mg, 0.2 mmol), 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (61.2 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3d** as the white solid (26.4 mg, 44% yield). m.p. 114-117 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.42 (s, 3H), 3.70 (s, 3H), 7.20 – 7.35 (m, 11H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.4, 30.9, 109.5, 114.8, 119.5, 120.1, 122.0, 125.4, 127.0, 128.1, 128.8, 129.1, 129.8, 131.0, 135.4, 137.2, 137.8. HRMS (EI) calcd for C₂₂H₁₉N [M]⁺ 297.1517, found 297.1523.

1-Methyl-2-phenyl-3-(*p*-tolyl)-1*H*-indole (3e)²

Following the general procedure, using *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 4,4,5,5-tetramethyl-2-(*p*-tolyl)-1,3,2-dioxaborolane (65.4 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3e** as the white solid (27.4 mg, 46% yield). m.p. 155-156 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.32 (s, 3H), 3.66 (s, 3H), 7.07 (d, *J* = 8.0 Hz, 2H), 7.16 – 7.21 (m, 3H), 7.27 – 7.41 (m, 7H), 7.79 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 30.9, 109.5, 114.9, 119.6, 120.0, 122.1, 126.9, 127.9, 128.3, 128.9, 129.6, 131.1, 131.9, 132.1, 134.9, 137.2, 137.5.

3-(4-Chlorophenyl)-1-methyl-2-phenyl-1*H*-indole (3f)³

Following the general procedure, using *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 2-(4-chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (71.4 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3f** as the white solid (44.2 mg, 70% yield). m.p. 164-165 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.67 (s, 3H), 7.18 – 7.22 (m, 5H), 7.29 – 7.33 (m, 3H), 7.38 – 7.43 (m, 4H), 7.74 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 30.9, 109.7, 113.8, 119.2, 120.4, 122.3, 126.6, 128.2, 128.4, 128.5, 130.9, 131.0, 131.1, 131.5, 133.7, 137.2, 137.9.

3-(4-Bromophenyl)-1-methyl-2-phenyl-1*H*-indole (3g)

Following the general procedure, using N,N-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 2-

(4-bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (84.6 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3g** as the white solid (41.3 mg, 57% yield). m.p. 164-166 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.67 (s, 3H), 7.15 – 7.24 (m, 3H), 7.29 – 7.33 (m, 3H), 7.36 – 7.42 (m, 6H), 7.74 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 30.9, 109.7, 113.8, 119.2, 120.4, 122.3, 126.6, 128.2, 128.5, 131.0, 131.3, 131.5, 134.2, 137.2, 137.9. HRMS (EI) calcd for C₂₁H₁₆BrN [M]⁺ 361.0466, found 361.0467.

3-(4-Methoxyphenyl)-1-methyl-2-phenyl-1*H*-indole (3h)⁴

Following the general procedure, using *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 2-(4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (70.2 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3h** as the white solid (41.9 mg, 67% yield). m.p. 128-129 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.66 (s, 3H), 3.78 (s, 3H), 6.82 (d, *J* = 8.4 Hz, 2H), 7.16 – 7.23 (m, 3H), 7.28 – 7.33 (m, 3H), 7.35 – 7.41 (m, 4H), 7.76 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 30.9, 55.1, 109.5, 113.6, 114.6, 119.5, 120.0, 122.0, 127.0, 127.5, 127.9, 128.3, 130.8, 131.1, 131.9, 137.2, 137.3, 157.5.

1-Methyl-2-phenyl-3-(4-(trifluoromethyl)phenyl)-1*H*-indole (3i)²

Following the general procedure, using *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 4,4,5,5-tetramethyl-2-(4-(trifluoromethyl)phenyl)-1,3,2-dioxaborolane (81.6 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3i** as the white solid (50.4 mg, 72% yield). m.p. 134-136 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.66 (s, 3H), 7.20 – 7.23 (m, 1H), 7.29 – 7.34 (m, 3H), 7.38 – 7.43 (m, 6H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 30.9, 109.8, 113.7, 119.2, 120.6, 122.5, 125.08, 125.1 126.5, 127.0, 128.4, 128.6, 129.7, 131.0, 131.3, 137.3, 138.5, 139.2.

¹⁹F NMR (376 MHz, CDCl₃): δ -63.7.

Methyl 4-(1-methyl-2-phenyl-1*H*-indol-3-yl)benzoate (3j)

Following the general procedure, using *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), Methyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (78.6 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3j** as the white solid (58.0 mg, 85% yield). m.p. 158-160 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.67 (s, 3H), 3.88 (s, 3H), 7.22 – 7.24 (m, 1H), 7.29 – 7.44 (m, 9H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.92 (d, *J* = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 30.9, 51.9, 109.7, 114.0, 119.3, 120.6, 122.4, 126.4, 126.7, 128.3, 128.5, 129.4, 129.5, 131.0, 131.4, 137.3, 138.5, 140.4, 167.2. HRMS (EI) calcd for C₂₃H₁₉NO₂ [M]⁺ 341.1416, found 341.1413.

1-Methyl-2-phenyl-3-(*m*-tolyl)-1*H*-indole (3k)

Following the general procedure, using *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 4,4,5,5-tetramethyl-2-(*m*-tolyl)-1,3,2-dioxaborolane (65.4 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3k** as the white solid (24.0 mg, 40% yield). m.p. 105-107 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.01 (s, 3H), 3.52 (s, 3H), 7.13 (t, *J* = 7.2 Hz, 1H), 7.19 – 7.32 (m, 10H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 19.8, 30.3, 109.4, 114.9, 119.6, 120.0, 121.8, 125.3, 125.7, 126.7, 128.2, 128.7, 128.9, 130.1, 131.6, 131.7, 135.4, 137.0, 137.1, 138.6. HRMS (EI) calcd for C₂₂H₁₉N [M]⁺ 297.1517, found 297.1514.

3-(3,5-Dimethylphenyl)-1-methyl-2-phenyl-1*H*-indole (3l)

Following the general procedure, using *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 2-(3,5-dimethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (69.6 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **31** as the white solid (16.5 mg, 27% yield). m.p. 92-100 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.22 (s, 6H), 3.67 (s, 3H), 6.82 (s, 1H), 6.92 (s, 2H), 7.18 – 7.19 (m, 1H), 7.29 – 7.41 (m, 7H), 7.80 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.4, 30.9, 109.5, 115.0, 119.7, 120.0, 122.0, 126.9, 127.2, 127.6, 127.9, 128.3, 131.1, 132.0, 134.9, 137.2, 137.4, 137.6. HRMS (EI) calcd for C₂₃H₂₁N [M]⁺ 311.1674, found 311.1677.

3-(3,4-Dimethylphenyl)-1-methyl-2-phenyl-1*H*-indole (3m)

Following the general procedure, using *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 2-(3,4-dimethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (69.6 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ · H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3m** as the white solid (22.1 mg, 36% yield). m.p. 110-112 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.19 (s, 3H), 2.23 (s, 3H), 3.67 (s, 3H), 6.99-7.02 (m, 2H), 7.14-7.20 (m, 2H), 7.25 –7.41 (m, 7H), 7.80 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 19.4, 19.8, 30.9, 109.5, 115.0, 119.8, 120.0, 122.0, 127.0, 127.2, 127.9, 128.3, 129.5, 131.0, 131.1, 132.1, 132.5, 133.6, 136.1, 137.3, 137.4. HRMS (EI) calcd for C₂₃H₂₁N [M]⁺ 311.1674, found 311.1678.

Methyl 4-(1-methyl-2-(o-tolyl)-1H-indol-3-yl)benzoate (3n)

Following the general procedure, using *N*,*N*-dimethyl-2-(*o*-tolylethynyl)aniline (47 mg, 0.2 mmol), Methyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (78.6 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3n** as the white solid (50.1 mg, 71% yield). m.p. 128-132 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.00 (s, 3H), 3.54 (s, 3H), 3.88 (s, 3H), 7.24 – 7.28 (m, 4H), 7.33-7.35 (m, 4H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.89 (t, *J* = 8.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 19.8, 30.3, 51.9, 109.7, 114.0, 119.4, 120.5, 122.2, 125.9, 126.3, 126.7, 128.4, 129.1, 129.6, 130.3, 131.2, 131.5, 137.2, 138.1, 138.4, 140.6, 167.2. HRMS (EI) calcd for C₂₄H₂₁NO₂ [M]⁺ 355.1572, found 355.1563.

Methyl 4-(1-methyl-2-(4-propylphenyl)-1*H*-indol-3-yl)benzoate (30)

Following the general procedure, using *N*,*N*-dimethyl-2-((4-propylphenyl)ethynyl)aniline (52.6 mg, 0.2 mmol), Methyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (78.6 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **30** as the white solid (46.2 mg, 60% yield). m.p. 116-119 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.97 (t, *J* = 7.2 Hz, 3H), 1.63 – 1.71 (m, 2H), 2.63 (t, *J* = 7.6 Hz, 2H), 3.67 (s, 3H), 3.89 (s, 3H), 7.20 – 7.23 (m, 5H), 7.30 – 7.37 (m, 3H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 13.9, 24.3, 30.9, 37.8, 51.9, 109.7, 113.8, 119.2, 120.5, 122.3, 126.5, 126.6, 128.5, 128.7, 129.3, 129.5, 130.8, 137.3, 138.8, 140.6, 143.0, 167.3. HRMS (EI) calcd for C₂₆H₂₅NO₂ [M]⁺ 383.1885, found 383.1892.

Following the general procedure, using *N*,*N*-dimethyl-2-((4-propylphenyl)ethynyl)aniline (263 mg, 1.0 mmol), Methyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (393.2 mg, 1.5 mmol), $Pd(OAc)_2$ (11.2 mg, 5 mol %), $Cu(OAc)_2 \cdot H_2O$ (299.5 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **30** as the white solid (237.6 mg, 62% yield).

2-(3-Methoxy-5-methylphenyl)-1-methyl-3-phenyl-1*H*-indole (3p)

Following the general procedure, using N,N-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 2-

(3-methoxy-5-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (74.4 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **3p** as the colorless oil (40.2 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 2.25 (s, 3H), 3.58 (s, 3H), 3.66 (s, 3H), 6.56 (d, *J* = 12.0 Hz, 2H), 6.79 (s, 1H), 7.17 – 7.20 (m, 1H), 7.27-7.40 (m, 7H), 7.83 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.6, 30.9, 54.9, 109.5, 111.9, 112.5, 115.0, 119.7, 120.1, 122.1, 123.1, 126.8, 128.0, 128.3, 131.1, 132.0, 136.2, 137.3, 137.8, 138.9, 159.3. HRMS (EI) calcd for C₂₃H₂₁NO [M]⁺ 327.1623, found 327.1628.

3-(3,5-Dichlorophenyl)-1-methyl-2-phenyl-1*H*-indole (5a)

Following the Sequential procedure, using 1,3-dichlorobenzene (147 µL, 1 mmol), B₂pin₂ (190.5 mg, 0.75 mmol), [Ir(OMe)(cod)₂]₂ (6.6 mg, 1 mol %), dtbpy (5.4 mg, 2 mol %). *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 2-(3,5-dichlorophenyl)-4,4,5,5-tetra methyl-1,3,2-dioxaborolane (excess, 1 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **5a** as the white solid (51.5 mg, 73% yield). m.p. 112-114 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.64 (s, 3H), 7.13-7.15 (m, 3H), 7.20-7.24 (m, 1H), 7.28 – 7.33 (m, 3H), 7.39 – 7.43 (m, 4H), 7.75 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 30.9, 109.8, 112.4, 119.0, 120.7, 122.6, 125.4, 126.3, 127.8, 128.7, 130.9, 134.5, 137.2, 138.5, 138.6. HRMS (EI) calcd for C₂₁H₁₅Cl₂N [M]⁺ 351.0582, found 351.0588.

3-(3-Chloro-5-methylphenyl)-1-methyl-2-phenyl-1*H*-indole (5b)

Following the Sequential procedure, using 3-chlorotoluene (126.6 μ L, 1 mmol), B₂pin₂ (190.5 mg, 0.75 mmol), [Ir(OMe)(cod)₂]₂ (6.6 mg, 1 mol %), dtbpy (5.4 mg, 2 mol %). *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 2-(3-chloro-5-methylphenyl)-4,4,5,5-tetra methyl-1,3,2-dioxaborolane (75.6 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **5b** as the white solid (26.6 mg, 40% yield). m.p. 101-103 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.20 (s, 3H), 3.64 (s, 3H),

6.96 (s, 2H), 7.08 (s, 1H), 7.19 (t, J = 7.2 Hz, 1H), 7.28-7.31 (m, 3H), 7.36-7.39 (m, 4H), 7.76 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 30.9, 109.6, 113.8, 119.3, 120.4, 122.3, 126.2, 126.7, 128.2, 128.4, 128.7, 131.0, 131.5, 133.6, 136.9, 137.2, 138.1, 139.3. HRMS (EI) calcd for C₂₂H₁₈ClN [M]⁺ 331.1128, found 331.1126.

3-(3,5-Bis(trifluoromethyl)phenyl)-1-methyl-2-phenyl-1*H*-indole (5c)

Following the Sequential procedure, using 1,3-bis(trifluoromethyl)benzene (214 mg, 1 mmol), B₂pin₂ (190.5 mg, 0.75 mmol), [Ir(OMe)(cod)₂]₂ (6.6 mg, 1 mol %), dtbpy (5.4 mg, 2 mol %). *N*,*N*-dimethyl-2-(phenylethynyl)aniline (44 mg, 0.2 mmol), 2-(3,5-bis(trifluoromethyl)phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (102 mg, 0.3 mmol), Pd(OAc)₂ (2.25 mg, 5 mol %), Cu(OAc)₂ • H₂O (60 mg, 1.5 equiv), then purified by column chromatography (SiO₂, 6% diethyl ether in hexane) to provide **5c** as the white solid (46.1 mg, 55% yield). m.p. 111-115 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 3H), 7.25 – 7.39 (m, 4H), 7.44 – 7.47 (m, 4H), 7.63 (s, 1H), 7.70 (s, 2H), 7.76 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 30.9, 110.0, 112.2, 118.6, 121.1, 121.7, 122.1, 122.8, 124.8, 126.0, 128.9, 129.2, 130.7, 130.9, 131.1, 131.5, 137.3, 137.6, 139.1. ¹⁹F NMR (376 MHz, CDCl₃): δ -64.6. HRMS (EI) calcd for C₂₃H₁₅F₆N [M]⁺ 419.1109, found 419.1107.

2. References

- (a) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2006, 71, 62–69. (b) Xia, X.-F.; Wang, N.; Zhang, L.-L.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem. 2012, 77, 9163–9170. (c) Ratniyom, J.; Dechnarong, N.; Yotphan, S.; Kiatisevi, S. Eur. J. Org. Chem., 2014, 1381–1385. (d) Partridge, B. M.; Hartwig, J. F. Org. Lett., 2013, 15, 140–143.
- 2. Miyasaka, M.; Fukushima, A.; Satoh, T.; Hirano, K.; Miura, M. Chem. Eur. J. 2009, 15, 3674–3677.
- 3. Li, J.; An, Y.; Li, J.; Yang, S.; Wu, W.; Jiang, H. Org. Chem. Front., 2017, 4, 1590–1594.
- 4. Worlikar, S. A.; Neuenswander, B.; Lushington, G. H.; Larock, R. C. J. Comb. Chem., 2009, 11, 875–879.

3. NMR spectra of compounds

017.8-

4. Crystal description and data

Table 1. Crystal data and structure refinement for 50.	Table 1	1.	Crystal	data	and	structure	refinement	t for 30 .
--	---------	----	---------	------	-----	-----------	------------	-------------------

Identification code	30	
Empirical formula	C26 H25 N O2	
Formula weight	383.47	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.0443(9) Å	$\alpha = 114.161(3)^{\circ}$
	b = 10.5766(11) Å	$\beta = 98.162(3)^{\circ}.$
	c = 12.7178(11) Å	$\gamma = 104.309(3)^{\circ}$
Volume	1034.08(18) Å ³	
Z	2	
Density (calculated)	1.232 Mg/m^3	
Absorption coefficient	0.077 mm ⁻¹	
F(000)	408	
Crystal size	0.430 x 0.360 x 0.290 m	nm ³
Theta range for data collection	3.283 to 26.438°.	
Index ranges	-11<=h<=11, -13<=k<=	13, -15<=l<=15
Reflections collected	30990	
Independent reflections	4168 [R(int) = 0.0481]	
Completeness to theta = 25.242°	98.7 %	
Absorption correction	Semi-empirical from eq	uivalents
Max. and min. transmission	0.9281 and 0.8394	
Refinement method	Full-matrix least-square	s on F ²
Data / restraints / parameters	4168 / 0 / 262	
Goodness-of-fit on F ²	1.111	
Final R indices [I>2sigma(I)]	R1 = 0.0551, wR2 = 0.1	207
R indices (all data)	R1 = 0.0762, wR2 = 0.1	320
Extinction coefficient	n/a	
Largest diff. peak and hole	0.290 and -0.270 e.Å ⁻³	

	x	у	Z	U(eq)
O(1)	3789(2)	12191(2)	5037(1)	31(1)
O(2)	2086(2)	11206(2)	5842(1)	41(1)
Ν	2188(2)	3415(2)	-234(1)	17(1)
C(1)	2028(2)	2894(2)	591(2)	18(1)
C(2)	1856(2)	1488(2)	461(2)	23(1)
C(3)	1808(2)	1277(2)	1459(2)	26(1)
C(4)	1916(2)	2433(2)	2555(2)	27(1)
C(5)	2059(2)	3822(2)	2677(2)	23(1)
C(6)	2120(2)	4072(2)	1682(2)	18(1)
C(7)	2346(2)	5344(2)	1488(2)	17(1)
C(8)	2400(2)	4907(2)	315(2)	16(1)
C(9)	2057(3)	2483(2)	-1484(2)	26(1)
C(10)	2488(2)	6830(2)	2392(2)	17(1)
C(11)	1414(2)	6983(2)	3084(2)	22(1)
C(12)	1529(2)	8354(2)	3952(2)	24(1)
C(13)	2715(2)	9606(2)	4142(2)	20(1)
C(14)	3789(2)	9472(2)	3454(2)	22(1)
C(15)	3678(2)	8099(2)	2590(2)	21(1)
C(16)	2806(2)	11053(2)	5095(2)	24(1)
C(17)	3917(3)	13629(2)	5935(2)	40(1)
C(18)	2657(2)	5808(2)	-316(2)	16(1)
C(19)	1756(2)	6720(2)	-278(2)	18(1)
C(20)	2052(2)	7639(2)	-802(2)	21(1)
C(21)	3253(2)	7693(2)	-1375(2)	21(1)
C(22)	4119(2)	6753(2)	-1439(2)	20(1)
C(23)	3831(2)	5828(2)	-915(2)	19(1)
C(24)	3602(3)	8720(2)	-1930(2)	29(1)
C(25)	2241(3)	8376(3)	-2961(2)	36(1)
C(26)	1800(5)	6839(3)	-3981(2)	76(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) For **30**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(16)	1.344(3)
O(1)-C(17)	1.444(2)
O(2)-C(16)	1.207(2)
N-C(1)	1.380(2)
N-C(8)	1.388(2)
N-C(9)	1.456(2)
C(1)-C(2)	1.393(3)
C(1)-C(6)	1.409(3)
C(2)-C(3)	1.380(3)
C(2)-H(2A)	0.9500
C(3)-C(4)	1.398(3)
C(3)-H(3A)	0.9500
C(4)-C(5)	1.383(3)
C(4)-H(4A)	0.9500
C(5)-C(6)	1.401(3)
C(5)-H(5A)	0.9500
C(6)-C(7)	1.436(2)
C(7)-C(8)	1.382(3)
C(7)-C(10)	1.479(2)
C(8)-C(18)	1.473(2)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-C(11)	1.397(3)
C(10)-C(15)	1.398(3)
C(11)-C(12)	1.383(3)
C(11)-H(11A)	0.9500
C(12)-C(13)	1.387(3)
C(12)-H(12A)	0.9500
C(13)-C(14)	1.392(3)
C(13)-C(16)	1.487(3)
C(14)-C(15)	1.384(3)
C(14)-H(14A)	0.9500
C(15)-H(15A)	0.9500
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800

Table 3. Bond lengths [Å] and angles $[\circ]$ for **30**.

C(17)-H(17C)	0.9800
C(18)-C(23)	1.394(3)
C(18)-C(19)	1.400(2)
C(19)-C(20)	1.384(3)
C(19)-H(19A)	0.9500
C(20)-C(21)	1.394(3)
C(20)-H(20A)	0.9500
C(21)-C(22)	1.394(3)
C(21)-C(24)	1.516(3)
C(22)-C(23)	1.387(3)
C(22)-H(22A)	0.9500
C(23)-H(23A)	0.9500
C(24)-C(25)	1.515(3)
C(24)-H(24A)	0.9900
C(24)-H(24B)	0.9900
C(25)-C(26)	1.514(4)
C(25)-H(25A)	0.9900
C(25)-H(25B)	0.9900
C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800
C(16)-O(1)-C(17)	115 06(17)
C(1)-N-C(8)	108.80(15)
C(1)-N- $C(9)$	123.53(15)
C(8)-N-C(9)	127.59(16)
N-C(1)-C(2)	129.23(17)
N-C(1)-C(6)	108.20(15)
C(2)-C(1)-C(6)	122.53(17)
C(3)-C(2)-C(1)	117.53(18)
C(3)-C(2)-H(2A)	121.2
C(1)-C(2)-H(2A)	121.2
C(2)-C(3)-C(4)	120.98(18)
C(2)-C(3)-H(3A)	119.5
C(4)-C(3)-H(3A)	119.5
C(5)-C(4)-C(3)	121.42(18)
C(5)-C(4)-H(4A)	119.3
C(3)-C(4)-H(4A)	119.3
C(5)-C(4)-H(4A) C(3)-C(4)-H(4A)	119.3 119.3

C(4)-C(5)-C(6)	118.94(18)
C(4)-C(5)-H(5A)	120.5
C(6)-C(5)-H(5A)	120.5
C(5)-C(6)-C(1)	118.58(17)
C(5)-C(6)-C(7)	134.55(17)
C(1)-C(6)-C(7)	106.79(16)
C(8)-C(7)-C(6)	107.14(15)
C(8)-C(7)-C(10)	127.43(16)
C(6)-C(7)-C(10)	125.43(16)
C(7)-C(8)-N	109.07(16)
C(7)-C(8)-C(18)	128.49(16)
N-C(8)-C(18)	122.43(16)
N-C(9)-H(9A)	109.5
N-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
N-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(11)-C(10)-C(15)	118.34(16)
C(11)-C(10)-C(7)	119.37(17)
C(15)-C(10)-C(7)	122.29(16)
C(12)-C(11)-C(10)	120.86(18)
C(12)-C(11)-H(11A)	119.6
C(10)-C(11)-H(11A)	119.6
C(13)-C(12)-C(11)	120.31(18)
C(13)-C(12)-H(12A)	119.8
C(11)-C(12)-H(12A)	119.8
C(12)-C(13)-C(14)	119.47(17)
C(12)-C(13)-C(16)	118.35(17)
C(14)-C(13)-C(16)	122.18(18)
C(15)-C(14)-C(13)	120.21(18)
C(15)-C(14)-H(14A)	119.9
C(13)-C(14)-H(14A)	119.9
C(14)-C(15)-C(10)	120.81(17)
C(14)-C(15)-H(15A)	119.6
C(10)-C(15)-H(15A)	119.6
O(2)-C(16)-O(1)	123.12(18)
O(2)-C(16)-C(13)	124.46(19)

O(1)-C(16)-C(13)	112.42(17)
O(1)-C(17)-H(17A)	109.5
O(1)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
O(1)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(23)-C(18)-C(19)	118.27(16)
C(23)-C(18)-C(8)	121.67(16)
C(19)-C(18)-C(8)	119.99(16)
C(20)-C(19)-C(18)	120.56(17)
C(20)-C(19)-H(19A)	119.7
C(18)-C(19)-H(19A)	119.7
C(19)-C(20)-C(21)	121.37(17)
C(19)-C(20)-H(20A)	119.3
C(21)-C(20)-H(20A)	119.3
C(22)-C(21)-C(20)	117.86(17)
C(22)-C(21)-C(24)	120.63(17)
C(20)-C(21)-C(24)	121.51(17)
C(23)-C(22)-C(21)	121.15(17)
C(23)-C(22)-H(22A)	119.4
C(21)-C(22)-H(22A)	119.4
C(22)-C(23)-C(18)	120.74(17)
C(22)-C(23)-H(23A)	119.6
C(18)-C(23)-H(23A)	119.6
C(25)-C(24)-C(21)	113.41(17)
C(25)-C(24)-H(24A)	108.9
C(21)-C(24)-H(24A)	108.9
C(25)-C(24)-H(24B)	108.9
C(21)-C(24)-H(24B)	108.9
H(24A)-C(24)-H(24B)	107.7
C(24)-C(25)-C(26)	112.8(2)
C(24)-C(25)-H(25A)	109.0
C(26)-C(25)-H(25A)	109.0
C(24)-C(25)-H(25B)	109.0
C(26)-C(25)-H(25B)	109.0
H(25A)-C(25)-H(25B)	107.8
C(25)-C(26)-H(26A)	109.5

C(25)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(25)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	46(1)	17(1)	23(1)	5(1)	7(1)	11(1)
O(2)	46(1)	34(1)	32(1)	1(1)	21(1)	13(1)
Ν	20(1)	15(1)	18(1)	7(1)	6(1)	8(1)
C(1)	14(1)	20(1)	21(1)	11(1)	4(1)	6(1)
C(2)	21(1)	17(1)	29(1)	11(1)	5(1)	6(1)
C(3)	24(1)	19(1)	38(1)	18(1)	4(1)	5(1)
C(4)	25(1)	32(1)	30(1)	23(1)	4(1)	6(1)
C(5)	24(1)	25(1)	21(1)	13(1)	5(1)	6(1)
C(6)	16(1)	18(1)	20(1)	9(1)	3(1)	6(1)
C(7)	15(1)	18(1)	20(1)	9(1)	6(1)	6(1)
C(8)	13(1)	16(1)	20(1)	8(1)	5(1)	6(1)
C(9)	34(1)	19(1)	21(1)	5(1)	8(1)	9(1)
C(10)	22(1)	17(1)	14(1)	8(1)	5(1)	9(1)
C(11)	22(1)	21(1)	21(1)	9(1)	8(1)	4(1)
C(12)	26(1)	27(1)	20(1)	10(1)	11(1)	12(1)
C(13)	27(1)	20(1)	15(1)	8(1)	5(1)	11(1)
C(14)	25(1)	18(1)	22(1)	9(1)	7(1)	4(1)
C(15)	24(1)	21(1)	20(1)	10(1)	10(1)	8(1)
C(16)	27(1)	24(1)	20(1)	7(1)	2(1)	11(1)
C(17)	52(2)	19(1)	35(1)	1(1)	4(1)	13(1)
C(18)	17(1)	14(1)	14(1)	6(1)	2(1)	5(1)
C(19)	19(1)	18(1)	19(1)	9(1)	8(1)	8(1)
C(20)	24(1)	18(1)	25(1)	12(1)	10(1)	12(1)
C(21)	22(1)	18(1)	22(1)	10(1)	6(1)	5(1)
C(22)	17(1)	26(1)	21(1)	12(1)	9(1)	8(1)
C(23)	19(1)	22(1)	20(1)	10(1)	6(1)	11(1)
C(24)	30(1)	29(1)	39(1)	24(1)	16(1)	10(1)
C(25)	43(1)	39(1)	37(1)	29(1)	12(1)	10(1)
C(26)	138(3)	42(2)	32(2)	21(1)	2(2)	12(2)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **30**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	у	Z	U(eq)
H(2A)	1775	703	-287	27
H(3A)	1700	332	1400	32
H(4A)	1892	2261	3230	33
H(5A)	2114	4594	3424	28
H(9A)	2211	3084	-1902	39
H(9B)	2868	2011	-1528	39
H(9C)	1002	1725	-1864	39
H(11A)	593	6134	2959	26
H(12A)	793	8439	4419	28
H(14A)	4602	10325	3577	26
H(15A)	4418	8018	2127	25
H(17A)	4654	14388	5826	61
H(17B)	2870	13744	5855	61
H(17C)	4314	13733	6735	61
H(19A)	934	6708	111	22
H(20A)	1423	8246	-772	25
H(22A)	4920	6746	-1849	24
H(23A)	4441	5202	-966	23
H(24A)	3852	9744	-1304	35
H(24B)	4553	8659	-2222	35
H(25A)	2540	9100	-3265	43
H(25B)	1303	8482	-2662	43
H(26A)	918	6673	-4622	114
H(26B)	2717	6733	-4293	114
H(26C)	1480	6115	-3689	114

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for **30**.