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1. General Information: 

 

All reactions were performed in oven dried apparatus under the atmosphere of Argon. All reagents 

were purchased from commercial vendors and were used as received without any purification or 

drying. THF was distilled using sodium and benzophenone and stored over activated molecular 

sieves (4 Å) prior to usage. DBPin was synthesized according to the reported procedure.1 1H, 

13C{1H} and 11B NMR spectra were recorded on a Jeol 400 MHz spectrometer at 300K unless 

otherwise noted. 1H NMR spectra were referenced to the solvent residual peak (CDCl3, δ 7.26 

ppm) and 13C NMR spectra were referenced to the solvent residual peak (CDCl3, δ 77.16 ppm). 

Coupling constants J are reported in Hz. NMR multiplicities are as follows: s = singlet, d = doublet, 

t = triplet, m = multiplet, br,s = broad singlet. MS data were acquired using Thermo Scientific™ 

ISQ™ Single Quadrupole system. 
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2. Hydroboration of alkenes 

2.1. Table S1: Optimization for hydroboration of alkenes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Yields and ratio of the regioisomers determined by GC-MS. 

 

 

 

 

 

  

Entry [Co] Activator Solvent Yield 
(%) 

3a:3a’ 

1 Co(acac)3 NaHBEt3 THF 66 75:25 

2 Co(acac)3 NaHBEt3 Cyclohexane 16 65:35 

3 Co(acac)3 NaBHEt3 neat 58 58:42 

4 Co(acac)3 - THF 0 0 

5 - NaBHEt3 THF 6 72: 28 

6 CoCl2 NaBHEt3 THF 0 0 

7 Co(acac)2 NaBHEt3 THF 56 81:19 

8 Co(PhCOOH)2 NaBHEt3 THF 36 56:44 

10 
 

- - THF 0 0 

2 

3a 3a’ 
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2.2 Scheme S1. Initial substrate screening with Co(acac)3 (1)/ NaHBEt3 combination  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Ratio of regioisomers determined by 1H NMR.  

 

 

 

 

 

 

 

 

< 5 % > 95 % selectivity 

52 % 72 % 60 %

Ratio 73: 24 85: 15 82: 18
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2.3 Table S2: Optimization of PPh3 with different additives 

 

 

 

 

 

 

 

 

 

 

a Ratio of regioisomers determined by 1H NMR. 

 

 

 

 

 

 

 

 

 

Entry Additive 

PPh3 

(mol %) 

Yield 

(%) 

Ratio 

(B:L)a 

1 NaHBEt3 5 55 87 : 13 

2 NaHBEt3 10 79 94 : 6 

3 NaHBEt3 15 88 93 : 7 

4 NaOtBu 5 76 94 : 6 

5 NaOtBu 10 90 94 : 6 

6 NaOtBu 15 84 94: 6 
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2.2 General procedure for hydroboration of alkenes 

 

An oven dried scintillation vial was charged with Co(acac)3 (17.8 mg, 0.05 mmol), NaOtBu (4.8 

mg, 0.05 mmol), THF (1 mL) and magnetic stir bar. The reaction mixture was allowed to stir for 

~ 1-2 minutes, and a change of color from dark green to purple was observed.  PPh3 (26 mg, 0.10 

mmol), HBpin (153.6 mg, 174 µL, 1.2 mmol), styrene (104 mg, 114.8 µL, 1.0 mmol) was then 

added and the reaction mixture was then stirred inside the glove box for 4 hrs at room temperature. 

The reaction was quenched by opening the vial to air and adding DI H2O (5 mL) and diethyl ether 

(10 mL).  The organic phase was extracted, concentrated under vacuo and passed through a short 

pad of silica using hexanes and ethyl acetate as the eluent (95: 5). In all cases, 1H NMR and GC-

MS were used to determine the ratio of the regioisomers.  

2.3 Spectral data for branched and linear boronate esters 

 

 

                                       3a                             3a’ 

4,4,5,5-tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane (3a)2: The two regioisomers were 

isolated as colorless oil (207 mg, 90%). δH (400 MHz; CDCl3): 7.18-7.11 (4H, m), 7.05-7.01 (1H, 

m), 2.33 (1H, q, J = 7.6 Hz), 1.23 (3H, d, J = 7.6 Hz), 1.20 (12H, d, J = 5.2 Hz). 13C{1H} NMR 

(101 MHz; CDCl3): 145.0, 128.4, 127.9, 125.2, 83.4, 24.7, 24.7, 17.2. GC-MS (m/z): 232.14. 

 

4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane (3a’)3: The presence of this material was 

identified by a proton resonance at 2.65 (2H, t, J = 8.4 Hz). The remaining proton resonances were 

not assigned since they are obscured by those of the major regioisomer. The amount of 4,4,5,5-

tetramethyl-2-phenethyl-1,3,2-dioxaborolane formed was too low for detection in the 13C NMR 

spectrum recorded. 
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                                         3b                                   3b’ 

4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)ethyl)-1,3,2-dioxaborolane (3b)4: The 

two regioisomers were isolated as a white solid (287 mg, 95%). δH (400 MHz; CDCl3): 7.52 (2H, 

d, J = 7.7 Hz), 7.32 (2H, d, J = 8.0 Hz), 2.51 (1H, q, J = 7.3 Hz), 1.35 (3H, d, J = 7.4 Hz). 13C{1H} 

NMR (101 MHz; CDCl3): 149.3, 128.1, 125.3 (q, J = 3.0 Hz), 83.7 Hz, 24.8, 24.7, 16.9. GC-MS 

(m/z): 300.19. 

 

4,4,5,5-tetramethyl-2-(4-(trifluoromethyl)phenethyl)-1,3,2-dioxaborolane (3b’)3: The 

presence of this material was identified by a proton resonance at 2.81 (2H, t, J = 8.6 Hz). The 

remaining proton resonances were not assigned since they are obscured by those of the major 

regioisomer. The amount of 4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane formed was too 

low for detection in the 13C NMR spectrum recorded. 

 

 

                                  3c                                           3c’ 

2-(1-(4-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c)2: The two 

regioisomers were isolated as colorless oil (245 mg, 98%).  δH (400 MHz; CDCl3): 7.18-7.14 (2H, 

m), 6.96-6.92 (2H, m), 2.41 (1H, q, J = 7.6 Hz), 1.31 (3H, d, J = 7.6 Hz), 1.21 (12H, d, J = 4.8 

Hz). 13C{1H} NMR (101 MHz; CDCl3): 161.0 (d, JC-F = 243 Hz), 140.6 (d, JC-F = 2.7 Hz), 129.1 

(d, J C-F = 7.7 Hz), 115.1 (d, J C-F = 21 Hz), 83.5, 24.8, 24.7, 17.4. GC-MS (m/z): 250.19. 

2-(4-fluorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c’)3: The presence of this 

material was identified by a proton resonance at 2.72 (2H, t, J = 8.0 Hz). The remaining proton 

resonances were not assigned since they are obscured by those of the major regioisomer. The 

amount of 4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane formed was too low for detection 

in the 13C NMR spectrum recorded. GC-MS (m/z): 250.18. 
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                                    3d                                        3d’ 

4,4,5,5-tetramethyl-2-(1-(o-tolyl)ethyl)-1,3,2-dioxaborolane (3d)2: The two regioisomers were 

isolated as colorless oil (220 mg, 90%). δH (400 MHz; CDCl3): 7.26-7.04 (4H, m), 2.59 (1H, q, J 

= 7.0 Hz), 2.32 (3H, s), 1.32 (3H, d, J = 6.6 Hz), 1.22 (12 H, dd, J = 2.3, 7.7 Hz). 13C{1H} NMR 

(101 MHz; CDCl3): 143.5, 135.7, 130.1, 127.2, 126.2, 125.1, 83.4, 24.8, 24.7, 20.0, 16.5. GC-

MS(m/z): 246.22. 

4,4,5,5-tetramethyl-2-(2-methylphenethyl)-1,3,2-dioxaborolane (3d’)4: δH (400 MHz; CDCl3): 

7.26-7.04 (3H, m), 2.72 (2H, t, J = 7.2 Hz), 2.32 (3H, s), 1.24 (12H, d, J = 2.4), 1.11 (2H, t, J = 

7.6 Hz). 13C{1H} NMR (101 MHz; CDCl3): 142.6, 135.9, 130.1, 128.2, 126.0,125.7, 83.2, 27.3, 

25.0, 19.4. GC-MS (m/z): 246.20. 

 

 

 

                                      3e                                           3e’ 

4,4,5,5-tetramethyl-2-(1-(p-tolyl)ethyl)-1,3,2-dioxaborolane (3e)5 : The two regioisomers were 

isolated as colorless oil (221 mg, 90%). δH (400 MHz; CDCl3): 7.13-7.05 (4H, m), 2.39 (1H, q, J 

= 7.5 Hz), 2.30 (3H, s), 1.31 (3H, d, J = 7.5 Hz), 1.21 (12H, d, J = 5.2 Hz). 13C{1H} NMR (101 

MHz; CDCl3): 142.0, 134.5, 129.2, 127.8, 83.4, 24.8, 24.7, 21.1, 17.4. GC-MS (m/z): 246.19 

 

4,4,5,5-tetramethyl-2-(4-methylphenethyl)-1,3,2-dioxaborolane (3e’)6: The presence of this 

material was identified by a single proton resonance at 2.71 (2H, t, J = 8.2 Hz). The remaining 

proton resonances were not assigned since they are obscured by those of the major regioisomer. 

The amount of 4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane formed was too low for 

detection in the 13C NMR spectrum recorded. GC-MS (m/z): 246.17 
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                                          3f                                      3f’ 

2-(1-(4-methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f)2: The two 

regioisomers were isolated as a pale yellow oil (250 mg, 95%). δH (400 MHz; CDCl3): 7.14 (2H, 

d, J = 8.8 Hz), 6.81 (2H, d, J = 8.4 Hz), 3.77 (3H, s), 2.37 (1H, q, J = 7.5 Hz), 1.29 (3H, d, J = 7.5 

Hz), 1.20 (12H, d, J = 5.2 Hz). 13C{1H} NMR (101 MHz; CDCl3): 157.3, 137.1, 128.7, 113.9, 

83.3, 55.3, 24.7, 24.7, 17.5. GC-MS (m/z): 262.21. 

2-(4-methoxyphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f’)3: The presence of this 

material was identified by a single proton resonance at 2.69 (2H, t, J = 8.1 Hz). The remaining 

proton resonances were not assigned since they are obscured by those of the major regioisomer. 

The amount of 4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane formed was too low for 

detection in the 13C NMR spectrum recorded. GC-MS (m/z): 262.20. 

 

 

                                      3g                                 3g’ 

4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane(3g)2: The two 

regioisomers were isolated as a white solid (221mg, 90%). δH (400 MHz; CDCl3): 7.79-7.74 (3H, 

m), 7.64 (1H, s), 7.45-7.36 (3H, m), 2.61 (1H, q, J = 7.4 Hz), 1.43 (3H, d, J = 8.0 Hz), 1.21 (12H, 

d, J = 4 Hz). 13C{1H} NMR (101 MHz; CDCl3): 142.7, 134.0, 131.8, 127.8, 127.6, 127.6, 127.4, 

125.8, 125.4, 125.0, 83.5, 24.8, 24.7, 17.0. GC-MS (m/z): 282.25. 

4,4,5,5-tetramethyl-2-(2-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane (3g’)4: The presence of 

this material was identified by a single proton resonance at 2.92 (2H, t, J = 8.1 Hz). The remaining 

proton resonances were not assigned since they are obscured by those of the major regioisomer. 

The amount of 4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane formed was too low for 

detection in the 13C NMR spectrum recorded. GC-MS (m/z): 282.23. 
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                                       3h                                  3h’ 

2-(1-mesitylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3h)2: The two regioisomers were 

isolated as colorless oil (244 mg, 89%). δH (400 MHz; CDCl3):  6.8 (2H, s), 2.62-2.59 (1H, q), 2.28 

(6H, s), 2.22 (3H, s), 1.27 (12 H, s), 1.11-1.07 (2H, m). GC-MS (m/z): 274.24 

4,4,5,5-tetramethyl-2-(2,4,6-trimethylphenethyl)-1,3,2-dioxaborolane (3h’)3: δH (400 MHz; 

CDCl3):  6.8 (2H, s), 2.69-2.64 (t, 2H, J = 8.8 Hz), 2.29 (6H, s), 2.24 (3H, s), 1.27 (12H, s), 0.97-

0.93 (2H, m). 13C NMR (101 MHz, CDCl3, ppm): 138.6, 135.7, 134.8, 128.9, 83.2, 25.0, 23.4, 

20.9, 19.8. GC-MS (m/z): 274.24. 

 

 

                                       3i                                   3i’ 

2-(1-(2,6-difluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i): The two 

regioisomers were isolated as pale yellow oil (137 mg, 51%). δH (400 MHz; CDCl3): 7.12-7.04 

(1H, m), 6.84-6.77 (2H, m), 2.67 (1H, q, J = 7.6 Hz), 1.27 (3H, d, J = 7.6 Hz), 1.23 (12H, s). GC-

MS (m/z): 268.20 

2-(2,6-difluorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i’): δH (400 MHz; 

CDCl3): 7.12-7.04 (1H, m), 6.84-6.77 (2H, m), 2.76 (2H, t, J = 8.3 Hz), 1.25 (12H, d, J = 6.8 Hz), 

1.10 (2H, t, J = 8.4 Hz). GC-MS (m/z): 268.23 

13C NMR (101 MHz, CDCl3, ppm): The assignment of peaks was difficult but two distinct peaks 

were observed at 162.5 and 160.1 which confirmed the formation of both the isomers 3i and 3i’ 

 

3j’ 
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4,4,5,5-tetramethyl-2-(2-phenylpropyl)-1,3,2-dioxaborolane (3j’)3: The product was isolated as 

a colorless oil (100mg, 40%). δH (400 MHz, CDCl3): 7.27-7.22 (4H, m), 7.15-7.12 (1H, m), 3.05-

2.99 (1H, m), 1.26 (3H, d, J = 6.8 Hz), 1.16-1.13 (14H, m). 13C NMR (101 MHz, CDCl3, ppm): 

149.3, 128.3, 126.8, 125.8, 83.1, 36.0, 25.0, 24.9, 24.8. GC-MS (m/z): 246.20. 

 

 

 

 

 

                                                     3k                             3k’ 

 

4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)phenyl acetate(3k): The two 

regioisomers were isolated as pale yellow oil (111 mg, 38%).2 δH (400 MHz; CDCl3): 7.22-7.20 

(2H, m), 6.98-6.96 (2H, m), 2.43 (1H, q, J = 7.4 Hz), 2.28 (3H, s), 1.31 (3H, d, J = 7.5 Hz), 1.20 

(12H, d, J = 4.2 Hz). 13C NMR (101 MHz, CDCl3, ppm): 169.8, 148.3, 142.6, 128.7, 121.2, 83.5, 

24.7, 24.7, 21.3, 17.2. GC-MS (m/z): 290.22. 

4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)phenyl acetate(3k’)4: The presence of 

this material was identified by a proton resonance at 2.73 (2H, t, J = 8.1 Hz). The remaining proton 

resonances were not assigned since they are obscured by those of the major regioisomer. 13C NMR 

(101 MHz, CDCl3, ppm): 148.6, 142.1, 129.0, 121.2, 83.3, 29.4, 24.9. (The remaining peaks were 

not observed). GC-MS (m/z): 290.19. 

 

 

                                                                    3l 

2-(2,3-dihydro-1H-inden-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3l)7: The compound 

was isolated as a pale-yellow oil (127 mg, 52%). δH (400 MHz; CDCl3):7.32-7.26 (1H, m), 7.22-

7.20 (1H, m), 7.13-7.07 (2H, m), 2.98-2.88 (2H, m), 2.73 (1H, t, J = 8.6 Hz), 2.27-2.18 (1H, m), 

2.14-2.07 (1H, m), 1.25 (12H, d, J = 4.36). 13C NMR (101 MHz, CDCl3, ppm): 145.2, 144.4, 126.1, 

125.6, 124.5, 124.4, 83.4, 33.4, 28.0, 25.0, 24.8. GC-MS (m/z): 244.19 



S13 

 

 

3m                           3m’ 

4,4,5,5-tetramethyl-2-(1-phenylbutyl)-1,3,2-dioxaborolane (3m)7: The two regioisomers were 

isolated as colorless oil (117 mg, 45%). δH (400 MHz; CDCl3): 2.30 (1H, t, J = 8.0 Hz), 1.81-1.76 

(1H, m), 1.66-1.58 (1H, m), 1.50-1.42 (2H, m), 1.18 (12 H, d, J = 7.2 Hz), 0.88 (3H, t, J = 7.6 Hz). 
13C NMR (101 MHz, CDCl3, ppm): 143.6, 128.5, 128.3, 125.2, 83.2, 34.9, 24.7, 24.7, 22.5, 14.3. 

GC-MS (m/z):260.23. 

4,4,5,5-tetramethyl-2-(4-phenylbutyl)-1,3,2-dioxaborolane (3m’)7: The presence of this 

material was identified by proton resonances at 2.59 (2H, t, J = 7.6 Hz) and 0.80 (3H, t, J = 7.6 

Hz). The remaining proton resonances overlapped with those of the major regioisomer. 13C NMR 

(101 MHz, CDCl3, ppm): 143.0, 128.5, 128.3, 125.6, 83.0, 35.9, 34.3, 25.0, 24.0, 22.5, 14.3. GC-

MS (m/z): 260.22. 

 

 

3n 

2-hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3n’)4: The compound was isolated as a 

colorless oil (157 mg, 74%). The regiosisomer was identified using a proton resonance at 0.76 

(2H, t, J = 7.7 Hz). 13C NMR (101 MHz, CDCl3, ppm): 83.0, 32.2, 31.8, 25.0, 24.1, 22.7, 14.2. 

GC-MS (m/z): 212.20 
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3 Hydroboration of Aldehydes and Ketones 

3.1. Table S3: Optimization for hydroboration of aldehydes and ketones 

 

 

 

Entry 
  Substrate (1.0 mmol) Catalyst   HBpin  

Temp 

(⁰C)  

Time 

 (hrs) 

 Yield  

(%)a 

1 4-methoxybenzaldehyde  5 mol % 1.2 R.T. 24 95 

2 4-methoxybenzaldehyde  5 mol % 1.2 50 4 95 

3 4-methoxybenzaldehyde  - 1.2 50 24 66 

4 4-methylacetophenone  5 mol % 1.2 R.T. 24 60 

5 4-methylacetophenone  5 mol % 1.2 50 4 95 

6 4-methylacetophenone  - 1.2 50 24 16 

 

a Yield based on 1H NMR with mesitylene as internal standard 
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3.2 General procedure for hydroboration of aldehydes 

An oven dried J-Young tube was charged with Co(acac)3 (17.8 mg, 0.05 mmol), THF (0.7 mL), 

HBpin (153.6 mg, 1.2mmol, 174μL) and 4-methoxybenzaldehyde (136 mg, 1 mmol, 121.7 µL). 

The J-Young tube was then immersed into a preheated oil bath at 50 ⁰C. The progress of the 

reaction was monitored using 11B NMR. After the complete consumption of HBpin, the reaction 

mixture was transferred to a scintillation vial and quenched by addition of diethyl ether (10 mL). 

Subsequently, 3 M NaOH (1 mL) and 30% H2O2 (1 mL) were added and allowed to stir for 1 h at 

room temperature. The organic layer was then extracted with diethyl ether (30 mL) and 

concentrated under reduced pressure. The yield of the product was calculated using mesitylene as 

the internal standard. 

3.3 General procedure for hydroboration of ketones 

An oven dried J-Young tube was charged with Co(acac)3 (17.8 mg, 0.05 mmol ), THF (0.7 mL), 

HBpin (153.6 mg, 1.2mmol, 174μL) and 4-methylacetophenone ( 134.2mg, 1 mmol, 133.6 µL). 

The J-Young tube was then immersed into a preheated oil bath at 50 ⁰C. The progress of the 

reaction was monitored using 11B NMR. After the complete consumption of HBpin, the reaction 

mixture was transferred to a scintillation vial and quenched by addition of diethyl ether (10 mL). 

Subsequently, 3 M NaOH (1 mL) and 30% H2O2 (1 mL) were added and allowed to stir for 1 h at 

room temperature. The organic layer was then extracted with diethyl ether (30 mL) and 

concentrated under reduced pressure. The yield of the product was calculated using mesitylene as 

the internal standard. 

3.4 General procedure for chemoselective catalytic hydroboration  

An oven dried J-Young tube was charged with Co(acac)3 (17.8 mg, 0.05 mmol), THF (0.5 mL), 

HBpin (128 mg, 1mmol, 145.1μL). A separate vial was then charged with benzaldehyde (106mg, 

1 mmol, 101.5 µL), acetophenone (120 mg, 1 mmol, 116.5 µL), and THF (0.2 mL). The reaction 

mixture containing the substrates was then transferred to the J-Young tube, and it was placed on 

a preheated oil bath at 50 ⁰C. The progress of the reaction was monitored using 11B NMR. After 

the complete consumption of HBpin, the reaction mixture was transferred to a scintillation vial 

and quenched by addition of diethyl ether (10 mL). Subsequently, 3 M NaOH (1 mL) and 30% 

H2O2 (1 mL) were added and allowed to stir for 1 h at room temperature. The organic layer was 

then extracted with diethyl ether (30 mL) and concentrated under reduced pressure. The yield of 

the product was calculated using mesitylene as the internal standard. 

3.5 General procedure for competitive chemoselective hydroboration of aldehydes 

An oven dried J-Young tube was charged with Co(acac)3 (17.8 mg, 0.05 mmol), THF (0.5 mL), 

HBpin (128 mg, 1mmol, 145.1 μL). A separate vial was then charged with benzaldehyde (106 mg, 

1 mmol, 101.5 µL), 4-methoxybenzaldehyde (136.mg, 1 mmol, 121.4 µL), and 4-

fluorobenzaldehyde (124mg, 1 mmol, 107 µL), and THF (0.2 mL). The reaction mixture in the 

vial containing the substrates was then transferred to the J-Young tube, and placed on a preheated 

oil bath at 50 ⁰C. The progress of the reaction was monitored using 11B NMR. After the complete 

consumption of 1 equivalent of HBpin after 1hr, an additional 1 equivalent of HBpin (128 mg, 1 

mmol, 145.1 µL) was added and the reaction was heated for another 1hr. The reaction mixture was 

then then transferred to a 20 mL scintillation vial and quenched by addition of diethyl ether (10 

mL) after 11B NMR showed the complete consumption of the 2nd equivalence of HBpin. 
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Subsequently, 3 M NaOH (1 mL) and 30% H2O2 (1 mL) were added and allowed to stir for 1 h at 

room temperature. The organic layer was then extracted with diethyl ether (30 mL) and 

concentrated under reduced pressure. The yield of the product was calculated using mesitylene as 

the internal standard. 

3.6 General procedure for competitive chemoselective hydroboration of ketones 

An oven dried J-Young tube was charged with Co(acac)3 (17.8 mg, 0.05 mmol), THF (0.5 mL), 

HBpin (128 mg, 1.0mmol, 145.1 μL). A separate vial was then charged with acetophenone (120.2 

mg, 1 mmol, 116.7 µL), 4-methyl acetophenone (134.2.mg, 1 mmol, 133.7 µL), and 4-

fluoroaceetophenone (138.1mg, 1 mmol, 121.4 µL), and THF (0.2 mL). The reaction mixture in 

the vial containing the substrates was then transferred to the J-Young tube, and placed on a 

preheated oil bath at 50 ⁰C. The progress of the reaction was monitored using 11B NMR. After the 

complete consumption of 1 equivalent of HBpin after 1hr, an additional 1 equivalent of HBpin 

(128 mg, 1 mmol, 145.1 µL) was added and the reaction was heated for another 1hr. The reaction 

mixture was then transferred to a 20 mL scintillation vial and quenched by addition of diethyl ether 

(10 mL) after 11B NMR showed the complete consumption of the 2nd equivalence of HBpin. 

Subsequently, 3 M NaOH (1 mL) and 30% H2O2 (1 mL) were added and allowed to stir for 1 h at 

room temperature. The organic layer was then extracted with diethyl ether (30 mL) and 

concentrated under reduced pressure. The yield of the product was calculated using mesitylene as 

the internal standard. 

3.7 General procedure for catalytic intramolecular hydroboration  

An oven dried J-Young tube was charged with Co(acac)3 (17.8 mg, 0.05 mmol ), THF (0.7 mL), 

HBpin (128 mg, 1.2mmol, 145.1μL) and 3-acetylbenzaldehyde( 148.2mg, 1 mmol). The J-Young 

tube was then immersed into a preheated oil bath at 50 ⁰C. The progress of the reaction was 

monitored using 11B NMR. After the complete consumption of HBpin, the reaction mixture was 

transferred to a scintillation vial and quenched by addition of diethyl ether (10 mL). Subsequently, 

3 M NaOH (1 mL) and 30% H2O2 (1 mL) were added and allowed to stir for 1 h at room 

temperature. The organic layer was then extracted with diethyl ether (30 mL) and concentrated 

under reduced pressure. The yield of the product was calculated using mesitylene as the internal 

standard. 
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3.8 Spectral data for 1° alcohols inferred from reaction mixture 

 

 

5a 

4-methoxybenzyl Alcohol (5a)8: Yield: 95%. δH (400 MHz; CDCl3): 3.66 (1H, br S), 3.73 (3H, 

S), 4.52 (2H, br S), 6.85 (2H, d, J = 8Hz), 7.24 (2H, d, J = 8 Hz). 13C{1H} NMR (101 MHz; 

CDCl3): 158.7, 133.0, 128.3, 113.5, 64.1, 54.8. GC-MS (m/z): 138. 

 

 

5b 

 

Benzyl Alcohol (5b)8: Yield: 93%. δH (400 MHz; CDCl3): 3.87 (1H, br S), 4.58 (2H, d, J = 4.0Hz), 

7.22 – 7.28 (1H, m), 7.32 (4H, d, J = 4Hz). 13C{1H} NMR (101 MHz; CDCl3): 140.8, 128.2, 127.2, 

126.8, 64.5. GC-MS (m/z): 108.10. 

 

 

5c 

4-fluorobenzyl Alcohol (5c)8: Yield: 100%. δH (400 MHz; CDCl3): 3.49 (1H, br S), 4.54 (2H, br 

S), 6.99 (2H, t, J = 8Hz), 7.26 (2H, t, J = 6 Hz). 13C{1H} NMR (101 MHz; CDCl3): 162 (d, JC-F = 

246.4 Hz), 136.7, 128.5 (d, JC-F = 8.1 Hz), 114.9 (d, JC-F = 21 Hz), 63.8. GC-MS (m/z): 126.09. 

 

 

5d 

4-tri(fluoromethyl)benzyl Alcohol (5d)9: Yield: 99%.  δH (400 MHz; CDCl3): 4.00 (1H, br S), 

4.65 (2H, d, J = 4 Hz), 7.40 (2H, d, J = 8 Hz), 7.56 (2H, d, J = 8 Hz). 13C{1H} NMR (101 MHz; 
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CDCl3). 145.4, 129.6 (q, JC-F = 32.4 Hz), 126.9, 125.3 (q, JC-F = 3.0 Hz), 123.0, 63.8. GC-MS (m/z): 

176.05. 

 

 

5e 

2-methoxybenzyl Alcohol (5e)8: Yield: 99%. δH (400 MHz; CDCl3): 3.03 (1H, br S), 3.80 (3H, 

S), 4.67 (2H, d, J = 4 Hz), 6.84 (1H, d, J = 8 Hz), 6.93 (1H, d, J = 8 Hz), 7.23-7.30 (2H, m). 
13C{1H} NMR (101 MHz; CDCl3): 156.9, 128.9, 128.4, 128.2, 120.3, 109.8, 60.8, 54.8. GC-MS 

(m/z): 138.10. 

 

 

5f 

Cyclohexylmethanol (5f)8: Yield: 96%. δH (400 MHz; CDCl3): 0.83-0.93 (2H, m), 1.10-1.30 (4H, 

m), 1.31-1.51 (1H, m), 1.60-1.83 (5H, m), 3.32-3.45 (2H, m). 13C{1H} NMR (101 MHz; CDCl3): 

68.6, 40.4, 29.5, 26.5, 25.8. GC-MS (m/z): 128.10. 

 

 

5g 

2,2-diphenylethanol (5g)8: Yield: 97%. δH (400 MHz; CDCl3): 1.73 (1H, br S), 4.12-4.20 (3H, 

m), 7.19-7.32 (10H, m). 13C{1H} NMR (101 MHz; CDCl3):141.4, 128.6, 128.2, 126.8, 66.0, 53.5. 

GC-MS (m/z): 198.13 

 

 

5h 
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Mesitylmethanol (5h)8: Yield:78%. δH (400 MHz; CDCl3): 2.19 (1H, br S), 2.25 (3H, S), 2.35 

(6H, S), 4.61 (2H, S), 6.83 (2H, S). 13C{1H} NMR (101 MHz; CDCl3):137.5, 137.1, 133.6, 128.9, 

58.7, 20.8, 19.1. GC-MS (m/z): 150.13. 

 

 

5i 

3-phenyl-2-propene-1-ol (5i)8: Yield: 98%. δH (400 MHz; CDCl3): 3.10 (1H, br S), 4.26 (2H, d, 

J = 4 Hz), 6.28-6.34 (1H, m), 6.56 (1H, d, J = 12 Hz), 7.20-7.23 (1H, m), 7.28 (2H, t, J = 8 Hz), 

7.34 (2H, d, J = 8 Hz). 13C{1H} NMR (101 MHz; CDCl3):136.6, 130.8, 128.5, 127.5, 126.3, 63.3. 

GC-MS (m/z): 134.10. 

 

 

5j 

n-octanol (5j): Yield: 62%. Characterized by GC-MS (See Figure S107) 

 

3.9 Spectral data for 2° alcohols inferred from reaction mixture 

 

 

5k 

1-(4-Methylphenyl)ethanol (5k)8: Yield: 95%. δH (400 MHz; CDCl3): 7.22 (d, J = 8.0 Hz, 2H) 

7.12 (d, J = 8.0 Hz, 2H), 4.77 (q, J = 4.0 Hz, 1H), 2.80 (br.s, 1H), 2.33(s, 3H), 1.43(d. J = 8.0 Hz, 

3H). 13C{1H} NMR (101 MHz; CDCl3): 143.04, 136.68, 128.96, 125.39, 69.81, 25.09, 21.01. 11B 

NMR (128 MHz, CDCl3): 24.23. GC-MS (m/z): 136.06. 

 
 

5l 
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 1-Phenylethanol (5l)8: Yield: 88%. δH (400 MHz; CDCl3): 7.32-7.23 (m, 5H), 4.80 (q, J = 4.0 

Hz, 1H), 3.125 (d, J = 2.88 Hz, 1H), 1.44(d, J = 8.0 Hz, 3H). 13C{1H} NMR (101 MHz; CDCl3): 

146.09, 128.51, 128.96, 127.42, 125.57, 70.24, 25.28. 11B NMR (128 MHz, CDCl3): 23.07. GC-

MS (m/z): 122.11 

 
 

5m 

 

1-(4-Fluorophenyl)ethanol (5m)8: Yield: 94%. δH (400 MHz; CDCl3): 7.28 (t, J = 8.0 Hz, 2H) 

6.99 (t, J = 8.0 Hz, 2H), 4.79 (q, J = 8.0 Hz, 1H), 3.31 (br, s, 1H), 1.41(d. J = 4.0 Hz, 3H). 13C{1H} 

NMR (101 MHz; CDCl3): 162.09 (d, JC-F = 245.43 Hz), 141.88, 127.18 (d, JC-F = 8.08 Hz), 115.16 

(d, JC-F = 22.22 Hz), 69.50, 25.34. 11B NMR (128 MHz, CDCl3): 24.49. GC-MS (m/z): 140.10 

 

 

 
 

5n 

 

1-(O-tolyl)ethanol (5n)8: Yield: 78%. δH (400 MHz; CDCl3): 7.48 (d, J = 8.0 Hz, 1H) 7.22-7.08 

(m, 3H), 5.03 (q, J = 4.0 Hz, 1H), 2.81 (br.s, 1H), 2.30(s, 3H), 1.41(m, 3H). 13C{1H} NMR (101 

MHz; CDCl3): 144.18, 134.19, 130.36, 127.10, 126.41, 124.79, 66.59, 24.07, 19.0. 11B NMR (128 

MHz, CDCl3): 23.16. GC-MS (m/z): 136.05 

 

 
 

5o 

 

Dicyclohexylmethanol (5o)8: Yield: 66%.  δH (400 MHz; CDCl3): 3.03 (br, s, 1H), 1.91-0.94 (m, 

22H). 13C{1H} NMR (101 MHz; CDCl3): 80.09, 39.79, 29.91, 27.30, 26.49, 26.43, 26.12. 11B 

NMR (128 MHz, CDCl3): 22.12. GC-MS (m/z): [M-C6H11] = 113.15 

 

 

 
 

5p 
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Verbenol (5p)10: Yield: 24%. δH (400 MHz; CDCl3): 5.34 (s, 1H), 4.44 (s, 1H), 1.98 (s, 1H), 1.71 

(s, 3H), 1.47 (s, 1H), 1.35(d, J = 8.0 Hz, 3H), 1.31(m, 1H), 1.09 (s, 3H) 

26.12. 11B NMR (128 MHz, CDCl3): 23.81. GC-MS (m/z): 152.19 

 

 
5q 

 

1-(4-Trifluoromethyl)phenyl)ethanol (5q)8: Yield: 98%. δH (400 MHz; CDCl3): 7.56(d, J = 8.0 

Hz, 2H) 7.44 (d, J = 8.0 Hz, 2H), 4.89 (q, J = 4.0 Hz, 1H), 2.68 (d, J = 4.0 Hz 1H), 1.45(d. J = 8.0 

Hz, 3H). 13C{1H} NMR (101 MHz; CDCl3): 149.88, 129.60 (d, JC-F = 33.3 Hz), 125.74, 125.61, 

125.47 (d, JC-F = 4.0 Hz), 69.76, 24.82. 11B NMR (128 MHz, CDCl3): 23.86. GC-MS (m/z): 190.11 

 

 

3-Acetylbenzyl alcohol11 (7): Yield: 90%. δH (400 MHz; CDCl3): 7.90 (s, 1H), 7.81 (d, J = 8.0 

Hz, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 4.68 (br, s, 1H), 3.84 (br,s, 1H), 2.55(s, 

3H). 13C{1H} NMR (101 MHz; CDCl3): 198.90, 141.90, 137.77, 131.76, 128.79, 127.47, 127.01, 

64.34, 26.73. 11B NMR (128 MHz, CDCl3): 21.75. GC-MS (m/z): 150.10 
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4. 1H, 13C and GC-MS of alkene hydroboration product 

 

 

 

* 

Figure S1. 1H NMR of 4,4,5,5-tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane (3a) ( ) and 4,4,5,5-tetramethyl-2-(1-

phenylethyl)-1,3,2-dioxaborolane (3a’) (  ). (*) represents solvent peak. 

3a                     3a’ 
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Figure S2. 13C NMR of 4,4,5,5-tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane (3a)  
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Figure S3.  GC-MS of 4,4,5,5-tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane (3a).  
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* 

Figure S4. 1H NMR of 4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)ethyl)-1,3,2-dioxaborolane (3b) ( )and 4,4,5,5-

tetramethyl-2-(4-(trifluoromethyl)phenylethyl)-1,3,2-dioxaborolane (3b’) ( ). (*) represents solvent peak. 
 

 

3b                     3b’ 
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Figure S5. 13C NMR of  4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)ethyl)-1,3,2-dioxaborolane (3b)  
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Figure S6. GC-MS of 4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)ethyl)-1,3,2-dioxaborolane (3b)  
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Figure S7. 1H NMR of 2-(1-(4-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c) (  ) and 2-(4-fluorophenylethyl)-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c’) (  ) 
 

 

3c                     3c’ 

PPh3 
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 Figure S8. 13C NMR of 2-(1-(4-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c) 
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Figure S9. GC-MS of 2-(1-(4-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c) and 2-(4-fluorophenylethyl)-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c’)   
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 Figure S10. 1H NMR of 4,4,5,5-tetramethyl-2-(1-(o-tolyl)ethyl)-1,3,2-dioxaborolane (3d) (  ) and 4,4,5,5-tetramethyl-2-(2-

methylphenethyl)-1,3,2-dioxaborolane (3d’) (  ) 
 

 

3d                     3d’ 
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PPh3

Figure S11. 13C NMR of 4,4,5,5-tetramethyl-2-(1-(o-tolyl)ethyl)-1,3,2-dioxaborolane (3d) and 4,4,5,5-tetramethyl-2-(2-

methylphenethyl)-1,3,2-dioxaborolane (3d’) 
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Figure S12. GC-MS of 4,4,5,5-tetramethyl-2-(1-(o-tolyl)ethyl)-1,3,2-dioxaborolane (3d) and 4,4,5,5-tetramethyl-2-(2-

methylphenethyl)-1,3,2-dioxaborolane (3d’) 
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Figure S13. 1H NMR of 4,4,5,5-tetramethyl-2-(1-(p-tolyl)ethyl)-1,3,2-dioxaborolane (3e) (  ) and 4,4,5,5-tetramethyl-2-(4-

methylphenethyl)-1,3,2-dioxaborolane (3e’) (  ) 
 

 

3e                     3e’ 
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Figure S14. 13C NMR of 4,4,5,5-tetramethyl-2-(1-(p-tolyl)ethyl)-1,3,2-dioxaborolane (3e) 
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Figure S15. GC-MS of 4,4,5,5-tetramethyl-2-(1-(p-tolyl)ethyl)-1,3,2-dioxaborolane (3e) and 4,4,5,5-tetramethyl-2-(4-

methylphenethyl)-1,3,2-dioxaborolane (3e’) .(*) represents internal standard and () represents dehydrogenative borylation product. 

) 


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 Figure S16. 1H NMR of 2-(1-(4-methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f) (  ) and 2-(4-

methoxyphenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f’) (  ) 
 

 

3f                     3f’ 
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PPh3

Figure S17. 13C NMR of 2-(1-(4-methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f)  
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Figure S18. GC-MS of 2-(1-(4-methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f) (  ) and 2-(4-

methoxyphenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f’) (  ) 
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Figure S19. 1H NMR of 4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane (3g) (  ) and 4,4,5,5-tetramethyl-2-

(2-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane (3g’) (  ) 
 

 

3g                     3g’ 
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Figure S20. 13C NMR of 4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane (3g) 
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Figure S21. GC-MS of 4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane (3g) and 4,4,5,5-tetramethyl-2-(2-

(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane (3g’) 
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Figure S22. 1H NMR of 2-(1-mesitylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3h) (  ) and 4,4,5,5-tetramethyl-2-(2,4,6-

trimethylphenethyl)-1,3,2-dioxaborolane (3h’) (  ) 
 

 

3h                     3h’ 
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 Figure S23. 13C NMR of 2-(1-mesitylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3h) and 4,4,5,5-tetramethyl-2-(2,4,6-

trimethylphenethyl)-1,3,2-dioxaborolane (3h’)  
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Figure S24. GC-MS of 2-(1-mesitylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3h) and 4,4,5,5-tetramethyl-2-(2,4,6-

trimethylphenethyl)-1,3,2-dioxaborolane (3h’)  
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Figure S25. 1H NMR of 2-(1-(2,6-difluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i) (  ) and 2-(2,6-

difluorophenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i’) (  ) 
 

 

3i                     3i’ 
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Figure S26. 13C NMR of 2-(1-(2,6-difluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i) (  ) and 2-(2,6-

difluorophenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i’) (  ) 
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Figure S27. GC-MS of 2-(1-(2,6-difluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i) and 2-(2,6-difluorophenylethyl)-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i’). () represents the dehydrogenative borylation product. 

) represents  

 
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Figure S28. 1H NMR of 4,4,5,5-tetramethyl-2-(2-phenylpropyl)-1,3,2-dioxaborolane (3j) 

 

3j                   



S50 

 

 Figure S29. 13C NMR of 4,4,5,5-tetramethyl-2-(2-phenylpropyl)-1,3,2-dioxaborolane (3j) 
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Figure S30. GC-MS of 4,4,5,5-tetramethyl-2-(2-phenylpropyl)-1,3,2-dioxaborolane (3j) 
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Figure S31. 1H NMR of 4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)phenyl acetate (3k) (  ) and 4-(2-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)phenyl acetate (3k’) (  ) 
 

 

3k                          3k’ 
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Figure S32. 13C NMR of 4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)phenyl acetate (3k) and 4-(2-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)ethyl)phenyl acetate (3k’) 
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Figure S33. GC-MS of 4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)phenyl acetate (3k) and 4-(2-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)ethyl)phenyl acetate (3k’)  
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 Figure S34. 1H NMR of 2-(2,3-dihydro-1H-inden-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3l) 

and 2-(2,6-difluorophenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i’) (  ) 

3l                   



S56 

 

 

 

 

* * *
**

Figure S35. 13C NMR of 2-(2,3-dihydro-1H-inden-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3l). (*) represent solvent 

peaks. 
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Figure S36. GC-MS of 2-(2,3-dihydro-1H-inden-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3l) 

and 2-(2,6-difluorophenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i’) (  ) 
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Figure S37. 1H NMR of 4,4,5,5-tetramethyl-2-(1-phenylbutyl)-1,3,2-dioxaborolane (3m) (  ) and 4,4,5,5-tetramethyl-2-(4-

phenylbutyl)-1,3,2-dioxaborolane (3m’) (  ) 
 

 

3m                       3m’        
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Figure S38. 13C NMR of 4,4,5,5-tetramethyl-2-(1-phenylbutyl)-1,3,2-dioxaborolane (3m) and 4,4,5,5-tetramethyl-2-(4-

phenylbutyl)-1,3,2-dioxaborolane (3m’) 
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 Figure S39. GC-MS of 4,4,5,5-tetramethyl-2-(1-phenylbutyl)-1,3,2-dioxaborolane (3m) and 4,4,5,5-tetramethyl-2-(4-phenylbutyl)-

1,3,2-dioxaborolane (3m’)  
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Figure S40. 1H NMR of 2-hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3n) 

3n     
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Figure S41. 13C NMR of 2-hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3n) 
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Figure S42. 13C NMR of 2-hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3n). () represents unknown impurities 

and 2-(2,6-difluorophenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i’) (  ) 

PPh
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5. 11B, 1H and 13C NMR of 1⁰ alcohol 

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

Figure S43. 11B NMR resulting from catalytic hydroboration of 5a 
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Figure S44. 1H NMR of 4-methoxybenzyl alcohol (5a). (*) represents internal standard, (  ) represents acac ligand and (  ) 

represents pinacol 

 

*

*

5a 
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*

*

*

Figure S45. 13C NMR of 4-methoxybenzyl alcohol (5a). (*) represents internal standard, (  ) represents acac ligand and (  ) 

represents pinnacol 
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Figure S46. 11B NMR resulting from catalytic hydroboration of 5b 

HBpin 



S68 

 

 

*

*

Figure S47. 1H NMR of Benzyl alcohol (5b). (*) represents internal standard, (  ) represents acac ligand and (  ) represents 

pinnacol 

 

5b 5b 
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Figure S48. 13C NMR of Benzyl alcohol (5b). (*) represents internal standard, (  ) represents acac ligand and (  ) represents 

pinnacol 

 

*

*

*
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Figure S49. 11B NMR resulting from catalytic hydroboration of 5c 

HBpin 
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*

*

Figure S50. 1H NMR of 4-fluorobenzyl alcohol (5c). (*) represents internal standard, (  ) represents acac ligand and (  ) represents 

pinnacol 

 

5c 
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*

Figure S51. 13C NMR of 4-fluorobenzyl alcohol (5c). (*) represents internal standard, (  ) represents acac ligand and (  ) represents 

pinnacol 
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Figure S52. 11B NMR resulting from catalytic hydroboration of 5d 

HBpin 
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*

Figure S53. 1H NMR of 4-trifluorobenzyl alcohol (5d). (*) represents internal standard, (  ) represents acac ligand and (  ) 

represents pinnacol 

 

5d 
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Figure S54. 13C NMR of 4-trifluorobenzyl alcohol (5d). (*) represents internal standard, (  ) represents acac ligand and (  ) 

represents pinnacol 

 

* 

* 

* 
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Figure S55. 11B NMR resulting from catalytic hydroboration of 5e 
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Figure S56. 1H NMR of 2-methoxybenzyl alcohol (5e). (*) represents internal standard, (  ) represents acac ligand and (  ) 

represents pinnacol 

 

*

*

5e 
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Figure S57. 13C NMR of 2-methoxybenzyl alcohol (5e). (*) represents internal standard, (  ) represents acac ligand and (  ) represents 

pinnacol 

 

*

*
*
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Figure S58. 11B NMR resulting from catalytic hydroboration of 5f 
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*

Figure S59. 1H NMR of cyclohexyl methanol (5f). (*) represents internal standard, (  ) represents acac ligand and (  ) represents 

pinnacol 

 

5f 
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*

Figure S60. 13C NMR of cyclohexyl methanol (5f). (*) represents internal standard, and (  ) represents pinnacol 
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Figure S61. 11B NMR resulting from catalytic hydroboration of 5g 

HBpin 
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*

Figure S62. 1H NMR of 2,2-diphenylethanol (5g). (*) represents internal standard, (  ) represents acac ligand and (  ) represents 

pinnacol 

 

5g 
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Figure S63. 13C NMR of 2,2-diphenylethanol (5g). (*) represents internal standard and (  ) represents pinnacol 
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Figure S64. 11B NMR resulting from catalytic hydroboration of 5h 

HBpin 
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*

*

Figure S65. 1H NMR of mesitylmethanol (5h). (*) represents internal standard, (  ) represents acac ligand and (  ) represents 

pinnacol 

 

5h 
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*

Figure S66. 13C NMR of mesitylmethanol (5h). (*) represents internal standard and (  ) represents pinnacol 
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Figure S67. 11B NMR resulting from catalytic hydroboration of 5i 

HBpin 



S89 

 

 

*

*

Figure S68. 1H NMR of 3-phenyl-2-propene-1-ol (5i). (*) represents internal standard and (  ) represents pinnacol 

 

5i 
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Figure S69. 13C NMR of 3-phenyl-2-propene-1-ol (5i). (*) represents internal standard and (  ) represents pinnacol 
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Figure S70. 11B NMR resulting from catalytic hydroboration of 5j 
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6. 11B, 1H and 13C NMR of 2⁰ alcohols  

Figure S71. 11B NMR resulting from catalytic hydroboration of 5k 
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*

*

Figure S72. 1H NMR of 1-(4-Methylphenyl)ethanol(5k). (*) represents internal standard and (  ) represents pinnacol 

 

5k 
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*

Solvent Solvent

Figure S73. 13C NMR of 1-(4-Methylphenyl)ethanol(5k). (*) represents internal standard and (  ) represents pinnacol 
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Figure S74. 11B NMR resulting from catalytic hydroboration of 5l 
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*

Figure S75. 1H NMR of 1-Phenylethanol (5l). (*) represents internal standard, ( ) represents acac ligand and (  ) represents 

pinnacol 

 

5l 



S97 

 

 

*

**

Figure S76. 13C NMR of 1-Phenylethanol (5l). (*) represents internal standard and (  ) represents pinnacol 
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Figure S77. 11B NMR resulting from catalytic hydroboration of 5m 

 

HBpin 
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Figure S78. 1H NMR of 1-(4-Fluorophenyl)ethanol (5m). (*) represents internal standard, ( ) represents acac ligand and (  ) 

represents pinnacol 

 

 

5m 
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Figure S79. 13C NMR of 1-(4-Fluorophenyl)ethanol (5m). (*) represents internal standard and (  ) represents pinnacol 

 

 

*

* Solvent Solvent

*



S101 

 

 

Figure S80. 11B NMR resulting from catalytic hydroboration of 5n 
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*

*

Figure S81. 1H NMR of 1-(O-tolyl)ethanol (5n). (*) represents internal standard, ( ) represents acac ligand and (  ) represents 

pinnacol 

 

 

 

5n 
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*
SolventSolvent

Figure S82. 13C NMR of 1-(O-tolyl)ethanol (5n). (*) represents internal standard and (  ) represents pinnacol 
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Figure S83. 11B NMR resulting from catalytic hydroboration of 5o 

 

HBpin 
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* 

* 

Figure S84. 1H NMR of Dicyclohexylmethanol (5o). (*) represents internal standard, ( ) represents acac ligand and (  ) represents 

pinnacol 

 

 

5o 
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Figure S85. 13C NMR of Dicyclohexylmethanol (5o). (*) represents internal standard and (  ) represents pinnacol 
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Figure S86. 11B NMR resulting from catalytic hydroboration of 5p 
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* Solvent 

Figure S87. 1H NMR of Verbenol (5p). (*) represents internal standard, ( ) represents acac ligand and (  ) represents pinnacol 

 

 

5p 
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Figure S88. 11B NMR resulting from catalytic hydroboration of 5q 
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*

*

Figure S89. 1H NMR of 1-(4-Trifluoromethyl)phenyl)ethanol (5q). (*) represents internal standard and (  ) represents pinnacol 

 

 

5q 
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Figure S90. 13C NMR of 1-(4-Trifluoromethyl)phenyl)ethanol (5q). (*) represents internal standard and (  ) represents pinnacol 
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7. 1H NMR for Chemoselective experiments  

Figure S91. 1H NMR of chemoselective hydroboration between 4-fluorobenzaldehyde and 4-fluoroacetophenone at T=30 minutes. 

(*) represents internal standard, ( ) represents acac ligand and (  ) represents pinnacol 

 

 

*

*
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* 

Figure S92. 1H NMR of chemoselective hydroboration of 3-acetylbenzyl alcohol. (*) represents internal standard, ( ) represents 

acac ligand and (  ) represents pinnacol 
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a) 

b) 

Figure S93. 1H NMR of competitive chemoselective hydroboration of benzaldehyde, 4-methoxybenzaldehyde, and 4- 

fluorobenzaldehyde. (a) 1H NMR at T= 30 minutes; (b) 1H NMR at T= 1 hr after additional 1 equiv. HBpin was added. (*) represents 

internal standard, ( ) represents acac ligand and (  ) represents pinnacol 
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Figure S94. 1H NMR of competitive chemoselective hydroboration of acetophenone, 4-methylacetophenone, and 4- 

fluoroacetophenone. (a) 1H NMR at T= 2 hours; (b) 1H NMR at T= 4 hours after additional 1 equiv. HBpin was added. (*) represents 

internal standard and (  ) represents pinnacol 

 

 

a) 

b) 

*

*

*

*
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8. Deuterium labelling experiments 

8.1. 11B and 1H NMR of synthesized DBpin 

Figure S95. 11B NMR of DBpin 

 

 

DBpin 

BD3⸳THF 
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  Figure S96. 1H NMR of DBpin. (*) represents internal standard, ( ) represents diglyme (diethylene glycol dimethyl ether) and (  ) 

represents THF peaks. 

 

 

 

*

*
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8.2 General procedure for deuterium labelling experiment 

8.2.1 Hydroboration with THF-d8 

 

 

 

 

 

An oven dried scintillation vial was charged with Co(acac)3 (17.8 mg, 0.05 mmol), NaOtBu (4.8 

mg, 0.05 mmol), THF-d8 (1 mL) and magnetic stir bar. The reaction mixture was allowed to stir 

for ~ 1-2 minutes, and a change of color from dark green to purple was observed.  PPh3 (26 mg, 

0.10 mmol), HBpin (154 mg, 174 µL, 1.2 mmol), styrene (104 mg, 115 µL, 1.0 mmol) was then 

added and the reaction mixture was then stirred inside the glove box for 4 hrs at room temperature. 

The reaction was quenched by opening the vial to air and adding DI H2O (5 mL) and diethyl ether 

(10 mL).  The organic phase was extracted, concentrated under vacou and passed through a short 

pad of silica using hexanes and ethyl acetate as the eluent (95: 5). Yield: 214 mg ( 92 %). 1H NMR 

was used to determine the ratio of the regioisomers. 

1H NMR (400 MHz, CDCl3): 7.29-7.22 (4H, m), 7.16-7.12 (1H, m), 2.45 ( 1H, quart, J = 7.52 Hz), 

1.34  (3H, d, 7.52 Hz), 1.22 ( 6H, s), 1.21 (6H, s). 

13C NMR (101 MHz, CDCl3): 145.09, 128.42, 127.91, 125.20, 83.41, 24.74, 24.71, 17.18 

11B NMR (126 MHz, CDCl3): 32.71 ppm 
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Figure S97. 1H NMR of 3a 
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Figure S98. 13C NMR of 3a. 
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Figure S99. 11B NMR of 3a.  
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8.2.2 Hydroboration with styrene-d8 

 

 

 

 

 

 

An oven dried scintillation vial was charged with Co(acac)3 (17.8 mg, 0.05 mmol), NaOtBu (4.8 

mg, 0.05 mmol), THF (1 mL) and magnetic stir bar. The reaction mixture was allowed to stir for 

~ 1-2 minutes, and a change of color from dark green to purple was observed.  PPh3 (26 mg, 0.10 

mmol), HBpin (154 mg, 174 µL, 1.2 mmol), styrene-d8 (112.2 mg, 114.6 µL, 1.0 mmol) was then 

added and the reaction mixture was then stirred inside the glove box for 4 hrs at room temperature. 

The reaction was quenched by opening the vial to air and adding DI H2O (5 mL) and diethyl ether 

(10 mL).  The organic phase was extracted, concentrated under vacou and passed through a short 

pad of silica using hexanes and ethyl acetate as the eluent (95: 5). Yield: 221 mg (95 %). 1H NMR 

was used to determine the ratio of the regioisomers. 

1H NMR (400 MHz, CDCl3): 1.28 (1H, br s), 1.21 (6H, s), 1.20 (6H, s) 

13C NMR (101 MHz, CDCl3):144.86, 127.90 (t, J = 24 Hz), 127.50 (t, J = 22.7), 124.67 (t, J = 

24.2 Hz), 83.39, 24.74, 24.71, 16.5 (quint, J=19.4 Hz).  

11B NMR (126 MHz, CDCl3): 32.64 ppm 
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Figure S100. 1H NMR of d8-3a 
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Figure S101. 13C NMR of d8-3a 
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Figure S102. 11B NMR of d8-3a 
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8.2.3 Hydroboration with DBpin 

 

 

 

 

 

 

An oven dried scintillation vial was charged with Co(acac)3 (8.9 mg, 0.025 mmol), NaOtBu (2.41 

mg, 0.025 mmol), THF (1 mL) and magnetic stir bar. The reaction mixture was allowed to stir for 

~ 1-2 minutes, and a change of color from dark green to purple was observed.  PPh3 (13.1 mg, 0.05 

mmol), DBpin (240 µL, 0.6 mmol), styrene (52 mg, 57.5 µL, 0.5 mmol) was then added and the 

reaction mixture was then stirred inside the glove box for 4 hrs at room temperature. The reaction 

was quenched by opening the vial to air and adding DI H2O (5 mL) and diethyl ether (10 mL).  

The organic phase was extracted, concentrated under vacou and passed through a short pad of 

silica using hexanes and ethyl acetate as the eluent (95: 5). Yield: 60 mg (52 %). 1H NMR was 

used to determine the ratio of the regioisomers.  

1H NMR (400 MHz, CDCl3): 7.27- 7.22 (4H, m), 7.17-7.13 (1H, t, J = 8Hz), 2.44 (1H, quart, J 

=7.12 Hz), 1.35 (2.11 H, d, J = 7.68 Hz), 1.23 (6H, s), 1.22 ( s, 6H) 

13C NMR (101 MHz, CDCl3) = 145.09, 128.43, 127.91, 125.21, 83.41, 24.75, 17.19 (s, CH3 from 

protonated product, 16.88 (t, J = 19.59 Hz, H2D from monodeuterated product) 

11B NMR (126 MHz, CDCl3): 32.88 ppm 
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Figure S103. 1H NMR of d1- 3a/ 3a.   
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Figure S104. 13C NMR of d1- 3a/ 3a.   
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Figure S105. 11B NMR of d1- 3a/ 3a.   
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9. GC-MS spectra of reaction mixtures containing 1⁰ and 2⁰ alcohol  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S106. GC-MS data of 4-methoxybenzyl Alcohol (5a). GC-MS (m/z) = 138.09.  
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Figure S107. GC-MS data of Benzyl Alcohol (5b). GC-MS (m/z) = 108.10. 
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170908db1174_#9 #2223 RT: 11.76 AV: 1 NL: 2.33E7
T: {0,0}  + c EI Full ms [45.00-500.00]
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Figure S108. GC-MS data of  4-fluorobenzyl Alcohol (5c). GC-MS (m/z) = 126.09 
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170908db1174_#10 #2352 RT: 12.20 AV: 1 NL: 2.31E8
T: {0,0}  + c EI Full ms [45.00-500.00]
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Figure S109. GC-MS data of 4-trifluorobenzyl Alcohol (5d). GC-MS (m/z) = 176.05. 
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Figure S110. GC-MS data of  2-methoxybenzyl Alcohol (5e). GC-MS (m/z) = 138.09 
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Figure S111. GC-MS data of Cyclohexyl methanol (5f). GC-MS (m/z) = 114.12. 

 

 

 

170908db1174_#7 #1918 RT: 10.72 AV: 1 SB: 80 23.01-23.19 , 23.31-23.40 NL: 6.05E8
T: {0,0}  + c EI Full ms [45.00-500.00]
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170908db1174_#5 #4861 RT: 20.73 AV: 1 NL: 3.39E6
T: {0,0}  + c EI Full ms [45.00-500.00]
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Figure S112. GC-MS for 2,2-diphenylethanol (5g). GC-MS (m/z): 198.13. (*) represents an 

unknown impurity. 
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170908db1174_#3 #3409 RT: 15.79 AV: 1 NL: 1.02E7
T: {0,0}  + c EI Full ms [45.00-500.00]
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Figure S113. GC-MS for mesitylmethanol (5h). GC-MS (m/z) =150.13 
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170908db1174_#2 #3314 RT: 15.47 AV: 1 NL: 3.26E7
T: {0,0}  + c EI Full ms [45.00-500.00]
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Figure S114. GC-MS data of 3-Phenyl-2-propene-1-ol (5i). GC-MS (m/z): 134.14. 
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Figure S115. GC-MS data of n-octanol (5j). GC-MS (m/z): 130.2. (*) represents internal 

standard (mesitylene) and () represents pinacol 
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Figure S116. GC-MS data of 1-(4-Methylphenyl)ethanol (5k). GC-MS (m/z):136.06. (*) 

represents internal standard. 
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180727-3SH25b-C #759 RT: 7.08 AV: 1 SB: 2 16.34 , 16.34 NL: 1.02E9
T: {0,0}  + c EI Full ms [45.00-500.00]
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Figure S117. GC-MS data of 1-Phenylethanol (5l). GC-MS (m/z):122.11. 
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Figure S118. GC-MS data of 1-(4-Fluorophenyl)ethanol (5m). GC-MS (m/z):140.10. (*) 

represents internal standard. 
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T: {0,0}  + c EI Full ms [45.00-500.00]
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Figure S119. GC-MS data of 1-(O-tolyl)ethanol (5n). GC-MS (m/z):136.05. (*) represents 

internal standard. 
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180727-3SH45-C #960 RT: 7.76 AV: 1 SB: 2 16.35 , 16.35 NL: 4.82E8
T: {0,0}  + c EI Full ms [45.00-500.00]
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180727-3SH46-C #1548 RT: 9.76 AV: 1 SB: 2 16.35 , 16.35 NL: 5.66E8
T: {0,0}  + c EI Full ms [45.00-500.00]
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Figure S120.  GC-MS data of Dicyclohexylmethanol (5o). GC-MS (m/z):136.05. (*) 

represents internal standard.   
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180626-3SH47-23h #1014 RT: 7.95 AV: 1 SB: 2 16.34 , 16.34 NL: 3.30E7
T: {0,0}  + c EI Full ms [45.00-500.00]

50 100 150 200 250 300 350 400 450

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

83.13

95.15

55.10

109.14
67.11

137.15
152.19

123.17

185.17 198.25 261.72 281.52 338.78 427.17363.10307.17232.41 450.47396.77 463.81 497.58

Figure S121. GC-MS data of Verbenol (5p). GC-MS (m/z):152.19. (*) represents internal 

standard. 
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180801-3SH55 #832 RT: 7.33 AV: 1 SB: 2 16.36 , 16.36 NL: 8.46E8
T: {0,0}  + c EI Full ms [45.00-500.00]
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Figure S122.  GC-MS data of 1-(4-Trifluoromethyl)phenyl)ethanol (5q). GC-MS (m/z):190.11. 
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