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This document provides supplementary information to "Magnetic phase diagram of light-mediated spin 
structuring in cold atoms," https://doi.org/10.1364/OPTICA.5.001322.  It includes more information on 
the theoretical model and numerical results. Section 1 provides the model equations. Section 2 
analyzes the pumping of ∆m = 2-coherence. Section 3 provides some numerical evidence for the 
role played by this coherence in pattern formation.

1. THEORETICAL MODEL

The model is presented in the Supplementary Material of [1] but
reproduced here for convenience.

The dynamics of the ground state magnetization is described
by optical Bloch equations for the reduced density matrix ρ. A
component of the density matrix for states with ground state
magnetic quantum numbers m = i, j is denoted by ρij. Although
the experiment is performed on a F = 2 → F′ = 3 transition,
the model is developed for a F = 1→ F′ = 2 transition, which
retains the properties of a F → F′ = F + 1 transition as well as
both dipole and quadrupole multipole components. We take the
quantization axis along the wavevector of the pump beam. Con-
sequently the light fields are expressed in circular components
by

E(t) =
1
2 ∑

q=±1
(−1)qEq(t)ê−qeiωt + c.c., (1)

where ê± are the σ± polarization unit vectors.
Following the work of [2, 3], we make the following approx-

imations:

• As the decay of the excited state populations and coher-
ences is faster than the ones of the ground state, these are
adiabatically eliminated, keeping terms to first order in
Ω′±/δ, where Ω′± are the Rabi frequencies of the σ± fields,
and δ is the laser beam detuning.

• Excited state populations are neglected as the pump rate is
kept low. Hence the total population remains in the ground
state and is constant, giving ρ−1−1 + ρ00 + ρ11 = 1.

• Optical coherences are adiabatically eliminated, keeping
terms to first order in Ω′±/δ,.

• We use the Landé g-factor gF = 0.5 of the F = 2 ground
state. The corresponding Larmor frequencies Ωx,y,z are then
given by

Ωx,y,z = Ω′x,y,z/Γ2 = 0.23× Bx,y,z/G (2)

where Γ2 is the coherence decay rate and half of the atomic
linewidth Γ.

• For simplicity in calculating the change in detuning, the
Landé factor of the excited state is assumed also to be 0.5.

• In the Raman transition pump rates, detuning changes due
to the Bz field are neglected. This approximation is valid as
the relevant terms decay with Ωz on scales much smaller
than the detunings used (see Sec. 2 below).

The detuning and the Rabi frequencies are written in units of
Γ2, i.e. ∆ = δ/Γ2 and Ω± = Ω′±/Γ2. The pump rates P± for the
σ± fields coupling to stretched state transitions m1 → m2′ and
m−1 → m−2′ are given by

P± =
|Ω±|2

1 + (∆∓Ωz)2 =
I±
Isat

2
1 + (∆∓Ωz)2 (3)

where I± are the intensities of the circularly polarized compo-
nents and Isat is the saturation intensity. We consider Γ2 =
π× 6.066 MHz and Isat = 1.669 mW/cm2 for circular light prob-
ing the F = 2 → F′ = 3 transition of the D2 line of 87Rb for all
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atoms in the stretched state |m| = 2 (see [4]). We also consider
the sum and difference pump rates S = P+ + P−, D = P+ − P−.

The Raman transition pump rates PΛ± driving the |∆m| = 2
coherence are given by

PΛ+ =
2 Re(Ω∗+Ω−)

1 + ∆2 , PΛ− = −
2 Im(Ω∗+Ω−)

1 + ∆2 . (4)

Defining the system variables as

u = ρ−11 + ρ1−1,

v = i(ρ−11 − ρ1−1),

w = ρ11 − ρ−1−1,

X = ρ11 + ρ−1−1 − 2ρ00,

y1 = ρ−10 + ρ0−1,

z1 = ρ01 + ρ10,

y2 = i(ρ−10 − ρ0−1),

z2 = i(ρ01 − ρ10),

(5)

we derive a set of 8 coupled evolution equations (where (˙) ≡
d
dt ()):

u̇ = −Γcu +
(

2Ωz +
5
6D∆

)
v + 1

6 PΛ−∆w− 1
9 PΛ+X + 5

18 PΛ+

−Ωx(z2 − y2)/
√

2 + Ωy(z1 − y1)/
√

2,

v̇ = −Γcv−
(

2Ωz +
5
6D∆

)
u + 1

6 PΛ+∆w + 1
9 PΛ−X− 5

18 PΛ−

+Ωx(z1 − y1)/
√

2 + Ωy(z2 − y2)/
√

2,

ẇ = −Γww− 1
6 PΛ−∆u− 1

6 PΛ+∆v− 1
9DX + 5

18D

−Ωx(y2 + z2)/
√

2−Ωy(y1 + z1)/
√

2,

Ẋ = −ΓXX− 1
3 PΛ+u + 1

3 PΛ−v + 1
3Dw + 5

18S

+3Ωx(y2 − z2)/
√

2 + 3Ωy(y1 − z1)/
√

2,

ẏ1 = −Γyy1 + (Ωz + ∆Dy)y2 +
(

P′−
6 + 1

12 (∆PΛ− − PΛ+)
)

z1

+
(

∆P′−
6 + 1

12 (∆PΛ+ + PΛ−)
)

z2

+Ωxv/
√

2 + Ωy(w− x + u)/
√

2,

ẏ2 = −Γyy2 − (Ωz + ∆Dy)y1 −
(

∆P′−
6 −

1
12 (∆PΛ+ + PΛ−)

)
z1

+
(

P′−
6 + 1

12 (PΛ+ − ∆PΛ−)
)

z2

+Ωx(w− x− u)/
√

2 + Ωyv/
√

2,

ż1 = −Γzz1 + (Ωz + ∆Dz)z2 +
(

P′+
6 −

1
12 (∆PΛ− + PΛ+)

)
y1

−
(

∆P′+
6 + 1

12 (∆PΛ+ − PΛ−)
)

y2

−Ωxv/
√

2 + Ωy(w + x− u)/
√

2,

ż2 = −Γzz2 − (Ωz + ∆Dz)z1 +
(

∆P′+
6 −

1
12 (∆PΛ+ − PΛ−)

)
y1

+
(

P′+
6 + 1

12 (∆PΛ− + PΛ+)
)

y2

+Ωx(w + x + u)/
√

2−Ωyv/
√

2 .
(6)

The decay rates of the atomic variables are

Γw = r +
1
6
(P+ + P−), (7)

ΓX = r +
11
18

(P+ + P−), (8)

Γc = r +
7
6
(P+ + P−) (9)

−|Ω+|2 + |Ω−|2
3 (1 + ∆2)

, (10)

Γy = r + P′+ +
7

12
P′− (11)

Γz = r +
7

12
P′+ + P′−, with (12)

P′± =
|Ω±|2

1 + (∆∓ 2Ωz)2 , (13)

where r is an effective decay rate of the Zeeman ground state
population and coherences. Its lower limit results from the
residual atomic motion leading to a wash-out of the structures
and can be estimated to be about 2.8× 103s−1, i.e. r ≈ 1.5× 10−4

in the scaled units used here. The difference pump rates in the
light-shift terms for y1, y2, z1, z2 are

Dy = P′+ − 7
12 P′−, Dz = 7

12 P′+ − P′−. (14)

We have derived an expression for the non-linear optical
response of the atoms in the same framework as above (see
Eq. (1) of the main paper). Using this optical response, the
equations for the evolution of the amplitudes E± of the forward
beam through the diffractively thin cloud are

∂
∂z E± = iχ± k

2

[(
1± 3

4 w + 1
20 X

)
E± + 3

20 (u∓ iv)E∓
]

, (15)

where the linear susceptibility χ± is

χ± =
OD
kL

i + ∆∓Ωz

1 + (∆∓Ωz)2 , (16)

where OD is the optical density, since in simulations we include
both light absorption and refraction, and the linear and non-
linear Faraday effects. Formulas (15) and (16) are used in the
main paper with un-normalized variables.

After traversing the cloud, the beams propagate a distance
of two times the mirror distance d (to the feedback mirror and
back), which is governed by

∂

∂z
E± = − i

2k
∆⊥E±, (17)

where ∆⊥ is the transverse Laplacian. We take the interact-
ing Rabi frequencies as the sum of the forward field at the en-
trance of the medium and the reentrant field at the exit field
of the medium calculated from Eqs. (15), (17) neglecting the
wavelength-scale grating resulting from the interference of coun-
terpropagating fields. Both assumptions proved to be suitable in
earlier studies in cold atoms [5]. In particular, as the dynamics is
evolving on time scales of the order of 1/r and the period of the
wavelength scale grating is about a factor of 100 smaller than the
pattern period, atomic motion is expected to provide a strong
damping to the wavelength-scale modulations (Supplementary
material of [5]). The details of numerical procedures used in our
simulations are given in Ref. [6].
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2. ROLE OF ∆M = 2-COHERENCE

The complete solution of the system (6) is out of the scope of
this paper, but important insight on the role of the coherences
and the associated magnetic quadrupoles can be drawn already
from an inspection of the equations of motion for the coherence
Φ = u + iv alone, neglecting the coupling to other moments and
the light shift terms:

u̇ = −Γcu + 2Ωzv +
5
18

PΛ+ (18)

v̇ = −Γcv− 2Ωzu− 5
18

PΛ− (19)

The stationary solutions of these equations are

u =
5

18
Γc

Γ2
c + 4Ω2

z

(
PΛ+ − 2

Ωz

Γc
PΛ−

)
(20)

v = − 5
18

Γc

Γ2
c + 4Ω2

z

(
PΛ− + 2

Ωz

Γc
PΛ+

)
(21)

The first thing to note is that the longitudinal field is destroy-
ing the coherence as the levels become non-degenerate. This
happens if the longitudinal field is of the order of Γc which in
term depends on the total input intensity. This explains, for Ωz,
the statement in the main text that the extent of the phases in
magnetic space increases with increasing input power. A cor-
responding relation can be derived for the transverse field and
w.

The second point to note is that the longitudinal field pro-
vides a symmetry breaking for v. The dominant terms is
ΩzPΛ+/Γc, which results from the precession of the u gener-
ated by the pump into the v direction due to the longitudinal
field. The corrections for PΛ+, PΛ− including the linear Faraday
effect (Ωz dependence in Eq. (16)) scale only like Ωz/∆. Also
the symmetry breaking due to the Zeeman shifts in the denomi-
nators of pump rates, Eq. 3), scale like Ωz/∆ (nonlinear Faraday
effect). As discussed in the paragraph before, the coherences are
relevant for |Ωz| . Γc < 0.1 (for the parameters of Fig. 2 of the
main paper). As |∆| ≈ 14, the symmetry breaking due the linear
and nonlinear Faraday effect is small in this regime. (In particu-
lar, this also justifies that it is no problem that the Ωz dependence
of the Raman pump rates in Eq. (4) is neglected. It is dominated
by the coherent precession dynamics in the region where the
coherences are important.) We anticipate that the transition be-
tween the AM/FM phases with well developed symmetries and
high modulation depth to the high Bz-phase is related to the de-
cay of the coherences. A more detailed theoretical investigation
is ongoing. Note that a homogeneous components of v can help
to drive the w dynamics via the PΛ+∆v. Hence the phases can
be still w-driven but v-enhanced.

Taking the field as a superposition of Ω+ and Ω− exp (−φL)
with Ω+, Ω− real and φL denoting the phase difference, one
obtains for the Raman pump rates

PΛ+ =
2Ω+Ω−
1 + ∆2 cos φL (22)

PΛ− =
2Ω+Ω−
1 + ∆2 sin φL, (23)

and for the stationary solutions

u =
5
18

Γc

Γ2
c + 4Ω2

z

2Ω+Ω−
1 + ∆2

(
cos φL − 2

Ωz

Γc
sin φL

)
(24)

v = − 5
18

Γc

Γ2
c + 4Ω2

z

2Ω+Ω−
1 + ∆2

(
sin φL + 2

Ωz

Γc
cos φL

)
(25)

Φ =
5
18

Γc

Γ2
c + 4Ω2

z

2Ω+Ω−
1 + ∆2 e−iφL

(
1− i2

Ωz

Γc

)
. (26)

This shows that the phase φL between the circular polarization
components determines the phase of the coherence Φ. The angle
of the polarization direction with respect to the x-axis, φp, for
linearly polarized light (or the principal axis for Ω+ 6= Ω−)
is related to half the phase difference as the phase φL varies
between 0 and 2π but the polarization direction φp only between
0 and π:

φp =
φL − π

2
. (27)

The direction of the principal axis of the quadrupole φQ is linked
to the phase of the coherence via an equation like (27). Hence
the polarization direction of the light is directly controlling the
direction of the quadrupole, φp = φQ, which is of course ex-
pected from symmetry arguments. For example, in the notation
used the x-polarized input beam corresponds to φL = π and
φp = 0. It pumps (for Ωz = 0), u 6= 0, v = 0, i.e. the lobes of the
resulting quadrupole (representation of u in Fig. 1a of the main
article) are directed along the x-axis, the orthogonal lobes along
y. φL = π/2 corresponds to light polarized at 45◦ to the x-axis.
It pumps (for Ωz = 0), u = 0, v 6= 0, i.e. the lobes of the resulting
quadrupole (representation of v in Fig. 1a of the main paper) are
directed at ± 45◦ along the bisections of the x-axis and y-axis. In
between, there is a smooth transition stemming from the form
of the spherical harmonic function. A situation with φL = π/4
corresponding to a polarization direction of -22.5◦ gives u = v.
Hence also the quadrupole axes will point in the direction inter-
mediate to the two cases plotted in Fig. 1a of the main paper, i.e.
will be at -22.5◦ and 67.5◦. We will discuss consequences for the
modulated magnetic state below.

3. DETAILS ON NUMERICAL EVIDENCE OF COHER-
ENCE BASED PHASE

For numerical tests, we compare the modulation depth of the
v variable for Bx = 0 and Bx = 1 G. The v = Im(Φ) profile
inside the cloud is shown in Fig. 1, for the two cases. Fig. 1(a)
shows the square structure characteristic of the Bx = 0 phase.
These structures exist in the spin-1/2 model [7, 8], and the v
variable is here not significant, as witnessed in the weak steady
state modulation depth of ∆v = 0.032. A markedly different
v distribution is shown in the image Fig. 1(b). The disordered
structure is characteristic for the high |Bx| phase, as shown in
Fig. 3 of the main paper. The modulation depth is now equal to
∆v = 0.29, nearly an order of magnitude larger than the value
measured for the square structure.

Fig. 1c) shows a cut through the distribution of v obtained
from numerical simulations (in this plot Λ is the typical spatial
period of the pattern). From the phase of u + iv, the angle of
the resulting quadrupole moment in the x− y-plane is obtained.
Where v = 0, φQ = 0, i.e. the principal axis of the quadrupole is
along the x-axis as only the u component from the homogeneous
pumping is present. Positive, respectively negative excitation
of v leads to a rotation of the quadrupole in the corresponding
direction. Maximum excursion is about 23◦, about half way the
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Fig 1. Numerical evidence for a strong v modulation in the
high |Bx| phase. Transverse profile of the v variable for (a)
Bx = 0 and (b) Bx = 1 G. Simulation parameters: OD = 70,
pump intensity I = 0.4 Isat and detuning δ = −8 Γ2. c) Il-
lustration of modulated quadrupole pattern obtained from
numerical simulations. Black line: Cut through the imaginary
part of the coherence v orthogonal to the local stripe pattern
in the lower center part of panel (b). Red line: Direction of the
principal axis of the quadrupole obtained from the phase of
u + iv and applying Eq. (27) for φQ instead of φP.

full excursion to 45◦ (corresponding to the v moment alone), as
in the peaks |v/u| ≈ 1. This corresponds to a magnetic ordered
structure in which the direction of the quadrupole is oscillating
in space. The deviations between the shape of the v and the φQ
curves are due to the fact that in the structured state also u is
modulated.
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