{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Manipulating results from Dimensions is straight forward with python and Jupyter Notebooks\n", "With pandas, you can quickly load the results from your Dimensions query into table format, and chart the result " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from dslquery import dslquery\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Execution time: 0.43326592445373535\n" ] } ], "source": [ "#manipulating results is easy in python\n", "\n", "results = dslquery(\"\"\"\n", " search publications for \"nanotechnology\"\n", " return year\n", "\"\"\")\n", "\n", "df = pd.DataFrame(results['year'])\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
countid
0758652017
1752282016
2716812015
3674872014
4656572018
\n", "
" ], "text/plain": [ " count id\n", "0 75865 2017\n", "1 75228 2016\n", "2 71681 2015\n", "3 67487 2014\n", "4 65657 2018" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8FdX9//HXhwQSlkACgbAECEIEgsoWAXFFK6JV0brUHZdKW221/dpva+u31Vbb2m/9tVbr19aqFbqIu1K3gLgrCGERCKCENQGykAQChOzn98ed6JUk5Ga5mSzv5+NxH3fumTNnPndycz93Zs6cMeccIiIiwbr4HYCIiLQ9Sg4iIlKLkoOIiNSi5CAiIrUoOYiISC1KDiIiUouSg4iI1KLkICIitSg5iIhILZF+B9BU8fHxLikpye8wRETajZUrV+51zvUPpW67TQ5JSUmkp6f7HYaISLthZjtCravDSiIiUouSg4iI1KLkICIitbTbcw51qaioIDs7m9LSUr9DaXXR0dEkJibStWtXv0MRkQ6gQyWH7OxsYmJiSEpKwsz8DqfVOOcoKCggOzubESNG+B2OiHQAHeqwUmlpKf369etUiQHAzOjXr1+n3GMSkfDoUMkB6HSJoUZnfd8iEh4d6rCSiEhbUlZZRV5xGTnFpeTsDzyG9u3BrOMG+h1ag5Qc2pEHH3yQuXPn0qNHD79DEenUnHMUl1aSW1zKnv2l5O4vDSSAoCSQW1xKwaHyWstGdDFeu+0Uxgzs7UPkoVNyaEcefPBBrrnmGiUHER8Ul1bw0FubeXtTHnv2l3K4oqpWnX49u5HQO5qBfaIZPzSWQX2iGdg7mgTvuUe3CC7484f8cuEG/n3z1DZ9OFjJoYXNnz+fBx54ADPjhBNO4N577+XGG29k79699O/fn7///e8MGzaM66+/nvPPP59LL70UgF69enHw4EHeffdd7rnnHuLj41m/fj2TJ0/mn//8Jw8//DC7d+9mxowZxMfH88477/j8TkU6h+pqxwursvndm5soOFTOWWMSmDFmAAO9JDDQ++If0DuKqMiIBtu7Y+Zofv7yet5Yn8N5xw9qhXfQNB02OfzyPxls2F3com2mDO7N3ReMq3d+RkYG9913Hx9//DHx8fEUFhYyZ86cLx5PPvkkt912Gy+//PJR17N69WoyMjIYPHgwJ598Mh999BG33XYbf/jDH3jnnXeIj49v0fclInVbl72fXyxcz+qd+5g0LJanbpjCcUP6NKvNq6YM49+f7OTXr21kxugBdO/WcELxQ4frreSnt99+m8suu+yLL+++ffuydOlSrrrqKgCuvfZaPvzwwwbbmTJlComJiXTp0oUJEyawffv2cIYtIkcoOlTOz15ax4WPfEhW4WH+32Xjef4705udGCBwzuGeC1LYte8wf3lvSwtEGx4dds/haL/w24LIyEiqq6sBqK6uprz8yxNXUVFRX0xHRERQWVnZ6vGJdEZV1Y5/L9/JA2mfcbCskhtPHsHtX0umd3TLjjww9Zh+XDB+MH95bwuXTk5kaN+2dx5Rew4t6Mwzz+S5556joKAAgMLCQqZPn86CBQsA+Ne//sWpp54KBIYcX7lyJQALFy6koqKiwfZjYmI4cOBAmKIX6dzStxdywcMf8vOX15MyqDdv3H4qPz8/pcUTQ42fnjuGLmb85vWNYWm/uTrsnoMfxo0bx1133cXpp59OREQEEydO5OGHH+aGG27g97///RcnpAFuvvlmZs+ezfjx45k1axY9e/ZssP25c+cya9YsBg8erBPSIi0k70Ap97+xiRdX7WJQn2j+fNVEvn78oLD3JBoc251bZ4zkgUWf81HmXk4e1bbOJZpzzu8YmiQ1NdUdebOfjRs3MnbsWJ8i8l9nf/8ijVFRVc28j7fz4FubKa+s5lunjuDWGaPoGdV6v5lLK6o4+4/v0b1rBK/ddipdI8J7MMfMVjrnUkOpq8NKItLpfJS5l3P/9AH3vbaR1KQ40n54Gj+eNaZVEwNAdNcIfv71FD7PPcg/l4V8k7ZWocNKItJp7Nl/mPte3chr6/YwtG93Hr8ulbPGDvD1YrSzUxI4NTmePyz+nAvHD6Zfr6iGF2oFHW7Pob0eJmuuzvq+RUL1yppdzPzj+yzZlMt/nX0si394Ol9LSfD9KmUz4+4LUjhcXsUDiz7zNZZgDSYHMxttZmuCHsVm9gMz62tmi81ss/cc59U3M3vIzDLNbK2ZTQpqa45Xf7OZzQkqn2xm67xlHrIm/rWio6MpKCjodF+UNfdziI6O9jsUkTZnf0kF3396NbcvWEPygF6k/eA0bjsrmeiubefis1EDYrh+ehILVmSxLnu/3+EAjTwhbWYRwC5gKnArUOicu9/M7gTinHM/MbPzgO8D53n1/uScm2pmfYF0IBVwwEpgsnOuyMyWA7cBnwCvAw855944Wix1nZDWneB0JziRYB9n7uWO5z4l/0AZt5+VzHfPGElkmE/6NlVxaQVnPvAuw/r24IXvTg/LHk1jTkg39pzDWcAW59wOM5sNnOGVzwPeBX4CzAbmu0DWWWZmsWY2yKu72DlX6AW5GJhlZu8CvZ1zy7zy+cBFwFGTQ126du2qO6GJCGWVVTyQ9hl/+2Abx8T35IXvTmf80Fi/wzqq3tFd+fGsMfz4+bW8tHoX35iU6Gs8jU2hVwBPe9MJzrk93nQOkOBNDwGygpbJ9sqOVp5dR7mISKNtyilm9p8/4m8fbOOaacN49bZT2nxiqHHppETGD43lt29s4mCZvyMjhJwczKwbcCHw3JHzvL2EsB/oN7O5ZpZuZun5+fnhXp2ItCPV1Y7HP9jKhQ9/xN6DZTx5fSr3XXQ8Pbq1n06ZXboYv7xwHPkHynj47c3+xtKIuucCq5xzud7rXO9wEd5znle+CxgatFyiV3a08sQ6ymtxzj3mnEt1zqX279+/EaGLSEe2e99hrnniE+57bSOnj+5P2g9O48wxCQ0v2AZNGBrLZZMTefLDbWzNP+hbHI1JDlfy5SElgIVATY+jOcArQeXXeb2WpgH7vcNPacBMM4vzejbNBNK8ecVmNs3rpXRdUFsiIke18NPdzHrwfdZk7eN3lxzPY9dObjPXCjTVj2eNIToygntf3eBbDCHtb5lZT+Bs4NtBxfcDz5rZTcAO4HKv/HUCPZUygRLgBgDnXKGZ3Qus8Or9qubkNHAL8BTQncCJ6EafjBaRzmX/4Qp+8cp6Xlmzm4nDYvnj5RNIim94jLL2oH9MFLd/LZn7XtvI25tyfdkL6lBjK4lI57B0SwF3PLuG3ANl3HZmMrfOaLtdVJuqvLKac//0PlXVjrQfnhbSXeYaorGVRKRDKqus4revb+Sqx5cR1TWC579zErd/LbnDJQaAbpFduPuCcWwvKOHJD7e3+vrbz2l8Eem0DpdX8Wx6Fn/7YCvZRYe5auow/ufrY9tVT6SmOO3Y/pydksDDb2/mG5OGkNC79UZB6HjpVkQ6jKJD5Tz41udMv38Jdy/MIKF3NPNvnMJvLm5fXVSb4+dfT6Gy2nH/G5tadb2dY+uKSLuSXVTC4x9s45kVWRyuqOJrYwfw7dNHcmJSX79Da3XD+vVg7qnH8Od3Mrl66jBSW2kbKDmISJuxcU8xf31vC/9ZuwcDZk8YwrdPP4ZjE2L8Ds1Xt8wYyfMrs7nnPxm8cuspRHQJ/0iySg4i4ivnHMu2FvKX97bw3uf59OwWwQ3Tk7jxlBEMju3ud3htQo9ukfzs62O57enVPJuexZVThoV9nUoOIuKLqmrH4g05PPreVj7N2kd8r2789zmjuWbqcPr00OjCR7rghEH8c+kOfp/2GRdNGEL3buEdclzJQURaVWlFFS+t3sXf3t/K1r2HGN6vB/dddByXTk5sU/dYaGvMjHsvOo6ikvKwJwZQchCRVvTa2j3c858M8g+UcfyQPjxy1SRmHTewVY6hdwSjB7beuRclBxFpFTsLSrjjuTUkD4jhwW9OYPrIfr7folPqp+QgImHnnOPOF9fStUsXHrtuMoP66ERzW6eL4EQk7J5ZkcXHWwr46XljlRjaCSUHEQmrnP2l/Pq1jUw7pi9XnDi04QWkTVByEJGwcc7xPy+vp7yqmvu/cQJddOK53VByEJGweW3dHt7amMsdM4/tMPda6CyUHEQkLIoOlXP3KxmMT+zDjSeP8DscaST1VhKRsLj31Q3sP1zBv26e2iHvt9DR6S8mIi3unU15vLh6F7fMGMWYgb39DkeaIKTkYGaxZva8mW0ys41mdpKZ9TWzxWa22XuO8+qamT1kZplmttbMJgW1M8erv9nM5gSVTzazdd4yD5mujBFptw6UVnDXS+tIHtCLW2eM9DscaaJQ9xz+BLzpnBsDjAc2AncCS5xzycAS7zXAuUCy95gLPApgZn2Bu4GpwBTg7pqE4tW5OWi5Wc17WyLil/998zP2FJfyu0tPaJH7Hos/GkwOZtYHOA14AsA5V+6c2wfMBuZ51eYBF3nTs4H5LmAZEGtmg4BzgMXOuULnXBGwGJjlzevtnFvmnHPA/KC2RKQdWb6tkH8s28EN00cwaVhcwwtImxXKnsMIIB/4u5mtNrPHzawnkOCc2+PVyQESvOkhQFbQ8tle2dHKs+soF5F2pLSiip+8sJahfbvzo3OO9TscaaZQkkMkMAl41Dk3ETjEl4eQAPB+8buWD++rzGyumaWbWXp+fn64VycijfCnJZvZtvcQ93/jhE5zf+eOLJTkkA1kO+c+8V4/TyBZ5HqHhPCe87z5u4Dga+QTvbKjlSfWUV6Lc+4x51yqcy61f//+IYQuIq1h/a79PPb+Vr6ZOpSTR8X7HY60gAaTg3MuB8gys9Fe0VnABmAhUNPjaA7wije9ELjO67U0DdjvHX5KA2aaWZx3InomkObNKzazaV4vpeuC2hKRNq6iqpr/fn4t/Xp242dfH+t3ONJCQt33+z7wLzPrBmwFbiCQWJ41s5uAHcDlXt3XgfOATKDEq4tzrtDM7gVWePV+5Zwr9KZvAZ4CugNveA8RaQcee38rG/cU89drJ9Onu27v2VFY4HRB+5OamurS09P9DkOkU8vMO8h5f/qAs1MSeOTqSQ0vIL4ys5XOudRQ6uoKaRFpkupqx09eWEuPqAjuuXCc3+FIC1NyEJEm+ceyHazcUcQvzk+hf0yU3+FIC1NyEJFGyyos4XdvbuL0Y/tz8URdltQRKTmISKM45/jZS+sw4NcXH4eGQuuYlBxEpFFeWLWLDzbv5SfnjiExroff4UiYKDmISMjyDpRy76sbODEpjmumDvc7HAkjXeMuIvUqragiY3cxa7L2sSZrH8u3FXC4oor7L9H9oDs6JQcRAQLnErYXlLAmq4jVOwPJYOOeYiqqAtdCDeoTzeThcVw2eSgj+/fyOVoJNyUHkU6q6FA5a7L3scZLBJ9m72NfSQUAPbpFcEJiH2465RgmDI1l4rBYEnpH+xyxtCYlB5FOZNXOIv6xdAdrsvaxbe8hAMzg2AExzBo3kAlDY5kwLJbkATFE6LBRp6bkINJJVFRV891/rqSsspopSX25LDWRCUNjOSExll5R+iqQr9InQqSTSMvIIbe4jCfmpHLW2ISGF5BOTV1ZRTqJpz7azvB+PZgxeoDfoUg7oOQg0gms37Wf9B1FXDttuLqgSkiUHEQ6gXkfb6d71wguSx3acGURlBxEOryCg2W88uluLpk8RDfjkZApOYh0cAtWZFFeWc2ck5L8DkXaESUHkQ6ssqqafy7bwcmj+pGcEON3ONKOhJQczGy7ma0zszVmlu6V9TWzxWa22XuO88rNzB4ys0wzW2tmk4LamePV32xmc4LKJ3vtZ3rL6oyZSAtYtCGXPftLuX76CL9DkXamMXsOM5xzE4LuP3onsMQ5lwws8V4DnAske4+5wKMQSCbA3cBUYApwd01C8ercHLTcrCa/IxH5wlMfbycxrjtnjlH3VWmc5hxWmg3M86bnARcFlc93AcuAWDMbBJwDLHbOFTrnioDFwCxvXm/n3DLnnAPmB7UlIk20YXcxy7cVMuekJA2FIY0WanJwwCIzW2lmc72yBOfcHm86B6i55HIIkBW0bLZXdrTy7DrKazGzuWaWbmbp+fn5IYYu0jnVdF+9XN1XpQlCHT7jFOfcLjMbACw2s03BM51zzsxcy4f3Vc65x4DHAFJTU8O+PpH2quhQOS+v2cU3JiXSp4e6r0rjhbTn4Jzb5T3nAS8ROGeQ6x0SwnvO86rvAoJ/qiR6ZUcrT6yjXESaaMGKLMoqq7l+epLfoUg71WByMLOeZhZTMw3MBNYDC4GaHkdzgFe86YXAdV6vpWnAfu/wUxow08zivBPRM4E0b16xmU3zeildF9SWiDRSTffVk47px+iB6r4qTRPKYaUE4CWvd2kk8G/n3JtmtgJ41sxuAnYAl3v1XwfOAzKBEuAGAOdcoZndC6zw6v3KOVfoTd8CPAV0B97wHiLSBG9tzGXXvsP8/PwUv0ORdqzB5OCc2wqMr6O8ADirjnIH3FpPW08CT9ZRng4cF0K8ItKApz7ezpDY7nxtrLqvStPpCmmRDmTjnmKWbS3k2pOGExmhf29pOn16RDqQ+Uu3ExXZhW+q+6o0k5KDSAexr6Scl1bv4uKJQ4jr2c3vcKSdU3IQ6SCeWZFFaUU1c9R9VVqAkoNIB1BV7Zi/dAdTR/Rl7KDefocjHYCSg0gHUNN9VRe9SUtRchDpAOZ9vJ3BfaI5OyWh4coiIVByEGnnPs89wMdbCrhG3VelBemTJNLOPfXxdrpFduGKE4f5HYp0IEoOIo3w1EfbePTdLQQGAvDf/pIKXlq1i9njB9NX3VelBYU6ZLdIp1daUcX/pn1GSXkVmXkHuf+S4+nq82GcZ9OzOFxRpe6r0uK05yASoo8y91JSXsXZKQm8sCqbufPTKSmv9C2eqmrH/GXbOTEpjuOG9PEtDumYlBxEQrQoI5eY6EgeuWoSv7n4eN77PJ+rH/+EokPlvsTzzqY8sgoPa69BwkLJQSQEVdWOtzbmcuaYAXSL7MJVU4fxf1dPImN3MZf9dSm79x1u9Zie+ng7A3tHc864ga2+bun4lBxEQrByRxEFh8qZmfLlF/Gs4wYx/8Yp5O4v5ZJHPyYz70CrxbM59wAfZu7lmmnDfD/vIR2TPlUiIUjLyKFbZBdOH93/K+XTjunHM98+icpqx6V/WcrKHUWtEs+8pYHuq1dOUfdVCQ8lB5EGOOdYtCGHU0bF0yuqdge/lMG9eeE704nt3pWrH1/G25tywxpPcWkFL67axQUnDKZfr6iwrks6LyUHkQZsyjlAVuFhZh5laIph/Xrw/Henkzwghpvnr+SFldlhi+e59GxKyqs0jpKEVcjJwcwizGy1mb3qvR5hZp+YWaaZPWNm3bzyKO91pjc/KaiNn3rln5nZOUHls7yyTDO7s+XenkjzpWXkYAZnjT36uEXxvaJ4eu40ph3Tlzue+5S/vrelxWOprnbMX7qdycPjOD5R3VclfBqz53A7sDHo9e+APzrnRgFFwE1e+U1AkVf+R68eZpYCXAGMA2YB/+clnAjgEeBcIAW40qsr0iYsysgldXgc/WMaPoTTKyqSJ68/kfNPGMRv39jEr1/bQHV1y11N/e7neewoKFH3VQm7kK6QNrNE4OvAr4H/MjMDzgSu8qrMA+4BHgVme9MAzwN/9urPBhY458qAbWaWCUzx6mU657Z661rg1d3QrHcm0gKyCkvYsKeYu84bG/IyUZERPHTFROJ7RfG3D7ZRcLCc3116QpN6FVVUVbN+135WbC9k+bYiPtlWwICYKM49Tt1XJbxCHT7jQeDHQIz3uh+wzzlXc3loNjDEmx4CZAE45yrNbL9XfwiwLKjN4GWyjiifWlcQZjYXmAswbJh6aUj4LdoQOLk8c1zjhsLu0sW4+4IU4nt144FFn1NYUs7/XT2JHt2O/i9XUl7Jqh37WL69kBXbClmdVURpRTUAI+J7cu5xA7l66nB1X5WwazA5mNn5QJ5zbqWZnRH+kOrnnHsMeAwgNTW1bYx8Jh3aoowcxgyMYXi/no1e1sz43pnJ9OsVxV0vreOqv33C368/8Sv3dy48VM4KLxGs2F7I+t3FVFU7uhiMHdSbK04cxpQRfUlNimNATHRLvjWRowplz+Fk4EIzOw+IBnoDfwJizSzS23tIBHZ59XcBQ4FsM4sE+gAFQeU1gpepr1zENwUHy1ixvZDvzRjVrHaunDKMvj278f2nV3PpXz7m26ePZPXOfazYXkhm3kEAukV2YUJiLN85/RhOTOrLpOFx9I7u2hJvQ6RJGkwOzrmfAj8F8PYcfuScu9rMngMuBRYAc4BXvEUWeq+XevPfds45M1sI/NvM/gAMBpKB5YAByWY2gkBSuIIvz2WI+GbJpjyqHcxsgeEpzhk3kH/cOIVvzU/nx8+vJSYqkslJcVw8cQhTRvTl+CF9iO4a0QJRi7SM5gzZ/RNggZndB6wGnvDKnwD+4Z1wLiTwZY9zLsPMniVworkSuNU5VwVgZt8D0oAI4EnnXEYz4hJpEYsychkS251xg3u3SHtTj+nH23ecQf6BMkYPjCGii7VIuyLhYG3lpiWNlZqa6tLT0/0OQzqokvJKJv5qMVdNHcbdF4zzOxyRFmFmK51zqaHUVZcHkTq8/3k+ZZXVXxloT6QzUXIQqUNaRi5xPbpyYlKc36GI+ELJQeQIFVXVLNmYy1ljE4jU9QTSSemTL3KE5dsKKS6tPOpAeyIdnZKDyBHSMnKI7tqFU5P7N1xZpINSchAJ4pxjUUYupx/bn+7ddN2BdF5KDiJB1mbvJ6e4VL2UpNNTchAJsmhDDhFdjLPGDvA7FBFfKTmIBFmUkcvUEX2J7dGt4coiHZiSg4hna/5BNucdVC8lEZQcRL7w5b0bdL5BRMlBxLMoI4fjh/RhcGx3v0MR8Z2SgwiQV1zKqp37OKeRd3wT6aiUHESAxRt1SEkkmJKDCIGB9pL69SB5QC+/QxFpE5QcpNMrLq1g6Za9nDNuIGa6AY8IKDmI8O5n+VRUOWbqfIPIFxpMDmYWbWbLzexTM8sws1965SPM7BMzyzSzZ8ysm1ce5b3O9OYnBbX1U6/8MzM7J6h8lleWaWZ3tvzbFKlfWkYO8b2imDhU924QqRHKnkMZcKZzbjwwAZhlZtOA3wF/dM6NAoqAm7z6NwFFXvkfvXqYWQqB+0mPA2YB/2dmEWYWATwCnAukAFd6dUXCrqyyinc35XF2SgJddE9nkS80mBxcwEHvZVfv4YAzgee98nnARd70bO813vyzLHAgdzawwDlX5pzbBmQCU7xHpnNuq3OuHFjg1RUJu4+3FHCovEqHlESOENI5B+8X/hogD1gMbAH2OecqvSrZwBBvegiQBeDN3w/0Cy4/Ypn6ykXCblFGDr2iIpk+sp/foYi0KSElB+dclXNuApBI4Jf+mLBGVQ8zm2tm6WaWnp+f70cI0oFUVTsWb8jljNH9iYrUvRtEgjWqt5Jzbh/wDnASEGtmkd6sRGCXN70LGArgze8DFASXH7FMfeV1rf8x51yqcy61f3/dpUuaZ/XOIvYeLNeFbyJ1CKW3Un8zi/WmuwNnAxsJJIlLvWpzgFe86YXea7z5bzvnnFd+hdebaQSQDCwHVgDJXu+nbgROWi9siTcncjSLNuTSNcKYMVo/NESOFNlwFQYB87xeRV2AZ51zr5rZBmCBmd0HrAae8Oo/AfzDzDKBQgJf9jjnMszsWWADUAnc6pyrAjCz7wFpQATwpHMuo8XeoUgdnHOkZeQwfWQ8MdFd/Q5HpM1pMDk459YCE+so30rg/MOR5aXAZfW09Wvg13WUvw68HkK8Ii3i89yD7Cgo4dunjfQ7FJE2SVdIS6e0KCMHM/haim4HKlIXJQfplNI25DBxaCwDYqL9DkWkTVJykE5n177DrN9VzDnqpSRSLyUH6XQWZ+QAuneDyNEoOUink5aRS/KAXoyI7+l3KCJtlpKDdCpFh8pZvr1Qh5REGqDkIJ3K25vyqKrWvRtEGqLkIJ3G/sMVPL18J4P6RHP8kD5+hyPSpoVyhbRIu7d4Qy7/8/I68g+U8avZx+l2oCINUHKQDm3vwTLuWZjBq2v3MGZgDH+7LpUTEmP9DkukzVNykA7JOcfLa3bxy/9soKSsijvOPpbvnDGSrhE6kioSCiUH6XB27zvMXS+t453P8pk0LJbfXXICyQkxfocl0q4oOUiHUV3t+Nfyndz/+kaqHdx9QQrXnZREhO4NLdJoSg7SIWzNP8idL6xj+fZCTk2O5zcXH8/Qvj38Dkuk3VJykHatsqqav32wjT++9TnRkV34/aUncOnkRPVGEmkmJQdptzJ27+cnL6xl/a5iZo0byK9mj2NAb42yKtISlByk3SmtqOLhtzfzl/e2EtejG49ePYlzjx/kd1giHYqSg7QrK3cU8ePnP2VL/iEumZTIz88fS2yPbn6HJdLhNNjp28yGmtk7ZrbBzDLM7HavvK+ZLTazzd5znFduZvaQmWWa2VozmxTU1hyv/mYzmxNUPtnM1nnLPGQ6YCx1WLB8J9/861JKK6qZd+MU/t/l45UYRMIklCuCKoE7nHMpwDTgVjNLAe4EljjnkoEl3muAc4Fk7zEXeBQCyQS4G5hK4N7Td9ckFK/OzUHLzWr+W5OOoqrace+rG7jzxXWcNLIfr99+Kqcf29/vsEQ6tAaTg3Nuj3NulTd9ANgIDAFmA/O8avOAi7zp2cB8F7AMiDWzQcA5wGLnXKFzrghYDMzy5vV2zi1zzjlgflBb0skdKK3gW/NW8MSH27h+ehJ/v/5E+nTv6ndYIh1eo845mFkSMBH4BEhwzu3xZuUANWMgDwGyghbL9sqOVp5dR7l0cjsLSrhp3gq27j3EfRcdxzXThvsdkkinEXJyMLNewAvAD5xzxcGnBZxzzsxcGOI7Moa5BA5VMWzYsHCvTny0fFsh3/nnSqqqHf+4cQrTR8X7HZJIpxLSKGRm1pVAYviXc+5FrzjXOySE95znle8ChgYtnuiVHa08sY7yWpxzjznnUp1zqf3765hzR/VsehZXP76M2O5defnWk5UYRHwQSm/aCaXSAAAPX0lEQVQlA54ANjrn/hA0ayFQ0+NoDvBKUPl1Xq+lacB+7/BTGjDTzOK8E9EzgTRvXrGZTfPWdV1QW9KJVFU7fvP6Rn78/FqmjujHS7ecrPs8i/gklMNKJwPXAuvMbI1X9jPgfuBZM7sJ2AFc7s17HTgPyARKgBsAnHOFZnYvsMKr9yvnXKE3fQvwFNAdeMN7SCdysKyS259ezZJNeVx30nB+cX4KkRpeW8Q3Fugg1P6kpqa69PR0v8OQFpBVWMK35qWTmX+Qey5I4dqTkvwOSaRDMrOVzrnUUOrqCmnxVfr2Qr79j5VUVFUz74YpnJKs8wsibYGSg/jm+ZXZ/OzFdQyJ687jc1IZ2b+X3yGJiEfJQVpdVbXjf9M28df3tnLyqH48ctUkDYMh0sYoOUirOlRWye0L1vDWxlyunjqMey4cp/s6i7RBSg7SajbnHuB7/17N5rwD/PLCcVx30nDdlEekjVJykLBzzvFceja/WLient0imXfjFE5N1kWMIm2ZkoOE1YHSCu56aT0LP93N9JH9ePCbE3S3NpF2QMlBwmZt9j6+//RqsosO86OZx/LdM0YR0UWHkUTaAyUHaXHOOZ78aDv3v7GR/r2iWDB3Gicm9fU7LBFpBCUHaVGFh8r57+c+ZcmmPM5OSeD3l56gbqoi7ZCSg7SYT7YWcPuCNRQeKueeC1KYMz1JvZFE2iklB2m2qmrHn9/O5E9LPmd4v568OGc6xw3p43dYItIMSg7SLLnFpdy+YDXLthZy8cQh3HvRcfSK0sdKpL3Tf7E02Tuf5XHHs59yuLyKBy4bzyWThugwkkgHoeQgjVZeWc3v0zbxtw+2MWZgDH++ahKjBmjQPJGORMlBGmVnQQnff3oVn2bv59ppw7nr62OJ7hrhd1gi0sKUHCQkzjmeX5nNL/+zATN49OpJnHv8IL/DEpEwUXKQBhUeKudnL67jzYwcpozoyx8uH09iXA+/wxKRMGpwrGQze9LM8sxsfVBZXzNbbGabvec4r9zM7CEzyzSztWY2KWiZOV79zWY2J6h8spmt85Z5yHRGs015Z1MeM//4Pks25fLTc8fw9M3TlBhEOoFQBtJ/Cph1RNmdwBLnXDKwxHsNcC6Q7D3mAo9CIJkAdwNTgSnA3TUJxatzc9ByR65LfFBSXsn/vLyOG55aQb+e3Xjl1lP49ukjNTaSSCfR4GEl59z7ZpZ0RPFs4Axveh7wLvATr3y+c84By8ws1swGeXUXO+cKAcxsMTDLzN4Fejvnlnnl84GLgDea86akedZk7eO/nlnD1r2H+NYpI/jROaN10lmkk2nqOYcE59webzoHSPCmhwBZQfWyvbKjlWfXUS4+qKyq5pF3tvDQ25tJiIni39+ayvRR8X6HJSI+aPYJaeecMzPXEsE0xMzmEjhcxbBhw1pjlZ3Gtr2H+OEza1iTtY+LJgzml7OPo0/3rn6HJSI+aWpyyDWzQc65Pd5hozyvfBcwNKheole2iy8PQ9WUv+uVJ9ZRv07OuceAxwBSU1NbJSF1dM45/r18J/e9upGuEcbDV07kgvGD/Q5LRHzW1Du7LwRqehzNAV4JKr/O67U0DdjvHX5KA2aaWZx3InomkObNKzazaV4vpeuC2pIwyz9QxrfmpXPXS+uZPDyORT88XYlBRIAQ9hzM7GkCv/rjzSybQK+j+4FnzewmYAdwuVf9deA8IBMoAW4AcM4Vmtm9wAqv3q9qTk4DtxDoEdWdwIlonYxuBYsycrjzxXUcKqvk7gtSmHNSEl3UE0lEPBboWNT+pKamuvT0dL/DaHcOllVy73828Ex6FuMG9+bBb04gOSHG77BEpBWY2UrnXGoodXWFdCdQWlHFh5v3smhDDm9tzGNfSTm3nDGSH3ztWLpFNvXIooh0ZEoOHdT+kgre/iyXRRm5vPd5PiXlVcRERTJjzADmTB/O5OG6p7OI1E/JoQPZve8wizfksmhDDsu2FlJV7RgQE8XFE4dwzriBTDumn/YURCQkSg7tmHOOzXkHWZSRQ1pGLut27QdgZP+ezD3tGGamJDA+MVYnmkWk0ZQc2pmqasfqnUUs2pDLoowctheUADBhaCw/njWamSkDdeMdEWk2JYd2oLyymqVbC3hzfQ6LN+Sy92AZXSOMk0bG861Tj+HslAQSekf7HaaIdCBKDm1USXkl73+ez5vrc1iyKY8DpZX06BbBjNEDmDkugRljBtA7WsNbiEh4KDm0IftLKliyKZe0jBze+zyf0opqYnt05ZxxA5k1biCnJMdrdFQRaRVKDj7LO1DK4g25vLk+h6VbCqisdiT0juLy1KHMGjeQKSP6EhmhHkYi0rqUHHyQVVhCWkYOb67PYeXOIpyDpH49uOnUEZwzbiAT1MNIRHym5BBmzjm27j3Eqh1FrNq5j1U7ivgs9wAAYwf15gdnHcs5xyUwOiEG3SFVRNoKJYcWdqiskk+z9rFqZxErdxSxOmsf+0oqAIiJjmTisDgumRy4KG14v54+RysiUjclh2ZwzrGjoISVO4pYtTOwZ/BZTjHV3liGowb0YmZKApOGxTFpeByj+vfS4SIRaReUHEJQVe0oOFTG3gPl5B0oJWN3Mau9ZFB4qByAXlGRTBgay/dmjGLi8DgmDY2jTw91NRWR9qnTJoeqakdRSTn5B8rYezDwCEx/WVbzXHio/Iu9gRrHxPdkxugBTB4ex6ThsSQPiCFCewUi0kF0quTgnOOCP39IbnEZBQfLan3hA0RFdiG+VxTxMVEkxvVg4rBY4ntF0T8mKlDeK4rkAb2I69mt9d+AiEgr6VTJwcwY1b8Xxw/p88UX/Zdf+t2Ij4kiJipSvYZEpNPrVMkB4MErJvodgohIm9dmLr01s1lm9pmZZZrZnX7HIyLSmbWJ5GBmEcAjwLlACnClmaX4G5WISOfVJpIDMAXIdM5tdc6VAwuA2T7HJCLSabWV5DAEyAp6ne2VfYWZzTWzdDNLz8/Pb7XgREQ6m7aSHELinHvMOZfqnEvt37+/3+GIiHRYbSU57AKGBr1O9MpERMQHbSU5rACSzWyEmXUDrgAW+hyTiEin1Sauc3DOVZrZ94A0IAJ40jmX4XNYIiKdljlXxxgS7YCZ5QM7fFp9PLDXp3WHQvE1j+JrHsXXPOGMb7hzLqQTtu02OfjJzNKdc6l+x1Efxdc8iq95FF/ztJX42so5BxERaUOUHEREpBYlh6Z5zO8AGqD4mkfxNY/ia542EZ/OOYiISC3acxARkVo6XXIws6Fm9o6ZbTCzDDO73Svva2aLzWyz9xznlZuZPeQNJb7WzCYFtTXHq7/ZzObUs7462w13fGY2wcyWem2sNbNv1rO+680s38zWeI9vteL2qwpab50XPZpZlJk94y3/iZkltdL2mxEU2xozKzWzi3zYfmO8v2OZmf3oiLYaHOa+FbZfnfHV104d6zvDzPYHbb9ftOL2225m67z1ptezvno/v2HefqOP+PwVm9kPmrv9GsU516kewCBgkjcdA3xOYJjw/wXu9MrvBH7nTZ8HvAEYMA34xCvvC2z1nuO86bg61ldnu60Q37FAsjc9GNgDxNaxvuuBP7f29vPmHQxhfbcAf/GmrwCeaa34gtrsCxQCPXzYfgOAE4FfAz8KaicC2AIcA3QDPgVSfNh+9cVXZzt1rO8M4NXW3n7evO1AfAPra/DzEa74jvhb5xC4RqFZ268xjxZvsL09gFeAs4HPgEFBf+DPvOm/AlcG1f/Mm38l8Neg8q/UO7L+ke2GO7462vkUL1kcUX49jfhya8n4CC05pAEnedORBC4OstbcfsBc4F/1tB/W7RdU7x6++uV7EpAW9PqnwE9be/vVF1997dRRfgbN+HJrTnyElhxC+v8K5/YDZgIf1TOvWdvvaI9Od1gpmLeLPRH4BEhwzu3xZuUACd50fcOJhzTM+FHaDXd8we1MIfDrcks9q7rE22V+3syG1lMnHPFFW2AI9mV1HbI5cnnnXCWwH+jXSvHVuAJ4+iirCuf2q0+on79wb7/GtlOXk8zsUzN7w8zGNbHdpsTngEVmttLM5tZTJ9TtHI74ajT0+WvS9mtIp00OZtYLeAH4gXOuOHieC6TkFu/G1Zh2Wyo+MxsE/AO4wTlXXUeV/wBJzrkTgMXAvFaMb7gLXAl6FfCgmY0MZd2tGF/N9juewC/wuvi5/cKmBbdfve14VhH4HIwHHgZebsX4TnHOTSJwB8pbzey0UNbdivFhgYFILwSeq6dKk7ZfKDplcjCzrgT+cP9yzr3oFed6XwQ1Xwh5Xnl9w4mHOsx4fe2GOz7MrDfwGnCXc25ZXetyzhU458q8l48Dk1srPudczfNW4F0Cv7KO9MXyZhYJ9AEKWiM+z+XAS865irrW1Qrbrz6hfv7Cvf0a285XOOeKnXMHvenXga5mFt8a8QV9/vKAlwjckfJIjb6dQEvF5zkXWOWcy63nPTR6+4Wq0yUHMzPgCWCjc+4PQbMWAjU9juYQOFZYU36d12thGrDf2z1MA2aaWZzX82Amdf+6rK/dsMbn/eJ4CZjvnHv+KOsbFPTyQmBjK8UXZ2ZRXpvxwMnAhjpWGdzupcDb3i+vsMYXtNyVHGWXvhW2X31CHeY+3Nuvse0cWW+gV7fm8GcXjpK8WjC+nmYWUzNN4P93fR1VG/p8hCW+IA19/hq1/RolHCcy2vIDOIXALt1aYI33OI/AcdglwGbgLaCvV9+ARwgcr18HpAa1dSOQ6T1uCCp/vKZefe2GOz7gGqAiqI01wARv3q+AC73p3wIZBE5YvwOMaaX4pnuvP/WebwpaR3B80QR2qTOB5cAxrfj3TSLwK7HLEetoze03kMBx7mJgnzfd25t3HoHeMFsI7B36sf3qjK++drxlvgN8x5v+XtD2WwZMb6X4jvHW+am3/uDtFxxfvZ+PVvj79iTwRd/niHU0efs15qErpEVEpJZOd1hJREQapuQgIiK1KDmIiEgtSg4iIlKLkoOIiNSi5CDSTGb2cT3lT5nZpa0dj0hLUHIQaSbn3HS/YxBpaZF+ByDS3pnZQedcL+9K1YcJjMKZBZT7G5lI02nPQaTlXAyMJjB+/3UErgIXaZeUHERazmnA0865KufcbuBtvwMSaSolBxERqUXJQaTlvA9808wivNFaZ/gdkEhT6YS0SMt5CTiTwNDjO4Gl/oYj0nQalVVERGrRYSUREalFyUFERGpRchARkVqUHEREpBYlBxERqUXJQUREalFyEBGRWpQcRESklv8PJzUYM8nBdQ8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.set_index('id').sort_values('id').plot()\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }