Peter Cornillon

University of Rhode Island

Telecon ESIP Information Quality Cluster

9 October 2018

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Outline

SST Error Budget

- Constraints on the Error Budget
- Overview
- Products
- Data levels and processing steps
- The error budget
- Two Take-Aways

Determining SST & VIIRS Instrument Noise

- Introduction
- Two Approaches to Determining the Instrument Noise

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Data Preparation
- Results

Outline

Background

2 SST Error Budget

- Constraints on the Error Budget
- Overview
- Products
- Data levels and processing steps
- The error budget
- Two Take-Aways

Determining SST & VIIRS Instrument Noise

- Introduction
- Two Approaches to Determining the Instrument Noise

<ロ> (四) (四) (三) (三) (三) (三)

- Data Preparation
- Results

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
- The error budget was addressed within the context of 6 focus areas:
 - O The physical basis of SST measurements;
 - Radiative transfer modeling and SST retrieval algorithm development;
 - O Cal/val pre-launch and on-orbit:
 - Data merging and gridding:
 - O The climate record: representation data access and stability and:
 - O Applications of SST6
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - Radiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit:
 - O Data merging and gridding:
 - Chrashing and stability and stability and stability and stability and the second stab
 - O Applications of SSTB
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - Radiative transfer modeling and SST retrieval algorithm development;
 - O Cal/val pre-faunch and on-orbit;
 - O Data merging and gridding;
 - O The climate record: reprocessing, data access and stability, and:
 - O Applications of SSTI
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:

 - Cal/val pre-launch and on-orbit;
 - Data merging and gridding;
 - O The climate record; reprocessing, data access and stability, and;
 - O Applications of SST.
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - Radiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit
 - Data merging and gridding;
 - The climate record; reprocessing, data access and stability, and;
 - Applications of SST.
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - Radiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit
 - Data merging and gridding;
 - The climate record; reprocessing, data access and stability, and;
 - Applications of SST.
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - Padiative transfer modeling and SST retrieval algorithm development;
 - Data merging and gridding:
 - The climate record; reprocessing, data access and stability, and;
 - Applications of SST.
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - Radiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit;
 - Data merging and gridding;
 - The climate record; reprocessing, data access and stability, and;
 - Applications of SST
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - Padiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit;
 - Data merging and gridding;
 - The climate record; reprocessing, data access and stability, and;
 Applications of SST.
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - 2 Radiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit;
 - Data merging and gridding;
 - The climate record; reprocessing, data access and stability, and;

Applications of SST

- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - 2 Radiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit;
 - Oata merging and gridding;
 - The climate record; reprocessing, data access and stability, and;
 - Applications of SST.
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - 2 Radiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit;
 - Data merging and gridding;
 - The climate record; reprocessing, data access and stability, and;
 - Applications of SST.
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - 2 Radiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit;
 - Oata merging and gridding;
 - The climate record; reprocessing, data access and stability, and;
 - Applications of SST.
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - 2 Radiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit;
 - Oata merging and gridding;
 - The climate record; reprocessing, data access and stability, and;
 - Applications of SST.
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

- In Nov. 2009 Eric Lindstrom funded a workshop to:
 - Quantify the error budget of satellite-derived SST products.
- This workshop was
 - Held in Rhode Island in November 2009.
 - Attended by 45 SST scientists and NASA and NOAA program managers.
- The error budget was addressed within the context of 6 focus areas:
 - The physical basis of SST measurements;
 - 2 Radiative transfer modeling and SST retrieval algorithm development;
 - Cal/val pre-launch and on-orbit;
 - Oata merging and gridding;
 - The climate record; reprocessing, data access and stability, and;
 - Applications of SST.
- Groups representing each area assembled their findings in a report.
- These reports were organized into an SST Error Budget White Paper

https://works.bepress.com/peter-cornillon/1/download/

BUT - There is little that ties this error budget to SST

Steering Committee

The Steering Committee for the workshop and subsequent White Paper:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Sandra Castro (U Colorado)
- Peter Cornillon (U Rhode Island) that'd be me.
- Chelle Gentemann (Remote Sensing Systems, Inc)
- Peter Hacker (NASA)
- Andy Jessup (U Washington)
- Alexey Kaplan (Columbia U)
- Eric Lindstrom (NASA)
- Eileen Maturi (NOAA)
- Peter Minnett (U Miami)
- Dick Reynolds (Coop. Inst. for Climate and Sat.)

<ロト < 同ト < 回ト < 回ト = 三日

21/167

Outline

Background

2 SST Error Budget

- Constraints on the Error Budget
- Overview
- Products
- Data levels and processing steps
- The error budget
- Two Take-Aways

Determining SST & VIIRS Instrument Noise

- Introduction
- Two Approaches to Determining the Instrument Noise
- Data Preparation
- Results

Constraints on the SST Error

- The Applications Group identified acceptable bounds on SST products
 - Spatial resolution,
 - Temporal resolution,
 - Geolocation accuracy,
 - Absolute SST accuracy, and
 - Relative SST accuracy.
- These bounds were categorized by application.

Applications	Source	Spatial	Temporal	Geolocation	Absolute	Relative
		resolution	resolution	accuracy	accuracy	accuracy
		(km)	(hrs)	(km)	(^o K)	
CDR	Ohring et al., 2005				0.1	0.04 [°] K/decade
CDR	Workshop					0.05 [°] K/decade
NWP	Eyre et al., 2009	5	3		0.3	
Global Operations	NPOESS IORD-II	0.25	3	0.1	0.1	0.05 ⁰ K
Coastal/Lake Operations	NPOESS IORD-II	0.1	6	0.1	0.1	
Fronts	Workshop	0.1	0.25	0.1	1	0.1 [°] K
Climate Models	Workshop	25	24	5	0.2	0.05 [°] K/decade
Lakes	Workshop	1	3	1	0.3	0.2 ⁰ K
Air-sea Fluxes	Workshop	10	24	2	0.1	
Mesoscale	Workshop	1	168		0.1	
Submesoscale	Workshop	0.1	1		0.1	
Strictest		0.1	0.25	0.1	0.1	0.05 [°] K 0.04 [°] K/decade

A significant fraction of workshop participants were interested in feature studies.

Such studies tend to be underrepresented in specification of product uncertainty.

Different uses place different demands on the characteristics of the error that are of interest

• A significant fraction of workshop participants were interested in feature studies.

Such studies tend to be underrepresented in specification of product uncertainty.

Different uses place different demands on the characteristics of the error that are of interest

- A significant fraction of workshop participants were interested in feature studies.
- Such studies tend to be underrepresented in specification of product uncertainty.

Different uses place different demands on the characteristics of the error that are of interest

- A significant fraction of workshop participants were interested in feature studies.
- Such studies tend to be underrepresented in specification of product uncertainty.

Different uses place different demands on the characteristics of the error that are of interest

Approach to Developing the Error Budget

The error budget is discussed in the white paper from 2 perspectives

- Two groups of products
- Five NASA Product levels
- Although both approaches were considered

The focus was on product categories

Constraints Overview Products Levels Errors Take-aways

Approach to Developing the Error Budget

- Two groups of products
- Five NASA Product levels
- Although both approaches were considered

Constraints Overview Products Levels Errors Take-aways

Approach to Developing the Error Budget

- Two groups of products
- Five NASA Product levels
- Although both approaches were considered

Approach to Developing the Error Budget

- Two groups of products
- Five NASA Product levels
- Although both approaches were considered The focus was on product categories

Constraints Overview Products Levels Errors Take-aways

Approach to Developing the Error Budget

- Two groups of products
- Five NASA Product levels
- Although both approaches were considered The focus was on product categories

Data products were divided into two broad categories:

Skin/subskin SST Retrievals in Satellite Coordinates

Data products were divided into two broad categories:

• Skin/subskin SST Retrievals in Satellite Coordinates

Data products were divided into two broad categories:

• Skin/subskin SST Retrievals in Satellite Coordinates

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Obtained on the membrane and an end of the second se
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly differences sense looks into
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper x1 mm
- Derived SST products
 - Products interned from skin/subskin SST retrievals.
 - These products generally require:

 Requires assumptions about spatial and temporal variability of temperatures in the upper costan.

A D > A P > A D > A D >

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor (susprints.)
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper estimation
- Derived SST products
 - Products inferred from skin/subskin SST retrievals.
 - These products generally require:

 Requires assumptions about spatial and temporal variability of temperatures in the upper costan.

A D > A P > A D > A D >
Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Containing by manufacture managers.
 Containing the manufacture managers in different spectral learning with slightly differences.
 Spectral learning statistical spectral learning spectral learning with slightly differences.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper est mm
- Derived SST products
 - Products interned from skin/subskin SST retrievals.
 - These products generally require:

Requires assumptions about spatial and temporal variability of temperatures in the upper ocean.

イロト 不得 トイヨト イヨト

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are

• In both cases

The primary conversion is rediance to SST:
 Upper sci mm

Derived SST products

Products inferred from skin/subskin SST retrievals.

These products generally require:

Requires assumptions about spatial and temporal variability of temperature states in the upper ocean.

イロト 不得 トイヨト イヨト

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 Upper ed mm
- Derived SST products
 - Products inferred from skin/subskin SST retrievals.
 - These products generally require:

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases

The primary conversion is radiance to SST.
 Upper without

Derived SST products

Products inferred from skin/subskin SST retrievals.

These products generally require:

· [10] · [10]

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.

In both cases

Derived SST products

interned from skin/subskin SST retrievals

< ロ > < 同 > < 声 > ・ 声

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper \approx 1 mm
- Derived SST products

Products inferred from skin/subskin SST retrievals.

These products generally require:

< ロ > < 荷 > < 声 > 、 声

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Ipper ≈1 mm
- Derived SST products

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper ≈1 mm

Derived SST products

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper ≈1 mm
- Derived SST products

Products inferred from skin/subskin SST retrievals.

These products generally require:

interview of the second s

 Requires assumptions about spatial and temporal variability of temperature in the upper ocean.

<ロト < 同ト < 回ト < 回ト = 三日

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper ≈1 mm

Derived SST products Products inferred from skin/subskin SST retrievals.

- These products generally require:
 - -Adjustment to a depth below 1mm and/or
- Requires assumptions about spatial and temporal variability of temperature in the upper ocean.

<ロト < 同ト < 回ト < 回ト = 三日

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper ≈1 mm

Derived SST products

- These products generally require:
 - Regridding and/or
 - Collating and/or
 - Adjustment to a depth below 1mm and/or
 - Interpolation into gaps.
- Requires assumptions about spatial and temporal variability of temperature in the upper ocean.

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper ≈1 mm
- Derived SST products

- These products generally require:
 - Regridding and/or
 - Collating and/or
 - Adjustment to a depth below 1mm and/or
 - Interpolation into gaps.
- Requires assumptions about spatial and temporal variability of temperature in the upper ocean.

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper ≈1 mm
- Derived SST products

- These products generally require:
 - Regridding and/or
 - Collating and/or
 - Adjustment to a depth below 1mm and/or
 - Interpolation into gaps.
- Requires assumptions about spatial and temporal variability of temperature in the upper ocean.

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper ≈1 mm
- Derived SST products

Products **inferred** from skin/subskin SST retrievals.

- These products generally require:
 - Regridding and/or
 - Collating and/or
 - Adjustment to a depth below 1mm and/or
 - Interpolation into gaps
- Requires assumptions about spatial and temporal variability of temperature in the upper ocean.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper ≈1 mm
- Derived SST products

Products **inferred** from skin/subskin SST retrievals.

- These products generally require:
 - Regridding and/or
 - Collating and/or
 - Adjustment to a depth below 1mm and/or
 - Interpolation into gaps.

 Requires assumptions about spatial and temporal variability of temperature in the upper ocean.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Data products were divided into two broad categories:

- Skin/subskin SST Retrievals in Satellite Coordinates Products retrieved directly from satellite-derived radiances.
 - Skin products are
 - Derived from infrared sensors.
 - Obtained by combining radiances in different spectral bands with the same sensor footprint.
 - Subskin products are
 - Derived from microwave sensors.
 - Obtained by combining radiances in different spectral bands with slightly different sensor footprints.
 - In both cases
 - The primary conversion is radiance to SST.
 - Upper ≈1 mm

Derived SST products

- These products generally require:
 - Regridding and/or
 - Collating and/or
 - Adjustment to a depth below 1mm and/or
 - Interpolation into gaps.
- Requires assumptions about spatial and temporal variability of temperature in the upper ocean.

Constraints Overview Products Levels Errors Take-aways

Data Products Schematically

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(日)

56/167

Data Level Perspective

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description

Level 0 Unprocessed instrument data (volts) in satellite coordinates

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0	Unprocessed instrument data (volts) in satellite coordinates
Level 1	Level 0 processed to sensor units (radiances) in satellite coordinates

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0	Unprocessed instrument data (volts) in satellite coordinates
Level 1	Level 0 processed to sensor units (radiances) in satellite coordinates
Level 2	Level 1 processed to geophysical variables (SST) in satellite coordinates

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0	Unprocessed instrument data (volts) in satellite coordinates
Level 1	Level 0 processed to sensor units (radiances) in satellite coordinates
Level 2	Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid

(日)

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0	Unprocessed instrument data (volts) in satellite coordinates
Level 1	Level 0 processed to sensor units (radiances) in satellite coordinates
Level 2	Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time

ロトス値とステトスティ

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0	Unprocessed instrument data (volts) in satellite coordinates
Level 1	Level 0 processed to sensor units (radiances) in satellite coordinates
Level 2	Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time – Uncollated

э

日本《檀本《国本《国本

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0	Unprocessed instrument data (volts) in satellite coordinates
Level 1	Level 0 processed to sensor units (radiances) in satellite coordinates
Level 2	Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time – Uncollated Single sensor/multiple time

ロトスポトメヨトメヨト

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0	Unprocessed instrument data (volts) in satellite coordinates
Level 1	Level 0 processed to sensor units (radiances) in satellite coordinates
Level 2	Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time – Uncollated Single sensor/multiple time – Collated

ロトスポトメヨトメヨト

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0 Level 1 Level 2	Unprocessed instrument data (volts) in satellite coordinates Level 0 processed to sensor units (radiances) in satellite coordinates Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time – Uncollated Single sensor/multiple time – Collated Multiple sensor/multiple time

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0 Level 1 Level 2	Unprocessed instrument data (volts) in satellite coordinates Level 0 processed to sensor units (radiances) in satellite coordinates Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time – Uncollated Single sensor/multiple time – Collated Multiple sensor/multiple time – Super collated

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0 Level 1 Level 2	Unprocessed instrument data (volts) in satellite coordinates Level 0 processed to sensor units (radiances) in satellite coordinates Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time – Uncollated Single sensor/multiple time – Collated Multiple sensor/multiple time
Level 4	Model output or analyses of lower level data – gap-filled fields

(日)

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0 Level 1 Level 2	Unprocessed instrument data (volts) in satellite coordinates Level 0 processed to sensor units (radiances) in satellite coordinates Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time – Uncollated Single sensor/multiple time – Collated Multiple sensor/multiple time
Level 4	Model output or analyses of lower level data – gap-filled fields

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

67/167

Between each level is a processing step:

- $L0 \Rightarrow L1$: Calibration
- L1 ⇒ L2: SST Retrieval
- L2 ⇒ L3: Gridding and Merging
- L3 ⇒ L4: Analsysis

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0 Level 1 Level 2	Unprocessed instrument data (volts) in satellite coordinates Level 0 processed to sensor units (radiances) in satellite coordinates Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time – Uncollated Single sensor/multiple time – Collated Multiple sensor/multiple time
Level 4	Model output or analyses of lower level data – gap-filled fields

Between each level is a processing step:

- $L0 \Rightarrow L1$: Calibration
- L1 \Rightarrow L2: SST Retrieval
- L2 ⇒ L3: Gridding and Merging
- L3 ⇒ L4: Analsysis

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0 Level 1 Level 2	Unprocessed instrument data (volts) in satellite coordinates Level 0 processed to sensor units (radiances) in satellite coordinates Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time – Uncollated Single sensor/multiple time – Collated Multiple sensor/multiple time
Level 4	Model output or analyses of lower level data – gap-filled fields

Between each level is a processing step:

- $L0 \Rightarrow L1$: Calibration
- L1 \Rightarrow L2: SST Retrieval
- L2 \Rightarrow L3: Gridding and Merging
- L3 \Rightarrow L4: Analsysis

<ロト < 同ト < 回ト < 回ト = 三日

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0 Level 1	Unprocessed instrument data (volts) in satellite coordinates Level 0 processed to sensor units (radiances) in satellite coordinates
Level 2	Level 1 processed to geophysical variables (SS1) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid Single sensor/single time – Uncollated Single sensor/multiple time – Collated Multiple sensor/multiple time
Level 4	Model output or analyses of lower level data - gap-filled fields

Between each level is a processing step:

- $L0 \Rightarrow L1$: Calibration
- L1 \Rightarrow L2: SST Retrieval
- L2 \Rightarrow L3: Gridding and Merging

• L3 \Rightarrow L4: Analsysis

- Satellite-derived data products are generally divided into 5 categories.
- We used the NASA definitions for levels as modified by GHRSST:

Data Level	Description
Level 0 Level 1 Level 2	Unprocessed instrument data (volts) in satellite coordinates Level 0 processed to sensor units (radiances) in satellite coordinates Level 1 processed to geophysical variables (SST) in satellite coordinates
Level 3	Level 2 fields mapped and merged to a uniform space-time grid
	Single sensor/single time – Uncollated Single sensor/multiple time – Collated Multiple sensor/multiple time
Level 4	Model output or analyses of lower level data – gap-filled fields

Between each level is a processing step:

- $L0 \Rightarrow L1$: Calibration
- L1 \Rightarrow L2: SST Retrieval
- L2 \Rightarrow L3: Gridding and Merging
- L3 \Rightarrow L4: Analsysis

Data levels and processing schematically

Errors associated with skin/subskin retrievals fall in two groups

- Instrument error
- Retrieval algorithm error
- Errors for derived products also fall into two groups
- Errors introduced at any step propagate to the next step.

So let's look at these errors in more detail

(大臣) (大臣) (臣)

< 🗇 ▶

- Errors associated with skin/subskin retrievals fall in two groups
 Instrument error
 - Retrieval algorithm error
- Errors for derived products also fall into two groups
- Errors introduced at any step propagate to the next step.
 - So let's look at these errors in more detail

э

(本語) (本語) (二)

- Errors associated with skin/subskin retrievals fall in two groups • Instrument error: L0 \Rightarrow L1
 - Retrieval algorithm error
- Errors for derived products also fall into two groups
- Errors introduced at any step propagate to the next step.
 - So let's look at these errors in more detail

э

★ Ξ → ★ Ξ →

- Errors associated with skin/subskin retrievals fall in two groups
 - Instrument error: $L0 \Rightarrow L1$
 - Retrieval algorithm error
- Errors for derived products also fall into two groups
- Errors introduced at any step propagate to the next step.

So let's look at these errors in more detail

3

< 一型

- Errors associated with skin/subskin retrievals fall in two groups
 - Instrument error: $L0 \Rightarrow L1$
 - Retrieval algorithm error: $L1 \Rightarrow L2$
- Errors for derived products also fall into two groups
- Errors introduced at any step propagate to the next step.

So let's look at these errors in more detail

< 17 ▶

- Errors associated with skin/subskin retrievals fall in two groups
 - Instrument error: $L0 \Rightarrow L1$
 - Retrieval algorithm error: L1 ⇒ L2
- Errors for derived products also fall into two groups
 - Errors resulting from oceanographic variability
 - Merging, gridding and analysis errors
- Errors introduced at any step propagate to the next step.

So let's look at these errors in more detail

Errors associated with skin/subskin retrievals fall in two groups

- Instrument error: $L0 \Rightarrow L1$
- Retrieval algorithm error: $L1 \Rightarrow L2$
- Errors for derived products also fall into two groups
 - Errors resulting from oceanographic variability
 - Merging, gridding and analysis errors
- Errors introduced at any step propagate to the next step.

So let's look at these errors in more detail

э

ㅋㅋ ㅋㅋㅋ

Errors associated with skin/subskin retrievals fall in two groups

- Instrument error: $L0 \Rightarrow L1$
- Retrieval algorithm error: $L1 \Rightarrow L2$
- Errors for derived products also fall into two groups
 - Errors resulting from oceanographic variability: $L1 \Rightarrow L2$
 - Merging, gridding and analysis errors
- Errors introduced at any step propagate to the next step.

So let's look at these errors in more detail

э

ㅋㅋ ㅋㅋㅋ

- Errors associated with skin/subskin retrievals fall in two groups
 - Instrument error: $L0 \Rightarrow L1$
 - Retrieval algorithm error: L1 ⇒ L2
- Errors for derived products also fall into two groups
 - Errors resulting from oceanographic variability: $L1 \Rightarrow L2$
 - Merging, gridding and analysis errors
- Errors introduced at any step propagate to the next step.

So let's look at these errors in more detai

э

ㅋㅋ ㅋㅋㅋ

- Errors associated with skin/subskin retrievals fall in two groups
 - Instrument error: $L0 \Rightarrow L1$
 - Retrieval algorithm error: L1 ⇒ L2
- Errors for derived products also fall into two groups
 - Errors resulting from oceanographic variability: L1 \Rightarrow L2 \Rightarrow L3 \Rightarrow L4
 - Merging, gridding and analysis errors: L2 \Rightarrow L3 \Rightarrow L4
- Errors introduced at any step propagate to the next step.

So let's look at these errors in more detai

э

医外球 医外门

- Errors associated with skin/subskin retrievals fall in two groups
 - Instrument error: L0 ⇒ L1
 - Retrieval algorithm error: L1 ⇒ L2
- Errors for derived products also fall into two groups
 - Errors resulting from oceanographic variability: $L1 \Rightarrow L2 \Rightarrow L3 \Rightarrow L4$
 - Merging, gridding and analysis errors: L2 \Rightarrow L3 \Rightarrow L4
- Errors introduced at any step propagate to the next step.

So let's look at these errors in more detail

< 17 ▶

- Errors associated with skin/subskin retrievals fall in two groups
 - Instrument error: L0 ⇒ L1
 - Retrieval algorithm error: L1 ⇒ L2
- Errors for derived products also fall into two groups
 - Errors resulting from oceanographic variability: $L1 \Rightarrow L2 \Rightarrow L3 \Rightarrow L4$
 - Merging, gridding and analysis errors: L2 \Rightarrow L3 \Rightarrow L4
- Errors introduced at any step propagate to the next step.

So let's look at these errors in more detail

(大臣) (大臣) (臣)

< 17 ▶

• Instrument errors include contributions from:

- Instrument noise
- Calibration source
- Characterization of the instrument
- Stray radiation
- Location of the observation

• Instrument errors include contributions from:

Instrument noise

- Calibration source
- Characterization of the instrument
- Stray radiation
- Location of the observation

- Instrument errors include contributions from:
 - Instrument noise
 - Calibration source
 - Characterization of the instrument
 - Stray radiation
 - Location of the observation

- Instrument errors include contributions from:
 - Instrument noise
 - Calibration source
 - Characterization of the instrument
 - Stray radiation
 - Location of the observation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Instrument errors include contributions from:
 - Instrument noise
 - Calibration source
 - Characterization of the instrument
 - Stray radiation
 - Location of the observation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Instrument errors include contributions from:
 - Instrument noise
 - Calibration source
 - Characterization of the instrument
 - Stray radiation
 - Location of the observation

• Retrieval errors include contributions from:

- Simulation errors in the geophysical model used for the retrieval
- Input uncertainties in ancillary data used by the geophysical model(s)
- Classification errors in flagging data as good, bad or ugly

- Retrieval errors include contributions from:
 - Simulation errors in the geophysical model used for the retrieval
 - Input uncertainties in ancillary data used by the geophysical model(s)
 - Classification errors in flagging data as good, bad or ugly

- Retrieval errors include contributions from:
 - Simulation errors in the geophysical model used for the retrieval
 - Input uncertainties in ancillary data used by the geophysical model(s)
 - Classification errors in flagging data as good, bad or ugly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Retrieval errors include contributions from:
 - Simulation errors in the geophysical model used for the retrieval
 - Input uncertainties in ancillary data used by the geophysical model(s)
 - Classification errors in flagging data as good, bad or ugly.

<ロト < 同ト < 回ト < 回ト = 三日

95/167

- Oceanographic variability gives rise to errors resulting from:
 - Temporal changes in SST when combining skin/subskin values over time
 - Spatial differences when estimating temperatures at different depths

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

96/167

- Oceanographic variability gives rise to errors resulting from:
 - Temporal changes in SST when combining skin/subskin values over time
 - Skin effects
 - Diurnal warming
 - Spatial differences when estimating temperatures at different depths

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

97/167

- Oceanographic variability gives rise to errors resulting from:
 - Temporal changes in SST when combining skin/subskin values over time
 - Skin effects
 - Diurnal warming
 - Spatial differences when estimating temperatures at different depths

- Oceanographic variability gives rise to errors resulting from:
 - Temporal changes in SST when combining skin/subskin values over time
 - Skin effects
 - Diurnal warming
 - Spatial differences when estimating temperatures at different depths

- Oceanographic variability gives rise to errors resulting from:
 - Temporal changes in SST when combining skin/subskin values over time
 - Skin effects
 - Diurnal warming
 - Spatial differences when estimating temperatures at different depths

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

100/167

Merging, Gridding and Analysis Errors

• Merging, gridding and analysis errors result from:

- The procedure used to merge values from different sensor/passes.
- Biases in the data from one source relative to another.
- Differences between the input and output grids.
- Method used to interpolate to locations for which there are no SST retrievals
 - gap filling.

- Merging, gridding and analysis errors result from:
 - The procedure used to merge values from different sensor/passes.
 - Biases in the data from one source relative to another.
 - Differences between the input and output grids.
 - Method used to interpolate to locations for which there are no SST retrievals - gap filling.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

102/167

- Merging, gridding and analysis errors result from:
 - The procedure used to merge values from different sensor/passes.
 - Biases in the data from one source relative to another.
 - Differences between the input and output grids.
 - Method used to interpolate to locations for which there are no SST retrievals - gap filling.

- Merging, gridding and analysis errors result from:
 - The procedure used to merge values from different sensor/passes.
 - Biases in the data from one source relative to another.
 - Differences between the input and output grids.
 - Method used to interpolate to locations for which there are no SST retrievals - gap filling.

- Merging, gridding and analysis errors result from:
 - The procedure used to merge values from different sensor/passes.
 - Biases in the data from one source relative to another.
 - Differences between the input and output grids.
 - Method used to interpolate to locations for which there are no SST retrievals
 - gap filling.

Take-Aways

- This approach is readily generalizable to most other satellite-derived parameters of interest to the Earth science community
- It is not just the absolute SST error that is important:
 - Location error;
 - Pixel characterization.
 -

Take-Aways

- This approach is readily generalizable to most other satellite-derived parameters of interest to the Earth science community
- It is not just the absolute SST error that is important:

Take-Aways

- This approach is readily generalizable to most other satellite-derived parameters of interest to the Earth science community
- It is not just the absolute SST error that is important:
 - Location error,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

108/167

Take-Aways

- This approach is readily generalizable to most other satellite-derived parameters of interest to the Earth science community
- It is not just the absolute SST error that is important:
 - Location error,
 - Pixel characterization,

• ...
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

109/167

Take-Aways

- This approach is readily generalizable to most other satellite-derived parameters of interest to the Earth science community
- It is not just the absolute SST error that is important:
 - Location error,
 - Pixel characterization,
 - ...

Outline

Background

2 SST Error Budget

- Constraints on the Error Budget
- Overview
- Products
- Data levels and processing steps
- The error budget
- Two Take-Aways

Determining SST & VIIRS Instrument Noise

- Introduction
- Two Approaches to Determining the Instrument Noise

<ロト < 同ト < 回ト < 回ト = 三日

110/167

- Data Preparation
- Results

Overview - Measures of SST Uncertainty in Satellite-Derived Fields

• The uncertainty of satellite SST data products is determined from in situ matchups.

- Standard measure is rms difference between buoy and satellite SSTs.
- Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.
- But these are based on match-ups widely separated in space and time
 - A significant contributor to these uncertainties are atmospheric fluctuations
 - Which vary over large scales...
- But I'm interested in SST fronts and gradients,
 - For which large scale variability is relatively unimportant.
 - I want to know the pixel-to-pixel noise and such measures are not available.

- The uncertainty of satellite SST data products is determined from in situ matchups.
 - Standard measure is rms difference between buoy and satellite SSTs.
 - Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.
 - But these are based on match-ups widely separated in space and time
 - A significant contributor to these uncertainties are atmospheric fluctuations
 - Which vary over large scales...
- But I'm interested in SST fronts and gradients,
 - For which large scale variability is relatively unimportant.
 - I want to know the pixel-to-pixel noise and such measures are not available.

- The uncertainty of satellite SST data products is determined from in situ matchups.
 - Standard measure is rms difference between buoy and satellite SSTs.
 - Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.
 - But these are based on match-ups widely separated in space and time
 A separated contributor to these upper temperatures are denoted by the second secon
- But I'm interested in SST fronts and gradients,
 - For which large scale variability is relatively unimportant.
 - I want to know the pixel-to-pixel noise and such measures are not available.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

114/167

- The uncertainty of satellite SST data products is determined from in situ matchups.
 - Standard measure is rms difference between buoy and satellite SSTs.
 - Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.
 - · But these are based on match-ups widely separated in space and time
 - A significant contributor to these uncertainties are atmospheric fluctuations
 - Which vary over large scales.
- But I'm interested in SST fronts and gradients,
 - For which large scale variability is relatively unimportant.
 - I want to know the pixel-to-pixel noise and such measures are not available.

115/167

- The uncertainty of satellite SST data products is determined from in situ matchups.
 - Standard measure is rms difference between buoy and satellite SSTs.
 - Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.
 - But these are based on match-ups widely separated in space and time
 - A significant contributor to these uncertainties are atmospheric fluctuations
 - Which vary over large scales.
- But I'm interested in SST fronts and gradients,
 - For which large scale variability is relatively unimportant.
 - I want to know the pixel-to-pixel noise and such measures are not available.

116/167

Overview – Measures of SST Uncertainty in Satellite-Derived Fields

- The uncertainty of satellite SST data products is determined from in situ matchups.
 - Standard measure is rms difference between buoy and satellite SSTs.
 - Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.
 - But these are based on match-ups widely separated in space and time
 - A significant contributor to these uncertainties are atmospheric fluctuations
 - Which vary over large scales.

But I'm interested in SST fronts and gradients,

For which large scale variability is relatively unimportant.

want to know the pixel-to-pixel noise and such measures are not available.

117/167

- The uncertainty of satellite SST data products is determined from in situ matchups.
 - Standard measure is rms difference between buoy and satellite SSTs.
 - Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.
 - But these are based on match-ups widely separated in space and time
 - A significant contributor to these uncertainties are atmospheric fluctuations
 - Which vary over large scales.
- But I'm interested in SST fronts and gradients,
 - For which large scale variability is relatively unimportant.
 - I want to know the pixel-to-pixel noise and such measures are not available.

118/167

- The uncertainty of satellite SST data products is determined from in situ matchups.
 - Standard measure is rms difference between buoy and satellite SSTs.
 - Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.
 - But these are based on match-ups widely separated in space and time
 - A significant contributor to these uncertainties are atmospheric fluctuations
 - Which vary over large scales.
- But I'm interested in SST fronts and gradients,
 - For which large scale variability is relatively unimportant.
 - I want to know the pixel-to-pixel noise and such measures are not available.

119/167

- The uncertainty of satellite SST data products is determined from in situ matchups.
 - Standard measure is rms difference between buoy and satellite SSTs.
 - Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.
 - But these are based on match-ups widely separated in space and time
 - A significant contributor to these uncertainties are atmospheric fluctuations
 - Which vary over large scales.
- But I'm interested in SST fronts and gradients,
 - For which large scale variability is relatively unimportant.
 - I want to know the pixel-to-pixel noise and such measures are not available.

• Two data sets are compared for 2008.

- 4-km global Pathfinder SST fields (AVHRR).
- 4-km global MODIS SST fields.
- The retrieval algorithm for each was very similar.
- The grid onto which they were projected was identical.
- Calculate the σ for each clear 3 \times 3 pixel region and average over 2008

- Two data sets are compared for 2008.
 - 4-km global Pathfinder SST fields (AVHRR).
 - 4-km global MODIS SST fields.
- The retrieval algorithm for each was very similar.
- The grid onto which they were projected was identical.
- Calculate the σ for each clear 3 \times 3 pixel region and average over 2008

- Two data sets are compared for 2008.
 - 4-km global Pathfinder SST fields (AVHRR).
 - 4-km global MODIS SST fields.
- The retrieval algorithm for each was very similar.
- The grid onto which they were projected was identical.
- Calculate the σ for each clear 3 imes 3 pixel region and average over 2008

- Two data sets are compared for 2008.
 - 4-km global Pathfinder SST fields (AVHRR).
 - 4-km global MODIS SST fields.
- The retrieval algorithm for each was very similar.
- The grid onto which they were projected was identical.
- Calculate the σ for each clear 3 × 3 pixel region and average over 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

124/167

- Two data sets are compared for 2008.
 - 4-km global Pathfinder SST fields (AVHRR).
 - 4-km global MODIS SST fields.
- The retrieval algorithm for each was very similar.
- The grid onto which they were projected was identical.
- Calculate the σ for each clear 3 × 3 pixel region and average over 2008

- Two data sets are compared for 2008.
 - 4-km global Pathfinder SST fields (AVHRR).
 - 4-km global MODIS SST fields.
- The retrieval algorithm for each was very similar.
- The grid onto which they were projected was identical.
- Calculate the σ for each clear 3 imes 3 pixel region and average over 2008

ack to the SST error budget.

<ロ> <問> <問> < 回> < 回 > < 回 > < 回 > = 回

128/167

Accuracy versus Precision and the Local Precision

Back to the SST error budget.

<ロ> <問> <問> < 回> < 回 > < 回 > < 回 > = 回

129/167

Accuracy versus Precision and the Local Precision

Back to the SST error budget.

Error Budget for Satellite-Derived SST Fields (NASA SST Science Team)

Error Budget for Satellite-Derived SST Fields (NASA SST Science Team)

132/167

Two Approaches to Determining 'Instrument Noise'

- Wu et al. (2017) used two approaches to estimate the spatial precision of:
 - AVHRR on NOAA-15, and
 - VIIRS on Soumi-NPP
- One based on the spectrum of SST sections, and
- The other based on the variogram of SST sections based on the approach of Tandeo et al. (2014).
- In the interest of time, I will focus on the spectral approach in this presentation.

Wu, F., P. Cornillon, B. Boussidi and L.Guan, 2017, Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields, Remote Sens., 9, 877; doi:10.3390/rs9090877.

Tandeo, P., E. Autret, B. Chapron, R. Fablet and R. Garello, 2014, SST spatial anisotropic covariances from METOP-AVHRR data. J. Remote Sens. Environ., 141, 144-148.

133/167

Two Approaches to Determining 'Instrument Noise'

- Wu et al. (2017) used two approaches to estimate the spatial precision of:
 - AVHRR on NOAA-15, and
 - VIIRS on Soumi-NPP
- One based on the spectrum of SST sections, and
- The other based on the variogram of SST sections based on the approach of Tandeo et al. (2014).
- In the interest of time, I will focus on the spectral approach in this presentation.

Wu, F., P. Cornillon, B. Boussidi and L.Guan, 2017, Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields, Remote Sens., 9, 877; doi:10.3390/rs9090877.

Tandeo, P., E. Autret, B. Chapron, R. Fablet and R. Garello, 2014, SST spatial anisotropic covariances from METOP-AVHRR data. J. Remote Sens. Environ., 141, 144-148.

Two Approaches to Determining 'Instrument Noise'

- Wu et al. (2017) used two approaches to estimate the spatial precision of:
 - AVHRR on NOAA-15, and
 - VIIRS on Soumi-NPP
- One based on the spectrum of SST sections, and
- The other based on the variogram of SST sections based on the approach of Tandeo et al. (2014).
- In the interest of time, I will focus on the spectral approach in this presentation.

Wu, F., P. Cornillon, B. Boussidi and L.Guan, 2017, Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields, Remote Sens., 9, 877; doi:10.3390/rs9090877.

Tandeo, P., E. Autret, B. Chapron, R. Fablet and R. Garello, 2014, SST spatial anisotropic covariances from METOP-AVHRR data. J. Remote Sens. Environ., 141, 144-148..

Two Approaches to Determining 'Instrument Noise'

- Wu et al. (2017) used two approaches to estimate the spatial precision of:
 - AVHRR on NOAA-15, and
 - VIIRS on Soumi-NPP
- One based on the spectrum of SST sections, and
- The other based on the variogram of SST sections based on the approach of Tandeo et al. (2014).
- In the interest of time, I will focus on the spectral approach in this presentation.

Wu, F., P. Cornillon, B. Boussidi and L.Guan, 2017, Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields, Remote Sens., 9, 877; doi:10.3390/rs9090877.

Tandeo, P., E. Autret, B. Chapron, R. Fablet and R. Garello, 2014, SST spatial anisotropic covariances from METOP-AVHRR data. J. Remote Sens. Environ., 141, 144-148..

The Spectral Approach

- Wavenumber spectrum in the Sargasso Sea at scales larger than 1 km is very nearly linear in log-log space.
- Noise in the satellite data \Rightarrow leveling off of spectra at high wavenumber.

The Spectral Approach

- Wavenumber spectrum in the Sargasso Sea at scales larger than 1 km is very nearly linear in log-log space.
- Noise in the satellite data \Rightarrow leveling off of spectra at high wavenumber.

ъ

The Spectral Approach

- Wavenumber spectrum in the Sargasso Sea at scales larger than 1 km is very nearly linear in log-log space.
- Noise in the satellite data \Rightarrow leveling off of spectra at high wavenumber.

э

- The data were divided into along-scan and along-track directions.
 - Along-scan and along-track characteristics differ.
- And these groups were further subdivided into day and night subgroups.
- Only cloud free sections:
 - 256 pixels long.
 - Within 500 km of nadir.
 - Summer relavitively clear.
 - In the Sargasso Sea.

- The data were divided into along-scan and along-track directions.
 - Along-scan and along-track characteristics differ.
- And these groups were further subdivided into day and night subgroups.
- Only cloud free sections:
 - 256 pixels long.
 - Within 500 km of nadir.
 - Summer relavitively, clear.
 - In the Sargasso Sea.

Introduction Approaches Data Results

- The data were divided into along-scan and along-track directions.
 - Along-scan and along-track characteristics differ.
- And these groups were further subdivided into day and night subgroups.
 - Diurnal warming may alter the spectrum during daytime.
- Only cloud free sections:
 - 256 pixels long.
 - Within 500 km of nadir.
 - Summer relavitively clear.
 - In the Sargasso Sea.

- The data were divided into along-scan and along-track directions.
 - Along-scan and along-track characteristics differ.
- And these groups were further subdivided into day and night subgroups.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

142/167

- Diurnal warming may alter the spectrum during daytime.
- Only cloud free sections:
 - Within 500 km of parling
 - Summer—relavitvely clear.
 - In the Sargasso Sea.

- The data were divided into along-scan and along-track directions.
 - Along-scan and along-track characteristics differ.
- And these groups were further subdivided into day and night subgroups.
 - Diurnal warming may alter the spectrum during daytime.
- Only cloud free sections:
 - 256 pixels long.
 - Within 500 km of nadir.
 - Summer relavtively clear.
 - In the Sargasso Sea.

- The data were divided into along-scan and along-track directions.
 - Along-scan and along-track characteristics differ.
- And these groups were further subdivided into day and night subgroups.
 - Diurnal warming may alter the spectrum during daytime.
- Only cloud free sections:
 - 256 pixels long.
 - Within 500 km of nadir.
 - Summer relavtively clear.
 - In the Sargasso Sea.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで
The Data – Preprocessing

- The data were divided into along-scan and along-track directions.
 - Along-scan and along-track characteristics differ.
- And these groups were further subdivided into day and night subgroups.
 - Diurnal warming may alter the spectrum during daytime.
- Only cloud free sections:
 - 256 pixels long.
 - Within 500 km of nadir.
 - Summer relavtively clear.
 - In the Sargasso Sea

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

146/167

The Data – Preprocessing

- The data were divided into along-scan and along-track directions.
 - Along-scan and along-track characteristics differ.
- And these groups were further subdivided into day and night subgroups.
 - Diurnal warming may alter the spectrum during daytime.
- Only cloud free sections:
 - 256 pixels long.
 - Within 500 km of nadir.
 - Summer relavtively clear.
 - In the Sargasso Sea.

The Data – Preprocessing

- The data were divided into along-scan and along-track directions.
 - Along-scan and along-track characteristics differ.
- And these groups were further subdivided into day and night subgroups.
 - Diurnal warming may alter the spectrum during daytime.
- Only cloud free sections:
 - 256 pixels long.
 - Within 500 km of nadir.
 - Summer relavtively clear.
 - In the Sargasso Sea.

Step 1. Generate the Spectra

- The sections were nearest neighbor resampled to equal spacing.
- The evenly spaced, complete temperature sections were demeaned.
- Then Fourier Transformed NO filtering
 - Filtering impacts high wavenumber portion of the spectrum.
- Spectra ensemble averaged

Step 1. Generate the Spectra

- The sections were nearest neighbor resampled to equal spacing.
- The evenly spaced, complete temperature sections were demeaned.
- Then Fourier Transformed NO filtering
 - Filtering impacts high wavenumber portion of the spectrum
- Spectra ensemble averaged

Step 1. Generate the Spectra

- The sections were nearest neighbor resampled to equal spacing.
- The evenly spaced, complete temperature sections were demeaned.
- Then Fourier Transformed NO filtering
 - Filtering impacts high wavenumber portion of the spectrum
- Spectra ensemble averaged

28/38

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

151/167

Step 1. Generate the Spectra

- The sections were nearest neighbor resampled to equal spacing.
- The evenly spaced, complete temperature sections were demeaned.
- Then Fourier Transformed NO filtering
 - Filtering impacts high wavenumber portion of the spectrum
- Spectra ensemble averaged

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

152/167

Step 1. Generate the Spectra

- The sections were nearest neighbor resampled to equal spacing.
- The evenly spaced, complete temperature sections were demeaned.
- Then Fourier Transformed NO filtering
 - Filtering impacts high wavenumber portion of the spectrum
- Spectra ensemble averaged

Step 2. Fit Straight Line + Noise to Mean Spectra

Straight line spectra plus white noise were fit to mean spectra.

 $\text{PSD}_{\text{Fit}} = 10^{(\textit{log}_{10}(\text{Wavenumber})*\text{Slope}+\text{Intercept})} + \text{Noise}$

• Where we minimize:

 $\xi = \left(\log_{10}(extsf{PSD}_{ extsf{Fit}}) - \log_{10}(extsf{PSD}_{ extsf{Obs}})
ight)^2$

Step 2. Fit Straight Line + Noise to Mean Spectra

Straight line spectra plus white noise were fit to mean spectra.

 $\text{PSD}_{\text{Fit}} = 10^{(\textit{log}_{10}(\text{Wavenumber})*\text{Slope}+\text{Intercept})} + \text{Noise}$

• Where we minimize:

 $\xi = \left(\log_{10}(extsf{PSD}_{ extsf{Fit}}) - \log_{10}(extsf{PSD}_{ extsf{Obs}})
ight)^2$

Step 2. Fit Straight Line + Noise to Mean Spectra

• Straight line spectra plus white noise were fit to mean spectra.

 $\text{PSD}_{\text{Fit}} = 10^{(\textit{log}_{10}(\text{Wavenumber})*\text{Slope}+\text{Intercept})} + \text{Noise}$

• Where we minimize:

$$\xi = (\log_{10}(\text{PSD}_{\text{Fit}}) - \log_{10}(\text{PSD}_{\text{Obs}}))^2$$

 $\Xi \rightarrow$

Sample Results for AVHRR Along-Scan

<ロト < 昂 > < 臣 > < 臣 > 臣 のへの 156/167

イロト 不得 トイヨト イヨト

157/167

Sample Results for VIIRS Along-Scan

31/38

AVHRR and VIIRS Nighttime, Along-Scan Compared

32/38

Results

	Method	Day (K)		Night (K)	
		Along-Scan	Along-Track	Along-Scan	Along-Track
AVHRR	Spectral	0.172	0.209	0.173	0.209
	Variogram	0.185	0.219	0.183	0.219
VIIRS	Spectral	0.046	0.076	0.021	0.032
	Variogram	0.081	0.097	0.042	0.056

Summary

- Estimates for cloud-free regions *instrument* noise only; no *classification* error.
- Variogram estimates slightly larger than spectral estimates for AVHRR; but track well.
- Variogram estimates about twice spectral estimates for VIIRS.
 - Likely due to $\sigma_{inst} \approx \sigma_{geo}$.
- Along-Track noise > Along-Scan noise.; \approx 1.5 \times for VIIRS
- Daytime noise > Nighttime noise; $\approx 2 \times$ for VIIRS
- AVHRR results for NOAA-15, other AVHRRs may be less noisy;.

NOAA-15 Noise versus Time

A Condsequence

How does noise impact satellite-derived SST gradients?

To determine this we

- Simulated 10,000 3 × 3 pixel squares for a fixed gradient in x, $\frac{\partial T}{\partial x}$, 0 in y.
- Added Gaussian white noise, σ , to each of the elements.
- Applied the 3×3 Sobel gradient operator in x and y.
- Determined the μ and σ of the resulting gradient components and the gradient magnitude.
- Performed the above for:

$$0.01 \text{ K km}^{-1} < \frac{\partial T}{\partial x} < 0.3 \text{ K km}^{-1}$$
$$0.001 \text{ K} < \sigma < 0.3 \text{ K}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

161/167

162/167

A Condsequence – Gradient Components

A Condsequence – Gradient Magnitude

Numerous authors have published gradient magnitude fields from AVHRR Including me – GULP!

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

A Condsequence – Gradient Magnitude

Numerous authors have published gradient magnitude fields from AVHRR Including me -- GULPI

A Condsequence – Gradient Magnitude

Numerous authors have published gradient magnitude fields from AVHRR Including me – GULP!

・ロット (雪) (日) (日)

