
ShEx & SHACL compared
RDF Validation tutorial

Eric Prud'hommeaux
World Wide Web Consortium

MIT, Cambridge, MA, USA

Jose Emilio Labra Gayo
WESO Research group

University of Oviedo, Spain

Iovka Boneva
LINKS, INRIA & CNRS

University of Lille, France

Dimitris Kontokostas
GeoPhy

http://kontokostas.com/

https://www.slideshare.net/jelabra/rdf-validation-tutorial
http://kontokostas.com/

Several common features…

Similar goal: describe and validate RDF graphs

Both employ the word "shape"

Node constraints similar in both languages

Constraints on incoming/outgoing arcs

Both allow to define cardinalities

Both have RDF syntax

Both have an extension mechanism

But some differences…

Underlying philosophy

Syntactic differences

Notion of a shape

Syntactic differences

Default cardinalities

Shapes and Classes

Recursion

Repeated properties

Property pair constraints

Uniqueness

Extension mechanism

Underlying philosophy

ShEx is more schema based

Shapes schemas look like grammars

Focus on validation results:

Result shape maps

Info about conforming and non-
conforming nodes

SHACL is more constraint based

Shapes ≈ collections of constraints

Main focus: validation errors

No info about conforming nodes
How to difficult to distinguish between conforming

nodes and nodes that have been ignored?

RDFShape offers info about conforming node also

Semantic specification

ShEx semantics: mathematical concepts

Well-founded semantics*
Support for recursión and negation

Inspired by type systems and RelaxNG

SHACL semantics = textual description + SPARQL

SHACL terms described in natural language
SPARQL fragments used as helpers

Recursion is implementation dependent

SHACL-SPARQL based on pre-binding

*Semantics and Validation of Shapes Schemas for RDF
Iovka Boneva Jose Emilio Labra Gayo Eric Prud'hommeaux
ISWC'17

Syntactic differences

ShEx design focused on human-readability

Followed programming language design
methodology

1. Abstract syntax

2. Different concrete syntaxes
Compact

JSON-LD

RDF

...

SHACL design focused on RDF vocabulary

Design centered on RDF terms

Lots of rules to define valid shapes graphs
https://w3c.github.io/data-shapes/shacl/#syntax-rules

No compact syntax

Compact Syntax

ShEx compact syntax designed along the
language

Test-suite with long list of tests

Round-trippable with JSON-LD syntax

SHACL has no compact syntax

A WG Note proposed a compact syntax
It covered a subset of SHACL core

No longer supported and no implementations

Boolean operators and repeated properties

ShEx contains Boolean operators and
grammar based operators

2-level language:
Shape expressions: AND, OR, NOT

Triple expressions: grouping (;), alternative (|)

SHACL contains Boolean operators (and, or,
not, xone)

Only top-level expressions

. means conjunction

:Product {
:code IRI ;
:code xsd:integer
}

It means a product with 2 codes
(one IRI, and one integer)

It means the code of a product
must be an IRI and an integer

:p1 :code <http://code.org/P123> ;
:code 123 . 

 = conforms to Shape

 = doesn't conform

:Product {
:code IRI .
:code xsd:integer
}

RDF vocabulary
ShEx vocabulary ≈ abstract syntax

ShEx RDF vocabulary obtained from the
abstract syntax
ShEx RDF serializations typically more verbose

They can be round-tripped to Compact syntax

SHACL is designed as an RDF vocabulary

Some rdf:type declarations can be omitted
SHACL RDF serialization typically more readable

:User a sx:Shape;
sx:expression [a sx:EachOf ;

sx:expressions (
[a sx:TripleConstraint ;

sx:predicate schema:name ;
sx:valueExpr [a sx:NodeConstraint ;
sx:datatype xsd:string]

]
[a sx:TripleConstraint ;

sx:predicate schema:birthDate ;
sx:valueExpr [a sx:NodeConstraint ;

sx:datatype xsd:date] ;
sx:min 0

])
].

:User a sh:NodeShape ;
sh:property [sh:path schema:name ;
sh:minCount 1; sh:maxCount 1;
sh:datatype xsd:string
];
sh:property [sh:path schema:birthDate ;
sh:maxCount 1;
sh:datatype xsd:date
] .

Notion of Shape

In ShEx, shapes only define structure of
nodes

Shape maps select which nodes are
validated with which shapes

Goal: flexibility and reusability

In SHACL, shapes define structure and can
have target declarations

Shapes can be associated with nodes or sets of
nodes through target declarations

Shapes may be less reusable in other contexts

:User a sh:NodeShape, rdfs:Class ;
sh:targetClass :Person ;
sh:targetNode :alice ;
sh:nodeKind sh:IRI ;
sh:property [
sh:path schema:name ;
sh:datatype xsd:string
] .

:User IRI {
schema:name xsd:string
}

target
declarations

structure:alice@:User,
{FOCUS rdf:type :Person}@:User

Shape

Shape map

Shape

Default cardinalities

ShEx: default = (1,1)

:User {
schema:givenName xsd:string
schema:lastName xsd:string
}

:User a sh:NodeShape ;
sh:property [sh:path schema:givenName ;
sh:datatype xsd:string ;
];
sh:property [sh:path schema:lastName ;
sh:datatype xsd:string ;
] .

:alice schema:givenName "Alice" ;
schema:lastName "Cooper" .

:bob schema:givenName "Bob", "Robert" ;
schema:lastName "Smith", "Dylan" .

:carol schema:lastName "King" .

:dave schema:givenName 23;
schema:lastName :Unknown .

SHACL: default = (0,unbounded)

 









   = conforms to Shape

 = doesn't conform

Property paths

ShEx shapes describe neighborhood of focus
nodes: direct/inverse properties

Examples with paths can be simulated by
nested shapes
Sometimes requiring auxiliary recursive shapes

More control about internal cardinalities

SHACL shapes can also describe whole
property paths following SPARQL paths

:GrandSon a sh:NodeShape ;
sh:property [
sh:path (schema:parent schema:parent) ;
sh:minCount 1
];
sh:property [
sh:path [
sh:alternativePath (:father :mother)]

];
sh:minCount 1
] ;
sh:property [
sh:path [sh:inversePath :knows]]
sh:node :Person ;
sh:minCount 1

]
.

:GrandSon {
:parent { :parent . + } + ;
(:father . | :mother .) + ;
^:knows :Person
}

Inference

ShEx doesn't mess with inference

Validation can be invoked before or after
inference

rdf:type is considered an arc as any other
No special meaning

The same for rdfs:Class, rdfs:subClassOf,
rdfs:domain, rdfs:range, ...

Some constructs have special meaning

The following constructs have special
meaning in SHACL
rdf:type

rdfs:Class

rdfs:subClassOf

owl:imports

Other constructs like rdfs:domain,
rdfs:range,... have no special meaning

sh:entailment can be used to indicate that
some inference is required

Inference and triggering mechanism
ShEx has no interaction with inference

It can be used to validate a reasoner

In SHACL, RDF Schema inference can affect
which nodes are validated

:User a sh:NodeShape, rdfs:Class ;
sh:property [sh:path schema:name ;
sh:datatype xsd:string;

].



RDFS
inference

No RDFS
inference

:Teacher rdfs:subClassOf :User .
:teaches rdfs:domain :Teacher .

:alice a :Teacher ;
schema:name 23 .

:bob :teaches :Algebra ;
schema:name 34 .

:carol :teaches :Logic;
schema:name "King" .

Ignored

Ignored







With or without
RDFS inference

:User {
schema:name xsd:string
}







 = conforms to Shape

 = doesn't conform

Some implicit RDFS inference but not all

Repeated properties

ShEx (;) operator handles repeated
properties

SHACL needs qualifiedValueShapes for
repeated properties

Direct approximation (wrong)::Person {
:parent {:gender [:Male] } ;
:parent {:gender [:Female] }

}

:Person a sh:NodeShape;
sh:property [sh:path :parent;
sh:node [sh:property [sh:path :gender ;
sh:hasValue :Male ;]] ;

];
sh:property [sh:path :parent;
sh:node [sh:property [sh:path :gender ;
sh:hasValue :Female]];

]
.

Example. A person must have 2 parents,
one male and another female

Repeated properties

ShEx (;) operator handles repeated
properties

SHACL needs qualifiedValueShapes for
repeated properties

Solution with qualifiedValueShapes:
:Person {
:parent {:gender [:Male] } ;
:parent {:gender [:Female] }

}

:Person a sh:NodeShape, rdfs:Class ;
sh:property [sh:path :parent;
sh:qualifiedValueShape [sh:property [sh:path :gender ;
sh:hasValue :Male]] ;
sh:qualifiedMinCount 1; sh:qualifiedMaxCount 1

];
sh:property [sh:path :parent;
sh:qualifiedValueShape [sh:property [sh:path :gender ;
sh:hasValue :Female]] ;
sh:qualifiedMinCount 1; sh:qualifiedMaxCount 1

] ;
sh:property [sh:path :parent;

sh:minCount 2; sh:maxCount 2
]
.

Example. A person must have 2 parents, one male and another female

It needs to count all
possibilities

Recursion

ShEx handles recursion

Well founded semantics

Recursive shapes are undefined in SHACL*

Implementation dependent
Direct translation generates recursive shapes

:Person {
schema:name xsd:string ;
schema:knows @:Person*
}

:Person a sh:NodeShape ;
sh:property [sh:path schema:name ;
sh:datatype xsd:string
];
sh:property [sh:path schema:knows ;
sh:node :Person
]
.

*Semantics and Validation of Recursive SHACL
Julien Corman, Juan L. Reutter and Ognjen Savkovic, ISWC'18

Recursion (with target declarations)

ShEx handles recursion

Well founded semantics

Recursive shapes are undefined in SHACL
Implementation dependent
Can be simulated with target declarations

Example with target declatations
It needs discriminating arcs

:Person {
schema:name xsd:string ;
schema:knows @:Person*
}

:Person a sh:NodeShape, rdfs:Class ;
sh:property [sh:path schema:name ;
sh:datatype xsd:string
];
sh:property [sh:path schema:knows ;
sh:class :Person
]
. It requires all nodes to have rdf:type Person

Recursion (with property paths)

ShEx handles recursion

Well founded semantics

Recursive shapes are undefined in SHACL

Implementation dependent

Can be simulated property paths

:Person {
schema:name xsd:string ;
schema:knows @:Person*
}

:Person a sh:NodeShape ;
sh:property [
sh:path schema:name ; sh:datatype xsd:string];
sh:property [
sh:path [sh:zeroOrMorePath schema:knows];
sh:node :PersonAux
].

:PersonAux a sh:NodeShape ;
sh:property [
sh:path schema:name ; sh:datatype xsd:string
].

:Person a sh:NodeShape ;
sh:targetNode :alice ;
sh:closed true ;
sh:or (
[sh:path schema:name ; sh:datatype xsd:string]
[sh:path foaf:name ; sh:datatype xsd:string]
) .

Closed shapes
In ShEx, closed affects all properties In SHACL, closed only affects properties

declared at top-level

Properties declared inside other shapes
are ignored

:Person CLOSED {
schema:name xsd:string

| foaf:name xsd:string
}

:alice schema:name "Alice" . 

 = conforms to Shape

 = doesn't conform

Closed shapes and paths

Closed in ShEx acts on all properties In SHACL, closed ignores properties
mentioned inside paths

:Person a sh:NodeShape ;
sh:closed true ;
sh:property [
sh:path [
sh:alternativePath
(schema:name foaf:name)

] ;
sh:minCount 1; sh:maxCount 1;
sh:datatype xsd:string] ;

.

:Person CLOSED {
schema:name xsd:string |
foaf:name xsd:string

}

:alice schema:name "Alice". 
 = conforms to Shape

 = doesn't conform

Property pair constraints

This feature was posponed in ShEx 2.0

ShEx 2.1 is expected to add support for
value comparisons

SHACL supports equals, disjoint, lessThan, ...

:UserShape a sh:NodeShape ;
sh:property [
sh:path schema:givenName ;
sh:datatype xsd:string ;
sh:disjoint schema:lastName

] ;
sh:property [
sh:path foaf:firstName ;
sh:equals schema:givenName ;

] ;
sh:property [
sh:path schema:birthDate ;
sh:datatype xsd:date ;
sh:lessThan :loginDate

] .

:UserShape {
$<givenName> schema:givenName xsd:string ;
$<firstName> schema:firstName xsd:string ;
$<birthDate> schema:birthDate xsd:date ;
$<loginDate> :loginDate xsd:date ;
$<givenName> = $<firstName> ;
$<givenName> != $<lastName> ;
$<birthDate> < $<loginDate>
}

Uniqueness (defining unique Keys)

This feature was postponed in ShEx 2.0 No support for generic unique keys

sh:uniqueLang offers partial support for a
very common use case

Uniqueness can be done with SHACL-SPARQL:UserShape {
schema:givenName xsd:string ;
schema:lastName xsd:string ;
UNIQUE(schema:givenName, schema:lastName)

}

:Country a sh:NodeShape ;
sh:property [
sh:path schema:name ;
sh:uniqueLang true

] .

:Country {
schema:name . + ;
UNIQUE(LANGTAG(schema:name))
}

Modularity

ShEx has EXTERNAL and import keywords

EXTERNAL declares that a shape
definition should be retrieved
elsewhere

Import declaration

SHACL supports owl:imports

SHACL processors follow owl:imports
declarations

<> owl:imports <http://example.org/UserShapes>

:TeacherShape a sh:NodeShape;
sh:node :UserShape ;
sh:property [sh:path :teaches ;
sh:minCount 1;

] ;

:UserShape a sh:NodeShape ;
sh:property [sh:path schema:name ;
sh:datatype xsd:string
] .

http://example.org/UserShapes

Reusability - Extending shapes (1)

ShEx shapes can be extended by composition

SHACL shapes can also be extended by composition

:Product a sh:NodeShape, rdfs:Class ;
sh:property [sh:path schema:productId ;
sh:datatype xsd:string

];
sh:property [sh:path schema:price ;
sh:datatype xsd:decimal

].

:SoldProduct a sh:NodeShape, rdfs:Class ;
sh:and (
:Product
[sh:path schema:purchaseDate ;
sh:datatype xsd:date]

[sh:path schema:productId ;
sh:pattern "^[A-Z]"]

) .

Extending by composition

:Product {
schema:productId xsd:string
schema:price xsd:decimal

}

:SoldProduct @:Product AND {
schema:purchaseDate xsd:date ;
schema:productId /^[A-Z]/
}

Reusability - Extending shapes (2)

In ShEx, there is no special treatment for
rdfs:Class, rdfs:subClassOf, ...

By design, ShEx has no concept of Class
It is not possible to extend by declaring subClass relationships
No interaction with inference engines

SHACL shapes can also be extended by
leveraging subclasses

:Product a sh:NodeShape, rdfs:Class ;
...as before...

:SoldProduct a sh:NodeShape, rdfs:Class ;
rdfs:subClassOf :Product ;
sh:property [sh:path schema:productId ;

sh:pattern "^[A-Z]"
] ;
sh:property [sh:path schema:purchaseDate ;

sh:datatype xsd:date
] .

Extending by leveraging subclasses

SHACL subclasses may differ from RDFS/OWL subclases

Annotations

ShEx allows annotations but doesn't have
predefined annotations yet

Annotations can be declared by //

SHACL allows any kind of annotations and has
some non-validating built-in annotations

Built-in properties: sh:name, sh:description,
sh:defaultValue, sh:order, sh:group

:Person {
// rdfs:label "Name"
// rdfs:comment "Name of person"
schema:name xsd:string ;
}

:Person a sh:NodeShape ;
sh:property [
sh:path schema:name ;
sh:datatype xsd:string ;
sh:name "Name" ;
sh:description "Name of person"
rdfs:label "Name";
] .

Apart of the built-in annotations,
SHACL can also use any other annotation

Validation report

ShEx 2.0 defines a result shape map

It contains both positive and negative
node/shape associations

SHACL defines a validation report

Describes only the structure of errors

Some properties can be used to control
which information is shown
sh:message

sh:severity

Extension mechanism

ShEx uses semantic actions

Semantic actions allow any future
processor
They can be used also to transform RDF

SHACL has SHACL-SPARQL

SHACL-SPARQL allows new constraint
components defined in SPARQL
[See example in next slide]

It is possible to define constraint
components in other languages, e.g.
Javascript

Stems

ShEx can describe stems Stems are not built-in

:Employee {
:homePage [<http://company.com/> ~]

}

:StemConstraintComponent
a sh:ConstraintComponent ;
sh:parameter [sh:path :stem] ;
sh:validator [a sh:SPARQLAskValidator ;
sh:message "Value does not have stem {$stem}";
sh:ask """
ASK {
FILTER (!isBlank($value) &&
strstarts(str($value),str($stem)))

}"""
] . :Employee a sh:NodeShape ;

sh:targetClass :Employee ;
sh:property [
sh:path :homePage ;
:stem <http://company.com/>
] .

Stems are built into the language

Example:
The value of :homePage starts by <http://company.com/>

Can be defined using SHACL-SParql

Further info

Further reading:
• Validating RDF data, chapter 7. http://book.validatingrdf.com/bookHtml013.html

Other resources:

• SHACL WG wiki: https://www.w3.org/2014/data-shapes/wiki/SHACL-ShEx-Comparison

• Phd Thesis: Thomas Hartmann, Validation framework of RDF-based constraint
languages. 2016, https://publikationen.bibliothek.kit.edu/1000056458

http://book.validatingrdf.com/bookHtml013.html
https://www.w3.org/2014/data-shapes/wiki/SHACL-ShEx-Comparison
https://publikationen.bibliothek.kit.edu/1000056458

End

This presentation is part of the set:

https://figshare.com/articles/Validating_RDF_Data/7159802

https://figshare.com/articles/Validating_RDF_Data/7159802

