Computer modeling and simulation to reconstruct the basis of developmental toxicity

Thomas B. Knudsen, PhD

Developmental Systems Biologist
US EPA, National Center for Computational Toxicology
Chemical Safety for Sustainability Research Program
Virtual Tissue Models (VTM) project

knudsen.thomas@epa.gov ORCID 0000-0002-5036-596x

3rd Annual 3D Tissue Models Summit Boston MA, August 21-23, 2018

Problem statement

- Chemical exposure to a pregnant woman has the potential to affect her unborn child, leading to adverse birth outcomes and/or risks to early child development.
- Assessing developmental toxicity is commonly based on anatomical development of rat or rabbit fetuses exposed during pregnancy.
- Reauthorized TSCA (2016): EPA must accelerate development of scientifically valid test methods to prioritize large numbers of chemicals with less reliance on animal testing.
- 'Advancing actionable alternatives to vertebrate animal testing for chemical safety assessment' requires in vitro data and in silico models for complex processes.

https://www.epa.gov/research-grants/research-funding-opportunities

Funding Opportunity: EPA-G2018-STAR-C1, solicitation closing date September 25, 2018

Predictive Toxicology: the final frontier ...

Computer modeling and simulation: uniquely positioned to translate data from in vitro cell and tissue models into higher-order topologies predicted for complex systems.

Self-organized cellular relationships

Anatomical homeostasis in a self-regulating 'Virtual Embryo'

SOURCE: Andersen, Newman and Otter (2006) Am. Assoc. Artif. Intel.

Modeling somite development

- FGF8 wavefront restores sequentiality
- oscillatory clock improves regularity

Differential cell adhesion

- clock genes do not oscillate
- somites form simultaneously

SOURCE: Dias et al. (2014) Science

Control Network | Control Net

Limb-bud outgrowth

Modeling vascular development: the angiogenesis cycle

VEGF165 MMPs VEGF121 sFlit1 TIE2 CXCL10 CCL2

- Endothelial Stalk
- Endothelial Tip
- # Mural Cell
- Inflammatory Cell

ToxCast bioactivity profile for 5HPP-33 (synthetic thalidomide analog)

SOFTWARE: <u>www.CompuCell3D.org</u> BioComplexity Institute, Indiana U

Sexual dimorphism: genital tubercle morphogenesis

Androgen virulization: closure rates @4000 MCS ∫ androgen supply

Closure indices (simulated, n=10)

LEFT: androgen insufficiency RIGHT: delayed virulization

Palatal closure: driven by medial edge epithelium (MEE) seam breakdown

Hacking the control network → 'Cybermorphs'

Simulated dose-response

Tipping point predicted in topological context

SOURCE: R Spencer, EMVL

TGF-beta/EGF latch switch: controls MEE breakdown

INPUT: switch dynamics

tipping point predicted by computational dynamics (hysteresis switch)

Captan in ToxCast

OUTPUT: tipping point mapped to concentration response (4 μM)

Captan in ToxRefDB

NOAEL = 10 mg/kg/day LOAEL = 30 mg/kg/day

human HTTK model 2.39 mg/kg/day would achieve a steady state of 4 μM in fetal plasma

Messin' with the switch: two scenarios for bistable dynamics

Narrow hysteresis:

less resilient but reversible

Broad hysteresis:

more resilient but irrevers<u>ible</u>

Agent-Based Models (ABMs):

Multicellular simulation is 3R's compliant!

- reconstruct priority systems of embryonic development cell-by-cell and interaction-by-interaction (emergence)
- execute tissue simulations that advance through critical determinants of phenotype (*self-organizing phenotypes*)
- simulate *in vitro* data under various *in vivo* scenarios dose or stage response, critical pathways, non-chemical stressors, etc (*dynamics*)
- probabilistic rendering of where, when and how a defect might occur under different exposure scenarios (mechanistic interpretation)

Special Thanks

- Max Leung NCCT (now CalEPA)
- Kate Saili NCCT
- Todd Zurlinden NCCT
- Nancy Baker Leidos / NCCT
- Richard Spencer ARA / EMVL
- John Cowden NCCT (CSS)
- James Glazier Indiana U
- Sid Hunter NHEERL / ISTD
- Kyle Grode NHEERL (now Nikon)
- Andrew Schwab NHEERL/ISTD
- Barbara Abbott NHEERL/TAD
- o Imran Shah NCCT
- David Belair NHEERL (now CellGene)
- John Wikswo Vanderbilt U (VPROMPT)
- Shane Hutson Vanderbilt U (VPROMPT)
- Bill Murphy U Wisconsin (HMAPS)
- Bill Daly U Wisconsin (HMAPS)
- Eric Nguyen U Wisconsin (HMAPS)
- Guarav Kauschik U Wisconsin (HMAPS)
- Brian Johnson U Wisconsin
- Aldert Piersma RIVM, The Netherlands
- Nicole Kleinstreuer NCCT (now NTP)
- Nisha Sipes NCCT (now NTP)
- George Daston Procter & Gamble Co.

CSS

Virtual Tissue Models: Predicting How Chemicals Impact Human Development

http://www2.epa.gov/sites/production/files/2015-08/documents/virtual_tissue_models_fact_sheet_final.pdf