
Forecasting methods
We applied the forecasting method presented in our retrospective forecasting studies [1 ,
2 ], which combines an SEIR compartment model of infection with influenza notification
counts through the use of a bootstrap particle filter.

In brief, we randomly selected parameter values for the SEIR model (Eqs 1–6, param-
eters in Table S1) to generate a suite of candidate epidemics, and defined a relationship
between disease incidence in the SEIR model and the influenza notification counts (an
“observation model”). This allowed us to calculate the likelihood of “observing” the
notification counts from each of the model simulations. The particle filter (Eqs 7–11)
was used to update these likelihoods (“weights” wi) as data (yt) were reported, and to
discard extremely unlikely simulations in favour of more likely ones (“resampling”).

As in our previous studies, we assumed the relationship between disease incidence in
the SEIR model and the weekly notification counts was defined by a negative binomial
distribution with dispersion parameter k (Eqs 12–15), since the data are non-negative
integer counts and are over-dispersed when compared to a Poisson distribution. The
probability of being observed (i.e., of being reported as a notifiable case) was the product
of two probabilities: that of becoming infectious (pinf), and that of being identified (pid,
the likelihood of being symptomatic, presenting to a doctor, and having a specimen
collected). The probability of becoming infectious was defined as the fraction of the
model population that became infectious (i.e., transitioned from E to I), and subsumed
symptomatic and asymptomatic infections.

Values for pid and k were informed by retrospective forecasts using notifications data
from previous seasons [2 ], while the background notification rate pbg was estimated from
out-of-season notification levels (March to May) for 2016 and for 2017. The climatic
modulation signals F (t) were characterised by smoothed absolute humidity data for
each city in previous years, as previously described [3 ].

Forecasts were generated using the pypfilt 1 and epifx 2 packages for Python, which
were developed as part of this project and are both available under permissive free
software licenses.

1http://pypfilt.readthedocs.io/en/latest/
2http://epifx.readthedocs.io/en/latest/

http://pypfilt.readthedocs.io/en/latest/
http://epifx.readthedocs.io/en/latest/


Equations

dS

dt
= −βSI − θseed (1)

dE

dt
= βSI + θseed − σE (2)

dI

dt
= σE − γI (3)

dR

dt
= γI (4)

β = R0 · γ · [1 + α · F (t]) (5)

θseed =


1
N

if S(t) = 1 and θ(t) < pseed

0 otherwise
(6)

xt = [S(t), E(t), I(t), R(t), R0, α, σ, γ]T (7)
wi(0) = (Npx)−1 (8)

w′i(t | yt) = wi(t− 1) · P (yt | xi
t; k) (9)

wi(t | yt) = w′i(t) ·
Npx∑

j=1
w′j(t)

−1

(10)

Neff(t) =
Npx∑

j=1

[
w′j(t)

]2
−1

(11)

pinf(t,∆) = S(t−∆) + E(t−∆)− S(t)− E(t) (12)
pili(t,∆) = pinf(t,∆) · pid + [1− pinf(t,∆)] ·∆ · pbg (13)

P (yt | xt; k) = Γ(yt + k)
Γ(k) · yt!

· (pk)k · (1− pk)yt (14)

pk = k

k +N · pili
(15)



Tables

Meaning Value
β Force of infection Eq 5
R0 Basic reproduction number ∼ U(1, 2)
σ Incubation period (days −1) ∼ [U(0.5, 3)]−1

γ Infectious period (days −1) ∼ [U(0.5, 3)]−1

F(t) Climatic modulation signal —
α Scale of climatic modulation ∼ U(−0.2, 0.2)
pseed Daily probability of initial exposure 1

36
θ(t) Stochastic variable for seeding an initial exposure ∼ U(0, 1)
Npx Number of particles (simulations) 15, 000
Nmin Minimum number of effective particles 0.25 ·Npx

∆ Observation period (days) 7
k Dispersion parameter 100
pbg Background observation rate see Table S2
pid Observation probability see Table S2
N Population size see Table S2

Table S1: Parameter values for (i) the transmission model; (ii) the bootstrap particle
filter; and (iii) the observation model. Here, U(x, y) denotes the continuous
uniform distribution where x and y are the minimum and maximum values,
respectively.

Location Year pbg pid p∗id N

NSW: Sydney 2016 200 0.0065 — 4,921,000
NSW: Sydney 2017 125 0.0076 0.0228 4,921,000
Qld: Brisbane 2016 62 0.004 — 2,308,700
Qld: Brisbane 2017 46 0.003 0.012 2,308,700
Qld: Gold Coast 2016 23 0.0045 — 555,608
Qld: Gold Coast 2017 20 0.0045 0.018 555,608
Qld: Toowoomba 2016 5 0.00625 — 163,232
Qld: Toowoomba 2017 5 0.00625 0.025 163,232
Vic: Melbourne 2016 80 0.00275 — 4,108,541
Vic: Melbourne 2017 70 0.00275 0.011 4,108,541

Table S2: Location-specific forecast parameter values. The p∗id column lists the recali-
brated observation probabilities for 2017.
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