
blockmatching and associated tools, a very

short documentation

Grégoire Malandain

December 12, 2017

Contents

I User documentation 3

1 Command Line Interfaces 4
1.1 blockmatching . 4

1.1.1 Basic use . 4
1.1.2 Principle . 4
1.1.3 Options and parameters (general informations) 5
1.1.4 Initial transformations . 5
1.1.5 Result transformation . 8
1.1.6 Some useful parameters 8
1.1.7 Hints . 12

1.2 blockmatching versus baladin 13
1.3 applyTrsf . 14

1.3.1 Basic use . 14
1.3.2 Changing image geometry 15

1.4 applyTrsfToPoints . 15
1.5 buildPyramidImage . 15
1.6 composeTrsf . 15
1.7 copyTrsf . 17
1.8 createGrid . 17
1.9 createTrsf . 18
1.10 cropImage . 18
1.11 invTrsf . 19
1.12 pointmatching . 19

1.12.1 Vector field estimation . 20
1.13 printImage . 21
1.14 printTrsf . 21

2 Application Programming Interfaces 22
2.1 blockmatching API . 22

1

II Examples of use 24

3 Command Line Interfaces 25
3.1 pointmatching . 25

III Methodological notes 28

4 Frames 29
4.1 The digital world (Z) . 29
4.2 Image: R↔ Z . 30

5 Transformations 31
5.1 Definitions . 31

5.1.1 Linear transformations . 31
5.1.2 Vector fields . 31

5.2 Homogeneous coordinates . 31
5.2.1 Linear transformations . 32
5.2.2 Vector fields . 32

5.3 ’voxel’ versus ’real’ definitions . 33
5.3.1 Linear transformations . 33
5.3.2 Vector fields . 34

5.4 Transformations: linear → vector field 35
5.5 Transformation composition . 36

5.5.1 Linear ◦ linear . 36
5.5.2 Linear ◦ vector field in R 36
5.5.3 Linear ◦ vector field in Z 36
5.5.4 Vector field ◦ linear in R 37
5.5.5 Vector field ◦ linear in Z 37
5.5.6 Vector field ◦ vector field in R 37
5.5.7 Vector field ◦ vector field in Z 38

5.6 Field of view center alignment . 38
5.7 Transformation inversion . 38

5.7.1 Linear transformations . 39
5.7.2 Vector field in Z . 39
5.7.3 Vector field in R . 40

6 Image interpolation 42
6.1 Linear transformations . 42
6.2 Non-linear transformations defined by vector fields 43

2

Part I

User documentation

3

Chapter 1

Command Line Interfaces

1.1 blockmatching

1.1.1 Basic use

blockmatching registers a floating image Iflo onto a reference image Iref , and
yields two results: the transformation from the reference image frame towards
the floating image frame, Tres = TIflo←Iref , and the floating image resampled
in the same frame than the reference image, Ires = Iflo ◦ TIflo←Iref .

% blockmatching -flo Iflo -ref Iref -res Ires -res-trsf Tres ...

Tres = TIflo←Iref allows to resample Iflo, or any image defined in the same
frame than Iflo, into the same frame than Iref , which can also be done after-
wards with applyTrsf .

% applyTrsf Iflo Ires -trsf Tres -template Iref

For instance, this allows to visualize the deformation undergone by Iflo by
applying the transformation to a grid image (see createGrid).

1.1.2 Principle

The principle of blockmatching is to pair blocks from the floating image Iflo
with blocks of the reference image Iref , i.e. for each blocks in the floating image
Iflo, we are looking in a neighborhood of the reference image Iref for the best
similar block.

More precisely, blockmatching computes Tres = TIflo←Iref that allows to
resample Iflo in the frame of Tref . At iteration i, pairings are built between

Iflo ◦ T (i)
Iflo←Iref

(Iflo resampled by the estimation of TIflo←Iref at iteration i)

4

and Tref . With these pairings, an incremental transformation δT (i) = T
I
(i)
flo←Iref

is computed and used to update the transformation:

T
(i+1)
Iflo←Iref

= T
(i)
Iflo←Iref

◦ δT (i)

• Registration can be conducted within a hierarchical approach, by the
means of image pyramids: see section 1.1.6.1.

• Pairings are built by associating similar blocks (or small images) between

the resampled floating image Iflo◦T (i)
Iflo←Iref

and the reference image Iref :
section 1.1.6.2 introduces some option for the block definition while section
1.1.6.3 presents options for block pairings.

• Transformations are estimated by the means of (weighted) least (trimmed)
squares: see section 1.1.6.4 for generic options for transformation estima-
tion, and section 1.1.6.5 that presents dedicated options for vector field
estimation.

1.1.3 Options and parameters (general informations)

Running the program without any options gives the minimal syntax:

% blockmatching

Running it with either ’-h’ or ’--h’ gives the option list:

% blockmatching -h

Running it with either ’-help’ or ’--help’ gives some details about the op-
tions:

% blockmatching -help

[Pay attention] Default parameters depend on the transformation type (lin-
ear or non-linear). The ’-print-parameters’ allows printing the values
of the parameters, so running blockmatching with this option along with
the chosen type of transformation (with ’-trsf-type’) may be a good
idea.

% blockmatching ... -print-parameters

If a logfile name is given (with option ’-logfile’), parameter values will
be printed out in this file.

In addition, when changing parameters, comparing the parameter values
with the ’-print-parameters’ before and after the parameter changes
allows to check that the applied changes are the expected ones.

1.1.4 Initial transformations

Two transformations, Tleft and Tinit, can be passed as parameters. While
Tleft (left-handed transformation) will remain unchanged during the registration

5

procedure, Tinit is the initial value of the transformation to be computed (recall
this is an iterative calculation). More precisely (see also section 5.6), let T (0)

denote the initial value the transformation to be computed.

• if Tinit is given, T (0) = Tinit

• else

– if Tleft is given, T (0) = Id

– else (neither Tinit nor Tleft are given), T (0) is the default transfor-
mation (can be specified with the ’-default-transformation’ op-
tion). It is either the translation that superimposes the centers of the
fields of view (’-default-transformation fovcenter’) of the two
images Iref and Iflo or the identity (’-default-transformation
identity’).

The initial state of the registration procedure is the comparison of the ref-
erence image Iref with the transformed floating image Iflo (◦Tleft) ◦ T (0).

’-[left|initial]-transformation’ allows to initialize Tleft, while

’-initial-result-transformation’ allows to initialize Tinit

• the option ’-[initial|left]-[voxel-]transformation’ is used to spec-
ify a transformation Tleft that is applied to the floating image Iflo. There-
fore, it comes to register Iflo◦Tleft with Iref . Thus, the resulting transfor-
mation, Tres, allows to resample Iflo onto Iref by calculating Iflo ◦Tleft ◦
Tres.

In other words, the transformation Tres obtained with

% blockmatching -flo Iflo -ref Iref ... -initial-transformation Tleft
-res-trsf Tres
is comparable to the one, Tres,2 obtained with the following commands

% applyTrsf Iflo Iflo,2 -trsf Tleft
% blockmatching -flo Iflo,2 -ref Iref ... -res-trsf Tres,2

[Note:] When the ’-composition-with-[initial|left]’ is specified,
the result transformation that is written is Tleft ◦ Tres.

This may be useful in case of successive registrations, e.g. with different
transformation types. Indeed, one may want to first register the two
images Iflo and Iref with a rigid transformation and then with an affine
transformation.

1. A first solution is to compute the rigid transformation

% blockmatching -flo Iflo -ref Iref ... -res-trsf Trig -trsf-type rigid

-res Iflo,2

6

and then an affine transformation by comparing the previous result
Iflo,2 = Iflo ◦ Trig with Iref

% blockmatching -flo Iflo,2 -ref Iref ... -res-trsf Taff -trsf-type

affine -res Iflo,3

Iflo can be then be directly resampled onto Iref with the composed
transformation Tresampling = Trig ◦ Taff
% composeTrsf -res Tresampling -trsfs Trig Taff

2. A second solution consists in also first computing the rigid transfor-
mation
% blockmatching -flo Iflo -ref Iref ... -res-trsf Trig -trsf-type rigid

-res Iflo,2

but then Trig is used as parameter to ’-left-transformation’ with
Iflo as floating image

% blockmatching -flo Iflo -ref Iref ... -res-trsf Taff -trsf-type affine

-res Iflo,4 -left-transformation Trig

This second solution is to be prefered. Indeed, the resampled version
of Iflo by Trig can miss some data (data of Iflo that are not in the
field of view (FOV) of Iref after resampling) and cropping effects
may appear (parts of FOV of Iref that do not have correspondant
areas in Iflo by Trig).

Note that the command
% blockmatching -flo Iflo -ref Iref ... -res-trsf Tresampling -trsf-type

affine -res Iflo,4 -left-transformation Trig -composition-with-left

has Tresampling as output transformation.

• the option ’-initial-result-[voxel-]transformation’ is used to spec-
ify the initial value of the transformation to be computed. This can be
used to continue a registration done at the higher scale.

For instance, the result transformation Tres computed in one shot by

% blockmatching -flo Iflo -ref Iref ... -res-trsf Tres -py-ll 0 -py-hl 3

-flo-frac 0.75

is equal to the result transformation Tres,2 that is computed in two step
(the first step uses the scales 3 and 2, while the second one uses the scales
1 and 0).

% blockmatching -flo Iflo -ref Iref ... -res-trsf Tintermediary -py-ll 2

-py-hl 3 -flo-frac 0.75

% blockmatching -flo Iflo -ref Iref ... -init-res-trsf Tintermediary

-res-trsf Tres,2 -py-ll 0 -py-hl 1 -flo-frac 0.75

This may allow to qualitatively evaluate the intermediary result before
running the algorithm at the lower scales that are computationaly expen-
sive.

7

[Note:] Please note the ’-flo-frac 0.75’ (see option ’-floating-selection-fraction’,
page 10) that sets the fraction of blocks of the floating image to be
kept for the pairing search. Thanks to this option, it is constant
through the pyramid levels, and for both computation schemes (one-
step and two-steps).

Initial transformations can be obtained by pairing points with pointmatching

(see section 1.12).

1.1.5 Result transformation

’-result-[voxel-]transformation’ is used to specify the name of the output
transformation.

When no left-handed transformation is passed, it is the transformation Tres =
TIflo←Iref that allows to resample Iflo onto Iref .

When a left-handed transformation is passed with the option ’-left-[voxel-]transformation’,
the result transformation Tres is the one that allows to resample Iflo ◦Tleft onto
Iref , i.e. Tres = TIflo◦Tleft←Iref . This should be the default behavior that can
be enforced with the option ’-no-composition-with-left’. To resample di-
rectly Iflo onto Iref , it is required to have Tleft ◦ Tres at hand. While it is
straightforward to compute it thanks to composeTrsf , it is also possible to get
the composed transformation Tleft ◦Tres as the output transformation with the
option ’-composition-with-left’.

1.1.6 Some useful parameters

The use of some parameters is detailed here. For a complete list of parameters
(and short description of them), the user is advised to use the ’-help’ option.

1.1.6.1 Hierarchical registration

To speed up the computation and to handle large deformations, the transfor-
mation is computed hierarchically. For each image Iflo and Iref , pyramids of
images are built, i.e. the pyramid {Inflo, . . . , I0flo} for the Iflo image, where

I0flo = Iflo and where the dimensions of Ii+1
flo are the ones of Iiflo divided1 by 2.

Thus, the registration is done with pyramids {Ihflo, . . . , I lflo} and {Ihref , . . . , I lref},
with h and l respectively specified by the ’-pyramid-highest-level’ and
’-pyramid-lowest-level’ options. A first transformation is computed with
{Ihflo, Ihref}, that is used as initialization for the registration of {Ih−1flo , I

h−1
ref },

and so on and so forth until {I lflo, I lref}.
The lowest level of the pyramid (i.e. the image at its native sizes) is specified

by 0, i.e. ’-pyramid-lowest-level 0’.

1This is not strictly true, since the dimensions of I1flo will be chosen to be the 2k values

that are closest (and smaller) to I0flo dimensions when I0flo dimensions are not powers of 2.

8

• Specifying a high value of h allows to search for long-range pairings (since
a small displacement at a high scale image corresponds to a large displace-
ment at a lower scale), and to speed up the computation: for 3D images,
the data are reduced with a factor 8 between two consecutive scales (and
so is the number of blocks).

• On the other hand, when looking for small deformations, specifying a
large h is definitively not adequate, except if the search neighborhood size
is adapted to the scale.

The finest the resolution, the more heavy the computation. When it comes to
tune parameters, it may be useful to only perform the registration with the high-
est levels of the pyramid (ie to specify a high value to the ’-pyramid-lowest-level’
option, and to visually check the results before launching the computation with
the lowest levels of the pyramid.

Moreover, if the images to be registered are quite large, I/0 operations and
pyramid computation can be quite costly. It may then be considered to compute
subsampled images beforehand, either by choosing the subsampling parameters
with applyTrsf (see section 1.3) or by picking one of the pyramid images built
with buildPyramidImage (see section 1.5) that can be computed also before-
hand, and then perform the registration on subsampled images. It is detailed
in section 1.1.7.2.

1.1.6.2 Block definition/selection parameters

To build blocks, two parameters are important:

’-block-size’ allows to specify the size of the blocks. Small blocks
require a small computational effort to be processed (since the similarity
measure complexity depends on the number of points inside the block),
but are more likely to be paired to the ”wrong” block.

On the contrary, since the information distribution is more complex in a
large block, pairing large blocks is more likely to build the ”right” pairings

’-block-spacing’ specify the spacing between consecutive blocks. In-
creasing the spacing allows to speed up the computation (by decreasing
the number of blocks), at the price of sparser pairings.

Some of the built blocks can be discarded for the pairing search, either
because they may not yield pertinent pairings, or because they are not carrying
useful information.

A first selection of points or blocks can be done based on intensity values,
which may be useful to prevent blocks to be build in low intensity areas as the
background.

’-floating-low-threshold’ and ’-floating-high-threshold’ allow
to specify two intensity thresholds for the blocks built from the floating
image Iflo. Points with values lower or equal to the low threshold, or

9

higher or equal to the high threshold are discarded from the block for the
similarity measure computation.

’-floating-removed-fraction’ specifies the maximal fraction of points
that can be removed from a block. If too many points are removed (be-
cause of the two thresholds), the block is discarded and not considered for
further computation.

options ’-reference-low-threshold’,’-reference-high-threshold’,
and ’-reference-removed-fraction’ are similar options for the refer-
ence image Iref .

Previous options help to control the building of individual blocks. To fur-
ther control the total number of blocks (and hence decrease the computational
effort), it is also possible to select the most informative blocks from the block
list. According that the standard deviation is representative of the information
(blocks of uniform values have a small standard deviation), the percentage of
blocks of higher standard deviation can be specified, and only these blocks are
considered for the transformation computation.

’-floating-selection-fraction’ allows to specify the fraction of blocks
of the floating image to be kept for the pairing search. It can be more
finely tuned with the suffixes ’-ll’ et ’-lt’.

’-floating-selection-fraction-ht’ and ’-floating-selection-fraction-lt’

allow to specify this fraction for respectively the highest and the lowest
level of the pyramid (see section 1.1.6.1) while the fraction value for in-
termediary levels is linearly interpolated from these two fractions.

While it may not be required (even not advised) to remove blocks of
the floating image for the pairing search (and thus for the transformation
computation) at highest levels of the pyramid (where there are few blocks),
it may be convenient (even advised) to remove some of them ar the lowest
levels (where areas of constant image intensity are likely to occur). Thus,
default values for this fraction are set to 1.0 for the highest level and 0.5 for
the lowest level, independently of the level values. This has to be kept in
mind when registration is conducted in several steps through the pyramid
levels (see option ’-initial-result-transformation’ page 7).

1.1.6.3 Block search/pairing

To build pairings, each (selected) block of the floating image is compared to
blocks of the reference image, and is paired with its best correspondent. The
comparison is restricted to a neighbourhood.

’-search-neighborhood-half-size’ allows to specify the size of the
search neighbourhood (in the reference image for a given block from the
floating image) to build pairings. The larger the value, the larger the
searched displacement (and the larger the potential resulting deforma-
tion), and, of course, the larger the computational effort.

10

’-search-neighborhood-step’ allows to specify the step (the increment)
between blocks in the search neighbourhood. Typically, a step equal to 2
allows to decrease by a factor 4 in 2D (8 in 3D) the number of blocks to
tested in the search neighbourhood. However, the resulting pairings will
be less precise.

1.1.6.4 Transformation estimation

’-transformation-type’ allows to specify the type of computed transfor-
mation.It is desirable to compute transformation in a hierarchical manner,
from the ones with few degrees of freedom to the ones with more degrees
of freedom: e.g. ’rigid’, then ’affine’, then ’vectorfield’.

’-estimator-type’ allows to specify the calculation method to estimate
the incremental transformation δT from the pairings. Calculation is done
by the mean of (weighted) least (trimmed) square. In case of weighted
least (trimmed) squares, residuals to be minimized are weighted by the
block similarity. Least trimmed squares methods allow to discard outliers
from the transformation estimation.

Least trimmed squares estimation is an iterative method. At each iteration
(except the first one where least squares estimation is used), outliers are
discarded. Outliers are defined as the samples having the largest residuals
after the previous estimation.

’-lts-fraction’ defines the fraction of samples to be kept for estimation.
Obviously, it should be larger than ’0.5’.

’-lts-deviation’ allows to define the outliers with respect to residual
statistics (according they follows a normal law). Let m̂r and σ̂r be re-
spectively the mean and the standard deviation of the residuals, passing
the value c to ’-lts-deviation’ set the residual rejection threshold at
m̂r + cσ̂r.

’-lts-iterations’ set a maximum number of iterations for the least
trimmed squares estimation.

1.1.6.5 Vector field transformations

Non-linear transformations are (up to today) encoded through vector fields.
At each iteration i, an incremental transformation δT est computed from the
pairings, and then composed with the current transformation T i to yield the
updated transformation T i+1:

Building a vector field from pairing is done by interpolation with a Gaus-
sian kernel whose standard deviation is specified by the ’-fluid-sigma’

option. Indeed, this interpolation also regularizes the pairings, and it can
viewed as a fluid regularization since it is done on the incremental trans-
formation. It can be more finely tuned with the suffixes ’-ll’ et ’-lt’.

11

Note that the outliers detection (and removal) of trimmed estimations is
done by comparing the pairings to the regularized δT .

’-elastic-sigma’ is used afterwards (after composition with the incre-
mental transformation) to regularize the global transformation T i+1.

’-vector-propagation-distance’ and ’-vector-fading-distance’ are
presented in the section dedicated to pointmatching (section 1.12). They
are more useful in case of (very) sparse pairings.

1.1.7 Hints

1.1.7.1 How to tune parameters

• A priori, pairings can be better built (and outliers can be better avoided)
by specifying larger blocks with ’-block-size’

• Non-informative (i.e. almost of uniform value) blocks should be avoided
since they may yield poor pairings. Selection can be done either on point-
wise criteria (e.g. intensity based selection with ’-floating-low-threshold’

and ’-floating-high-threshold’) or block-wise criteria (e.g. ’-floa-

ting-selection-fraction’).

• When looking for small displacements/deformations, long distance pair-
ings may be discouraged by

– only considering low levels of the pyramid (’-pyramid-highest-level’),

– diminishing the size of the search neighbourhood (’-search-neigh-
borhood-half-size’)

• The regularization of non-linear deformations can be tuned with both
’-fluid-sigma’ and ’-elastic-sigma’. The larger the values, the less
local the deformations.

1.1.7.2 Hand-made hierarchical registration

If the images to be registered are quite large, I/0 operations and pyramid com-
putation can be quite costly. It may then be considered to compute subsam-
pled images beforehand, either by choosing the subsampling parameters with
applyTrsf (see section 1.3.2) or by picking one of the pyramid images (see
section 1.5) that can be computed also beforehand, and then perform the regis-
tration on subsampled images. In both case, it is mandatory to use ’-res-trsf’
to get the subsampling transformation.

Let us consider the images Iflo and Iref to be registered. Iflo can be sub-
sampled into Isflo with:

% applyTrsf Iflo Isflo . . . -res-trsf T s
flo -resize

and we get Isflo = Iflo ◦ T s
flo. The same stands for Iref and we get Isref =

Iref ◦ T s
ref . Registration can be done on subsampled images with

12

% blockmatching -flo Isflo -ref Isref -res Isres -res-trsf T s
res . . .

Isres = Isflo ◦ Tres is Isflo resampled in the geometry of Isref . We have then

Isres = Isflo ◦ Tres ⇒ Ires ◦ T s
ref = Iflo ◦ T s

flo ◦ Tres
⇒ Ires = Iflo ◦ T s

flo ◦ T s
res ◦ T s

ref
(−1)

A transformation T̃res that allows to transform Iflo in the frame of Iref can be

estimated by T̃res = T s
flo ◦ T s

res ◦ T s
ref

(−1), then with the commands

% invTrsf T s
ref T s

ref
(−1)

% composeTrsf -res T̃res -trsfs T s
flo T s

res T s
ref

(−1) -template Iref

T̃res can be calculated. Please notice the use of ’-template’ that ensures that
T̃res is defined on the Iref frame (mandatory for non-linear transformations).
Last,

% applyTrsf Iflo Ĩres -trsf T̃res -template Iref

yields Ĩres, ie Iflo resampled in Iref frame thanks to T̃res.

1.2 blockmatching versus baladin

A typical call to blockmatching is

% blockmatching -flo Iflo -ref Iref -res Iblock -res-trsf Tblock
-res-voxel-trsf T̂block ...

where Iblock, Tblock, and T̂block denote respectively the result image, i.e. the
floating image resampled in the frame of Iref , the transformation result in real
coordinates that allows to goes from Iref frame towards Iflo frame (and then
to resample Iflo in the frame of Iref), and the transformation result in voxel
coordinates.

A typical call to baladin is

% baladin -flo Iflo -ref Iref -res Ibalad -result-matrix T̂balad
-result-real-matrix Tbalad ...

where Ibalad, Tbalad, and T̂balad denote respectively the result image, i.e. the
floating image resampled in the frame of Iref , the transformation result in real
coordinates that allows to goes from Iflo frame towards Iref frame, and the
transformation result in voxel coordinates.

[Pay attention] The result transformation of baladin is then the inverse of
that of blockmatching . We have

Tblock ∼ T−1balad and T̂block ∼ T̂−1balad

Therefore Tblock◦Tbalad and T̂block◦T̂balad should be close to the identity, and
this can be verified by computing Ttest = Tblock◦Tbalad and T̂test = T̂block◦T̂balad:

13

% composeTrsf -res Ttest -trsfs Tblock Tbalad
% printTrsf Ttest
% composeTrsf -res T̂test -trsfs T̂block T̂balad
% printTrsf T̂test

The transformations issued from baladin can be used to resample the float-
ing image Iflo but require to be inverted beforehand. To compute the resampled
floating image Ibalad from the real transformation Tbalad, the commands are:

% invTrsf Tbalad T−1balad

% applyTrsf Iflo Ibalad -template Iref -trsf T−1balad

Ibalad can also be computed from from the voxel transformation T̂balad accord-
ingly

% invTrsf T̂balad T̂−1balad

% applyTrsf Iflo Ibalad -template Iref -voxel-trsf T̂−1balad

1.3 applyTrsf

1.3.1 Basic use

applyTrsf allows to resample an image according to a transformation T . One
has to recall that the transformation goes from the destination/result image
towards the image to be resampled. This is counter-intuitive, but can easily be
explained: to compute the value of the point M in the destination/result image,
one has to know where this point comes from in the image to be resampled.

So, to resample the image Iflo in the same frame than the image Iref with
a transformation that T goes from Iref towards Iflo, i.e.

T = TIflo←Iref

Ires = Iflo ◦ T

the command is

% applyTrsf Iflo Ires -trsf T -template Iref

The ’-trsf’ implies that the transformation is in real frames (i.e. the
coordinates of the points are in real units, for instance millimeters). We recall
that to a voxel point MZ = (i, j, k) is associated a real point MR = (x, y, z)
through a conversion matrix HI,R←Z (typically a diagonal matrix containing
the voxel sizes along each direction).

The ’-voxel-trsf’ allows to specify the transformation in voxel frames.
The transformation in the voxel frames, TIflo←Iref ,Z is obtained from the trans-
formation in the real frames, TIflo←Iref ,R, by multiplying it by the conversion

14

matrices:
TIflo←Iref ,Z = H−1Iflo,R←Z ◦ TIflo←Iref ,R ◦HIref ,R←Z

Conversely,

TIflo←Iref ,R = HIflo,R←Z ◦ TIflo←Iref ,Z ◦H
−1
Iref ,R←Z

1.3.2 Changing image geometry

applyTrsf may be used to change the image geometry, i.e. either changing the
number of pixel/voxel or the pixel/voxel size along a direction. Please note that
the field of view is considered as unchanged, so that the number of pixel/voxel
time the pixel/voxel size is a constant. This is done by the ’-resize’ option.

Let consider an image I of dimensions 1000 × 1000 with a pixel size of 1
along each direction. Then

% applyTrsf I J -dim 200 300 -res-trsf T -resize

creates an image J of dimensions 200× 300: pixel/voxel sizes are calculated so
as the image spans the same field of view and are respectively 5.00 and 3.33.
The transformation T is the transformation used to resample I, we have then
J = I ◦T . When expressed in the real frame, this transformation is a translation
(see section 4.2).

Image geometry can also be ”imported” from an other image. Let us con-
sider an image I and a template image R, thus

% applyTrsf -flo I -ref R -res J -default-transformation identity

will produce an image J with the same geometry than the image R. The voxel-
to-voxel transformation that allows to resample I in R is here computed by

HI,Z←R ◦ Id ◦HR,R←Z

(please refer to section 4.2 for the definition of the conversion matrices H). Such
an example (options are similar to blockmatching command line) emphasizes
that applyTrsf can be used to resample the floating image I at its starting
position when registering it with a reference image R.

1.4 applyTrsfToPoints

1.5 buildPyramidImage

1.6 composeTrsf

composeTrsf allows to compose a series of transformations. The transforma-
tions to be composed are introduced by the ’-trsfs’ option:

% composeTrsf ... -res Tres -trsfs T1 T2 ... TN

15

Transformations are composed in the order they are given. The line ’-trsfs
T1 T2 ... TN’ assumes that the transformation Ti goes from image Ii+1 to
image Ii (then allows to resample Ii in the same frame than Ii+1), i.e.

Ti = TIi←Ii+1

The resulting transformation will goes from IN+1 to I1 (then allows to resample
I1 in the same frame than IN+1). Thus

% composeTrsf ... -res Tres -trsfs T1 T2 ... TN

computes

Tres = T1 ◦ T2 ◦ ... ◦ TN
= TI1←I2 ◦ TI2←I3 ◦ ... ◦ TIN←IN+1

= TI1←IN+1

Example: the following series of resampling

% applyTrsf I0 I1 -trsf T0 ...

% applyTrsf I1 I2 -trsf T1 ...

% applyTrsf I2 I3 -trsf T2 ...

is equivalent to the transformation composition

% composeTrsf -res TI0←I3 -trsfs T0 T1 T2

that allows to get I3 directly from I0

% applyTrsf I0 I3 -trsf TI0←I3 ...

Example: when registering non-linearly two images, it is usual to perform
several registration with an increasing complexity of the sought transformations:

• either rigid → affine → vectorfield,
• or affine → vectorfield.

In the latter case, it comes to do

% blockmatching -flo Iflo -ref Iref -res I ′flo -res-trsf T0
-trsf-type affine ...

% blockmatching -flo I ′flo -ref Iref -res I ′′flo -res-trsf T1
-trsf-type vectorfield ...

Thus, to directly resample Iflo into the geometry of Iref , the commands are

% composeTrsf -res TIflo←Iref -trsfs T0 T1
% applyTrsf Iflo Ires -trsf TIflo←Iref ...

Ires being comparable to I ′′flo.

[Pay attention] Transformations are assumed to be in real units.

16

1.7 copyTrsf

copyTrsf allows to copy a transformation from one type to an other or/and to
convert it from real units to voxel units or conversely.

The command
% blockmatching -flo Iflo -ref Iref -res Ires -res-trsf Tres,R
-res-voxel-trsf Tres,Z ...

allows to register the image Iflo onto Iref and computes the transformation
Tres,R (in real units) that allows to resample Iflo in the same frame tham Iref ,
the transformation Tres,Z being Tres,R expressed in voxel units).

The conversion from real to voxel units can also be achieved by

% copyTrsf Tres,R Tres,Z -floating Iflo -template Iref -input-unit real

-output-unit voxel

while the conversion from voxel to real units can also be achieved by

% copyTrsf Tres,Z Tres,R -floating Iflo -template Iref -input-unit voxel

-output-unit real

copyTrsf can also be used to copy a linear transformation Tlinear, expressed
as a matrice, in a vector field, Tvector. It is mandatory to provide a template
image that defines the geometry of the vector field (which is nothing but a
vectorial image).

% copyTrsf Tlinear Tvector -template Iref -trsf-type vectorfield[2D,3D]

1.8 createGrid

createGrid creates an image containing a grid, which can be useful to ”visual-
ize” transformations or deformations.
Example: the following registration has been ran

% blockmatching -flo Iflo -ref Iref ... -res-trsf Tres -res Ires

One can create a grid image having the same geometry than Iflo (thanks to
’-template Iflo’)

% createGrid Igrid -template Iflo

and use Tres to resample this grid image into the geometry of Iref (thanks to
’-template Iref’)

% applyTrsf Igrid Iresampled grid -trsf Tres -template Iref

Iresampled grid exhibits the same transformation/deformation with respect to
Igrid than Ires with respect to Iflo.

17

1.9 createTrsf

1.10 cropImage

cropImage allows to crop an image. As a side result, it can also write the
transformation ”summarizing” the crop.
Example: the following command crops, from Iref , a subvolume Jref of dimen-
sions [100, 90, 80] from the point (25, 35, 45) [by convention, the default origin
is (0,0,0)].

% cropImage Iref Jref -origin 25 35 45 -dim 100 90 80 -res-trsf Cref

The transformation Cref defines the ”crop” operation as a transformation, i.e.
Jref = Iref ◦ Cref , this the same ”crop” can also be done by

% applyTrsf Iref Jref -trsf Cref -dim 100 90 80 -voxel ...

according one specifies the correct voxel sizes. In other words, we have

Jref = Iref ◦ Cref

This allows to compute a registration transformation from subvolumes, and
then to estimate the transformation for the whole volumes.

1. The commands
% cropImage Iref Jref ... -res-trsf Cref

% cropImage Iflo Jflo ... -res-trsf Cflo

generates the subvolumes Jref = Iref ◦Cref and Jflo = Iflo◦Cflo together
with the crop transformations Cref and Cflo.

2. The cropped images are co-registered, i.e. Jflo can be registered onto Jref
with

% blockmatching -flo Jflo -ref Jref -res Jres -res-trsf T ′res ...

3. The resampling of the cropped image Jflo into Jres with T ′res can cause
some zeroed areas appearing at the Jres image border. Since we have

Jres = Jflo ◦ T ′res
= Iflo ◦ Cflo ◦ T ′res

this effect can be reduced by resampling Iflo into Jres with the transfor-
mation Cflo ◦ T ′res

% composeTrsf -res T ′′res -trsfs Cflo T ′res
% applyTrsf Iflo Jres -trsf T ′′res -template Jref

18

4. Last, we also have

Jres = Jflo ◦ T ′res ∼ Jref

Iflo ◦ Cflo ◦ T ′res ∼ Iref ◦ Cref

Iflo ◦ Cflo ◦ T ′res ◦ C−1ref ∼ Iref

thus Tres = Cflo ◦ T ′res ◦ C−1ref allows to resample Iflo onto Iref , with
a transformation T ′res computed by the co-registration of the cropped
images Jflo and Jref .

% invTrsf Cref C−1ref

% composeTrsf -res Tres -trsfs Cflo T ′res C−1ref

% applyTrsf Iflo Ires -trsf Tres -template Iref

1.11 invTrsf

invTrsf allows to invert transformations. Attention should be paid for vector
field transformations, since they are defined as vectorial images. When regis-
tering images with blockmatching ,

% blockmatching -flo Iflo -ref Iref -res Ires -res-trsf Tres ...

the geometry (image dimensions and voxel sizes) of the vector field is that of the
reference image Iref (recall that Tres allows to resample Iflo into the geometry
of Iref and can be denoted by TIflo←Iref , see section 1.3).

Inverting Tres into T−1res will allows to resample Iref into the geometry of Iflo
and has then to be defined with Iflo geometry with ’-template-image’

% invTrsf Tres T−1res -template-image Iflo ...

Alternatively, the vector field geometry can be given with both ’-template-dimension’

and ’-template-voxel’.
Inverting the vector field transformations is done with an iterative procedure.

Some options allows to tune related parameters.

1.12 pointmatching

pointmatching allows to compute a transformation from a list of paired points.
It used the same computation methods, ie (weighted) least (trimmed) squares,
and the same transformation classes than blockmatching . Basically, it uses the
same routine than blockmatching (see section 1.1) to compute the incremental
transformation δT from the block pairings. It may be useful to compute an
initial transformation when the two images to be registered are too far apart.

Assume that the files Pflo and Pref contain respectively the coordinates of
points (i.e. each line is of the form ’x y z’, with one point per line, points being
in real units) of respectively the floating and the reference images, Iflo and Iref ,

19

the ith point (i.e. corresponding to the ith line of the file) of Pflo being paired
to the ith point of Pref . The command

% pointmatching -flo Pflo -ref Pref-res-trsf Tinit

allows to compute the transformation Tinit that can be either used to resample
Iflo onto Iref with

% applyTrsf Iflo Ires′ -trsf Tinit -template Iref

or that can be served as initialization for a subsequent registration

% blockmatching -flo Iflo -ref Iref -init-trsf Tinit -res Ires -res-trsf

Tres

Note that the naming conventions (floating and reference) are coherent with
those of blockmatching so that the obtained transformation can be used di-
rectly to resample the floating image (there is no need to compose the result
transformation Tres with the initial one Tint), i.e. by the command

% applyTrsf Iflo Ires -trsf T -template Iref

[Pay attention] When looking for transformations involving rigid transforma-
tions (i.e. rigid transformations or similitudes), it is mandatory to give
point coordinates in real units (unless the voxel is isotropic). If points are
known in voxel/pixel units, the voxel/pixel sizes may be specified either
with the ad-hoc option or with a template image. It is assumed that the
voxel/pixel sizes of both the reference Iref and the floating image Iflo are
the same.

Transformation estimation options are the same than the ones of blockmatching
(refer to section 1.1.6.4 for generic options for transformation estimation, and
section 1.1.6.5 for dedicated options for vector field estimation).

1.12.1 Vector field estimation

Vector field estimation within the context of blockmatching is done with a
dense field of pairings, while only a sparse field of pairings can be passed
(through the the files Pflo and Pref) to pointmatching . Basically, the (dense)
vector field estimation is done by interpolating the (sparse) pairings with a gaus-
sian kernel whose standard deviation id given by the ’-fluid-sigma’ option.

When pairings are far apart (with respect to the standard deviation value),
it (theoretically) comes to propagate the pairings except in medial areas where
pairings will be interpolated. There are two possible drawbacks.

1. Small standard deviation values comes to deal with very small weight val-
ues (far away from the pairings), which may cause numerical instabilities.

2. Pairings are also propagated to the image borders, which may be an un-
desirable side effect.

20

To address these drawback, the ’-vector-propagation-distance’ and
’-vector-fading-distance’ options may help to more finely build the desired
vector field, which is computed as follows:

1. ’-vector-propagation-distance %d’ propagates pairings at the dis-
tance given by the option (if not null), if possible (up to the extension
of the Voronöı diagram of the pairings).

2. ’-vector-fading-distance %d’ also propagates the pairings at the dis-
tance given by the option, but with a fading effect, ensuring than identity
(null vector pairing) are built far away (i.e. the sum of the two above
distances) from the pairings.

3. The pairing field if then regularized by gaussian filtering (standard devi-
ation given by the ’-fluid-sigma’ option).

Note that fading propagation and regularization may be required to get a regular
dense vector field from sparse pairings. Tuning these parameters depends on
both the sparsity of the pairings and the lengths of the displacement. It is then
advised to conduct several experiments, using images created by createGrid

for a convenient visualization of the produced vector fields (see section 3.1).

1.13 printImage

1.14 printTrsf

21

Chapter 2

Application Programming
Interfaces

Some Application Programming Interfaces (APIs) have been written that mim-
ics more or less the inline commands behavior: instead of specifying a number of
control parameters (that may change because of code evolution), the user only
have to give a pointer to a string (char *) containing the control parameters
that he/she would have given in a inline command.

API procedure are named after the inline command, i.e. for the inline com-
mand blockmatching , the API procedure is named API blockmatching.

[Pay attention] Typically, the inline command has only to deal with the I/O
(reading the input structures, e.g. images or transformation, and writing
the result structures after processing), while the processing takes place in
the API procedure.

However, because of already existing interfaces, and to keep a backward
compatibility, a more complex scheme may have to be built, see e.g. the
blockmatching API in section 2.1.

2.1 blockmatching API

22

Figure 2.1: Organization of the blockmatching related APIs.

23

Part II

Examples of use

24

Chapter 3

Command Line Interfaces

3.1 pointmatching

We exemplify here the use of pointmatching to generate a vector field with
two pairings {(35, 35, 0) → (60, 40, 0), (65, 60, 0) → (40, 65, 0)}, the first points
being in the floating image while the second ones are in the reference image (see
figure 3.1).

Test images can be generated with the following commands.

% createGrid -dim 100 100 mosaic.mha -type mosaic -spacing 10 10

% createGrid -dim 100 100 grid.mha -spacing 10 10 copy -norma

mosaic.mha mosaic.mha

(dp, df , σf) = (10, 10, 5)

Figure 3.1: The two pairings superimposed on a mosaic test image, and the
resampled image with the deformation computed with (dp, df , σf) = (10, 10, 5).

The options passed to pointmatching will be

-vector-propagation-distance dp -vector-fading-distance df -fluid-sigma

σf

where dp, df , and σf denotes respectively the propagation distance (of the

25

pairings), the fading distance (of the pairings, after the propagation), and the
standard deviation for the regularization (with gaussian interpolation).

Thus, non-linear transformations are computed with different settings for
(dp, df , σf)

% pointmatching -flo floating.pts -ref reference.pts -trsf-type

vectorfield -template mosaic.mha -vector-propagation-distance dp
-vector-fading-distance df -fluid-sigma σf -res-trsf vectorfield.trsf

and the floating image is resampled thanks to

% applyTrsf mosaic.mha mosaic-result.mha -trsf vectorfield.trsf

-interpolation nearest

(dp, df , σf) = (10, 0, 0) (dp, df , σf) = (0, 10, 0) (dp, df , σf) = (0, 0, 5)

Figure 3.2: Vector field deformation computation with only one non-null pa-
rameter.

On figure 3.2, it can be seen that deformations calculated with only one non-
null parameter among (dp, df , σf) lead to non-homotopic deformations. Note
that using only σf should act as pure propagation (except at Voronöı diagram
borders), but due to numerical reasons, the deformation becomes null when
gaussian weights are too small.

(dp, df , σf) = (10, 10, 0) (dp, df , σf) = (10, 0, 5) (dp, df , σf) = (0, 10, 5)

Figure 3.3: Vector field deformation computation with only one null parameter.

26

Using two non-null parameters (see figure 3.3) allows to get continuous de-
formations: e.g., (dp, df , σf) = (10, 0, 5) and (dp, df , σf) = (0, 10, 5). How-
ever, deformations may be large at the Voronöı diagram borders ((dp, df , σf) =
(10, 0, 5)) or resulting deformations may be quite far away the desired ones
((dp, df , σf) = (10, 0, 5)).

Using all the three parameters may yield a deformation close to the expected
one (see figure 3.1, left).

27

Part III

Methodological notes

28

Chapter 4

Frames

4.1 The digital world (Z)

Pixels or voxels are defined over Z2 or Z3 and have integer coordinates.
The voxel is a small rectangular cuboid that has a spatial extent. Our

conventions are that the voxel coordinates design the center of the voxel. Let
(vx, vy, vz) be the voxel size of image I, the spatial area of a voxel MR = (x, y, z)
in the real world R is the cuboid [x − vx/2, x + vx/2] × [y − vy/2, y + vy/2] ×
[z − vz/2, z + vz/2] (see figure 4.1).

Figure 4.1: Definition of the field of view with respect to the voxel one. The
origin of the real frame is at the center of the upper left pixel/voxel, here the
one of coordinate (0, 0, . . .) (C/C++ conventions).

Let us consider an image that has a voxel size vx and a number of voxels
of dx along the X direction. From the C/C++ conventions, the dx voxels have
coordinates in Z from 0 to dx − 1. The length of the field of view (FOV) is
obviously vxdx and spans the interval [vx ∗ 0 − vx/2, vx ∗ (dx − 1) + vx/2] =

29

[−vx/2, vxdx − vx/2] in R.
As a consequence, the center of the field of view in Z is (here in 3D)

CZ =

(dx−1)

2
(dy−1)

2
(dz−1)

2

Converting voxel coordinates into real ones can trivially be done by multi-

plying by the voxel sizes (see section 4.2). The voxel with zero’s coordinates
defines then the origin of the real frame.

4.2 Image: R↔ Z
An image I is defined over the discrete frame Z and a point M may be defined
either by its ’voxel’ coordinates (i, j, k), or by ’real’ coordinates (x, y, z) that
can be deduced from (i, j, k) thanks to the imaging acquisition information.

Conversion from the voxel frame, denoted Z, to the real one, denoted R, is
achieved through conversion matrices that are associated with every image I.

Without any other specification, there are diagonal matrices with the voxel
sizes (or their inverses) along the diagonal. Let (vx, vy, vz) be the voxel size of
image I, thus a point MR = (x, y, z) in the real frame R correspond to the voxel
point MZ = (i, j, k) in the voxel frame Z with

MR = HI,R←ZMZ with HI,R←Z =

vx . . .
. vy . .
. . vz .
. . . 1

Accordingly,

MZ = HI,Z←RMR with HI,Z←R =

1/vx . . .
. 1/vy . .
. . 1/vz .
. . . 1

Obviously, we have HI,Z←R = H−1I,R←Z. Note that we use homogeneous coordi-
nates (see section 5.2) to define these matrices.

[Pay attention] With such a default convention, the frame origins in both the
real and the voxel frames superimpose. However, the frame origin in the
real frame is not the upper left corner of the field of view (see figure 4.1).

Note that the matrix H can be any linear matrix. E.g. they can be re-
orientation matrices that allows to map the voxel array in standard radiology
conventions 1.

1Nifti and Inrimage image formats can embed such rigid transformations (the so-called
qform matrices in Nifti format). However, such information can be lost when converting to
other formats.

30

Chapter 5

Transformations

5.1 Definitions

5.1.1 Linear transformations

Classically, linear transformations (i.e. translations, rigid transformations, affine
transformations, etc.) are expressed as combinations of a 3×3 matrix (represent-
ing the vectorial part of the transformation) A and a 3D vector t (representing
the translation). Thus, the transformed point M ′ of M by the transformation
T = (A, t) is expressed by

M ′ = T (M) = AM + t

Note that linear transformations are mainly expressed in homogeneous coor-
dinates all along this document (see section 5.2.1), thus we will use the somewhat
abusive notation

M ′ = TM

where T is a 4× 4 matrix.

5.1.2 Vector fields

Vector fields are used to encode non-linear transformations. For a transforma-
tion T , the vector v(M) at point M is the displacement of the point M , meaning
that

M ′ = T (M) = M + v(M)

5.2 Homogeneous coordinates

4D homogeneous coordinates are implicitly used. However, there are some with
transformations expressed as vector fields.

31

5.2.1 Linear transformations

It is more convenient to express the linear transformations as 4 × 4 matrices
embedding the translation, so combinations of linear transformations can be
expressed by multiplications of matrices. Such a 4× 4 matrix T is designed by

T =

 A t

0 0 0 1

A point M has then implicitly 4 coordinates, the first three ones being the

spatial coordinates (x, y, z) and the last one being 1. We have thus

M ′ = T (M) =

x′

y′

z′

1

 = TM =

 A t

0 0 0 1

x
y
z
1

5.2.2 Vector fields

The transformation with a vector field is encoded by

M ′ = M + v(M)

When composing (at left) with a linear transformation, we have

M ′′ = AM ′ + t

= AM + Av(M) + t (5.1)

If homogeneous coordinates are used, it comes

M ′′ = TM ′ (= AM ′ + t)

= TM + Tv(M)

From equation 5.1, it comes that

Tv(M) = Av(M)

This is compatible with homogeneous coordinates if the fourth coordinate of v
is 0, indeed

Tv =

 A t

0 0 0 1

vx

vy

vz

0

 =

(
Av
0

)

32

5.3 ’voxel’ versus ’real’ definitions

Recall that an image I is defined over the discrete frame Z. Thus a point M
of I can be expressed either in the discrete frame in voxel coordinates (and will
be denoted MZ) or in real coordinates (and will be denoted MR). Conversion
matrices (see section 4.2) allow to go from the voxel frame to the real one, and
conversely.

A transformation Tflo←ref from an image Iref towards an image Iflo can be
then either defined in the voxel frame or in the real one. These transformations
are denoted respectively Tflo←ref,Z and Tflo←ref,R:

Tflo←ref,Z : Iref → Iflo
Mref,Z 7→Mflo,Z

and
Tflo←ref,R : Iref → Iflo

Mref,R 7→Mflo,R

We have then

Mflo,Z = Tflo←ref,Z(Mref,Z)

Mflo,R = Tflo←ref,R(Mref,R)

Transformations in ’voxel’ coordinates are required for image resampling,
while transformations in ’real’ coordinates may be necessary when dealing when
some transformation classes (e.g. rigid) or to compute some measurements (e.g.
mean displacements) in world units. Thus, conversion of these transformations
from the voxel world to the real one, using the image conversion matrices (see
section 4.2), has to be made explicit.

5.3.1 Linear transformations

Linear transformations can be expressed by 4x4 matrices in homogeneous coor-
dinates (see section 5.2.1), thus we have

Mflo,Z = Tflo←ref,ZMref,Z

Mflo,R = Tflo←ref,RMref,R

To convert the transformations from the voxel world to the real one (and
conversely), we apply the composition rules that are here simply matrices mul-
tiplication:

Tflo←ref,Z = Hflo,Z←R ◦Tflo←ref,R ◦Href,R←Z

and
Tflo←ref,R = Hflo,R←Z ◦Tflo←ref,Z ◦Href,Z←R

33

5.3.2 Vector fields

The difficulty comes from the fact that the non-linear transformation is encoded
by a displacement/vector field that is defined over a discrete lattice (i.e. an
image). We have then

Mflo,Z = Tflo←ref,Z(Mref,Z)

= Mref,Z + vflo←ref,Z(Mref,Z)

Mflo,R = Tflo←ref,R(Mref,R)

= Mref,R + vflo←ref,R(Mref,Z)

= Mref,R + vflo←ref,R(Href,Z←RMref,R)

where Href,Z←R denotes the conversion matrix from the real world R to the
discrete world Z for image Iref .

The vector field v indicates the displacement at every point. For a trans-
formation from image Iref to image Iflo, this vector is defined on the same
frame than Iref . Thus the vector in real coordinates vflo←ref,R at MR gives the
displacement of the point MR.

However, since vflo←ref is defined over a discrete lattice, the vector image
stores the vectors vR(MZ), thus vR at MR is vR(HZ←RMR).

5.3.2.1 Vector fields: R→ Z

The transformation Tflo←ref,R from image Iref to image Iflo is defined by the
vector field vflo←ref,R

Mflo,R = T(Mref,R) = Mref,R + vflo←ref,R(Href,Z←RMref,R)

= T(Mref,R) = Mref,R + vflo←ref,R(Mref,Z)

When expressing this formula in the discrete lattice, it comes

Hflo,R←ZMflo,Z = Href,R←ZMref,Z + vflo←ref,R(Mref,Z)

Mflo,Z = H−1flo,R←Z ◦Href,R←ZMref,Z + H−1flo,R←Z ◦ vflo←ref,R(Mref,Z)

The displacement in voxel coordinates vflo←ref,Z (associated to Tflo←ref,Z)
is then defined by

vflo←ref,Z(Mref,Z) = Mflo,Z −Mref,Z

=
(
H−1flo,R←Z ◦Href,R←Z − Id

)
Mref,Z + H−1flo,R←Z ◦ vflo←ref,R(Mref,Z)

= (Hflo,Z←R ◦Href,R←Z − Id)Mref,Z + Hflo,Z←R ◦ vflo←ref,R(Mref,Z)

(where Id denotes the identity matrix) and may be different from a simple
scaling of the vector field defined in real coordinates.

34

5.3.2.2 Vector fields: Z→ R

We have
Mflo,Z = Mref,Z + vflo←ref,Z(Mref,Z)

When expressing this formula in the real world, it comes

Hflo,Z←RMflo,R = Href,Z←RMref,R + vflo←ref,Z(Mref,Z)

Mflo,R = H−1flo,Z←R ◦Href,Z←RMref,R + H−1flo,Z←R ◦ vflo←ref,Z(Mref,Z)

The displacement in real coordinates vflo←ref,R is then defined by

vflo←ref,R(Mref,Z) = Mflo,R −Mref,R

=
(
H−1flo,Z←R ◦Href,Z←R − Id

)
Mref,R + H−1flo,Z←R ◦ vflo←ref,Z(Mref,Z)

=
(
H−1flo,Z←R ◦Href,Z←R − Id

)
Href,R←ZMref,Z + Hflo,R←Z ◦ vflo←ref,Z(Mref,Z)

= (Hflo,R←Z −Href,R←Z)Mref,Z + Hflo,R←Z ◦ vflo←ref,Z(Mref,Z)

5.4 Transformations: linear → vector field

Tflo←ref,R is a linear transformation in real space. We have then

Mflo,R = Tflo←ref,RMref,R

For vector fields, the transformation is expressed by

Mflo,R = Mref,R + vflo←ref,R(Mref,Z)

We have then

vflo←ref,R(Mref,Z) = Mflo,R −Mref,R

= Tflo←ref,RMref,R −Mref,R

= (Tflo←ref,R − Id) ◦Href,R←ZMref,Z

= (Hflo,R←Z ◦Tflo←ref,Z ◦Href,Z←R − Id) ◦Href,R←ZMref,Z

Remarks:

• Estimating the vector field in real/world units vflo←ref,R from a linear
transformation in real/world units Tflo←ref,Z is done with

(Tflo←ref,R − Id) ◦Href,R←ZMref,Z

Note that the voxel-to-world transformation for the reference image/frame
Href,R←Z is also embedded in the non-linear transformation vflo←ref,R.

35

• Estimating the vector field in real/world units vflo←ref,R from a linear
transformation in voxel units Tflo←ref,Z

vflo←ref,R(Mref,Z) =

(Hflo,R←Z ◦Tflo←ref,Z ◦Href,Z←R − Id) ◦Href,R←ZMref,Z

requires to have the voxel-to-world transformation for the floating im-
age/frame Hflo,R←Z at hand.

• When Tflo←ref,R is a pure translation tR, meaning thatMflo,R = IdMref,R+
tR, we have then

vflo←ref,R(Mref,Z) = tR

5.5 Transformation composition

We simply use the composition rules to transformation composition.

TK←I,R = TK←J,R ◦TJ←I,R

and
TK←I,Z = TK←J,Z ◦TJ←I,Z

5.5.1 Linear ◦ linear

The composition is quite trivial, since it only uses matrices multiplication.

5.5.2 Linear ◦ vector field in R

MJ,R = MI,R + vJ←I,R(HI,Z←RMI,R)

= HI,R←ZMI,Z + vJ←I,R(MI,Z)

MK,R = TK←J,RMJ,R

= TK←J,RHI,R←ZMI,Z + TK←J,RvJ←I,R(MI,Z)

vK←I,R(MI,Z) = MK,R −MI,R

= (TK←J,R − Id) ◦HI,R←ZMI,Z + TK←J,RvJ←I,R(MI,Z)

5.5.3 Linear ◦ vector field in Z

MJ,Z = MI,Z + vJ←I,Z(MI,Z)

MK,Z = TK←J,ZMJ,Z

= TK←J,ZMI,Z + TK←J,ZvJ←I,Z(MI,Z)

vK←I,Z(MI,Z) = MK,Z −MI,Z

= (TK←J,Z − Id)MI,Z + TK←J,ZvJ←I,Z(MI,Z)

36

5.5.4 Vector field ◦ linear in R

MJ,R = TJ←I,RMI,R

MK,R = MJ,R + vK←J,R(HJ,Z←RMJ,R)

= TJ←I,RMI,R + vK←J,R(HJ,Z←RTJ←I,RMI,R)

vK←I,R(MI,Z) = MK,R −MI,R

= (TJ←I,R − Id) ◦HI,R←ZMI,Z

+ vK←J,R(HJ,Z←RTJ←I,RHI,R←ZMI,Z)

5.5.5 Vector field ◦ linear in Z

MJ,Z = TJ←I,ZMI,Z

MK,Z = MJ,Z + vK←J,Z(MJ,Z)

= TJ←I,ZMI,Z + vK←J,Z(TJ←I,ZMI,Z)

vK←I,Z(MI,Z) = MK,Z −MI,Z

= (TJ←I,Z − Id)MI,Z + vK←J,Z(TJ←I,ZMI,Z)

5.5.6 Vector field ◦ vector field in R

MJ,R = MI,R + vJ←I,R(HI,Z←RMI,R)

= HI,R←ZMI,Z + vJ←I,R(MI,Z)

MK,R = MJ,R + vK←J,R(HJ,Z←RMJ,R)

= MI,R + vJ←I,R(MI,Z)

+ vK←J,R (HJ,Z←R (HI,R←ZMI,Z + vJ←I,R(MI,Z))

vK←I,R(MI,Z) = MK,R −MI,R

= vJ←I,R(MI,Z)

+ vK←J,R (HJ,Z←R (HI,R←ZMI,Z + vJ←I,R(MI,Z))

= vJ←I,R(MI,Z)

+ vK←J,R (HJ,Z←R ◦HI,R←ZMI,Z + HJ,Z←R ◦ vJ←I,R(MI,Z))

37

5.5.7 Vector field ◦ vector field in Z

MJ,Z = MI,Z + vJ←I,Z(MI,Z)

MK,Z = MJ,Z + vK←J,Z(MJ,Z)

= MI,Z + vJ←I,Z(MI,Z) + vK←J,Z (MI,Z + vJ←I,Z(MI,Z))

vK←I,Z(MI,Z) = MK,Z −MI,Z

= vJ←I,Z(MI,Z) + vK←J,Z (MI,Z + vJ←I,Z(MI,Z))

5.6 Field of view center alignment

For computational reasons, it may be useful to change the resolution of an
image, typically dividing the dimensions by a factor 2 (and then multiplying
the voxel sizes by 2). It allows to deal with smaller images while letting the
FOV sizes unchanged.

However, because of our conventions where the frame origin is not at the
upper left corner of the FOV but at the center of the upper left voxel, the trans-
formation that goes from one frame to the other is a translation (the translation
between the two origins).

Let us consider the general case where we want to build the translation that
superimposes the FOV centers of two images Iref and Iflo. Without loss of
generality, we only consider the X direction. Iref and Iflo have respectively
a number of voxels of dref,x and dflo,x. The FOV intervals (in voxels) are
respectively [−1/2, dref,x− 1/2] and [−1/2, dflo,x− 1/2] in Z. The FOV centers

along the X direction are then respectively
(dref,x−1)

2 and
(dfflo,x−1)

2 .
In 3D, the FOV centers of Iref and Iflo are respectively

Cref,Z =

(dr,x−1)

2
(dr,y−1)

2
(dr,z−1)

2

 and Cflo,Z =

(df,x−1)

2
(df,y−1)

2
(df,z−1)

2

The translation of Tflo←ref that aligns the FOV centers in the real space is

then
Cflo,R − Cref,R = Hflo,R←ZCflo,Z −Href,R←ZCref,Z

Moreover, such an alignment of the centers of field of view is also the initial
transformation (when no initial transformation is given) for the registration
throughblockmatching .

5.7 Transformation inversion

Knowing the transformation Tflo←ref , we aim at estimating Tref←flo,

38

5.7.1 Linear transformations

Since linear transformations are represented by 4 × 4 matrices, inverting them
is trivial and comes to invert the matrices. We have

Tref←flo,Z = T−1flo←ref,Z and Tref←flo,R = T−1flo←ref,R

5.7.2 Vector field in Z
5.7.2.1 Principle

From the direct transformation, we have

Mflo,Z = Mref,Z + vflo←ref,Z(Mref,Z)

and the inverse transformation allows to express Mref,Z from Mflo,Z

Mref,Z = Mflo,Z + vref←flo,Z(Mflo,Z)

= Mref,Z + vflo←ref,Z(Mref,Z) + vref←flo,Z(Mflo,Z)

Hence we have

0 = vref←flo,Z(Mflo,Z) + vflo←ref,Z(Mref,Z)

= vref←flo,Z(Mflo,Z) + vflo←ref,Z(Mflo,Z + vref←flo,Z(Mflo,Z))

For the sake of simplicity, let us denote

M = Mflo,Z

v = vflo←ref,Z

v−1 = vref←flo,Z

M ′ = Mref,Z = M + v−1(M) = Mflo,Z + vref←flo,Z(Mflo,Z)

Computing the inverse transformation, i.e. the vector field vref←flo,Z = v−1,
aims at minimizing the above expression. Computing the inverse vector field
can be achieved by minimizing

v−1(M) + v(M ′) = v−1(M) + v(M + v−1(M)) (5.2)

The Newton method aims at estimating iteratively a small variation δ of
v−1(M) that make null equation 5.2.

E = v−1(M) + δ + v(M ′ + δ)

recalling that v(M ′ + δ) ≈ v(M ′) + (v.∇t)(M ′)δ

= v−1(M) + δ + v(M ′) + (v.∇t)(M ′)δ

Please note that the derivative of v = vflo←ref,Z are computed with respect to
M = Mref,Z, i.e. in the voxel frame.

E = 0

⇔
(
Id + (v.∇t)(M ′)

)
δ = −

(
v−1(M) + v(M ′)

)
⇔ δ = −

(
Id + (v.∇t)(M ′)

)−1 (
v−1(M) + v(M ′)

)
39

5.7.2.2 Implementation

(Id + (v.∇t))
−1

are precomputed (Iref frame).
For every point M = Mflo,Z, we iterate:

1. computation of M ′ = Mref,Z = M + v−1(M)

2. computation of (Id + (v.∇t))
−1

(M ′) and v(M ′)

3. test on ‖v−1(M) + v(M ′)‖ (ending condition)

4. computation of δ = (Id + (v.∇t))
−1

(M ′)
(
v−1(M) + v(M ′)

)
5. update of v−1(M): v−1(M)← v−1(M)− αδ

5.7.2.3 Initialization

From M ′ = Mref,Z, we compute

Mflo,Z = Mref,Z + vflo←ref,Z(Mref,Z)

Please note that Mflo,Z has real coordinates, though it is a point defined in
the discrete frame. −v(M ′) is then distributed to the discrete points around
M = Mflo,Z.

5.7.3 Vector field in R
5.7.3.1 Principle

We have
Mflo,R = Mref,R + vflo←ref,R(Mref,Z)

and

Mref,R = Mflo,R + vref←flo,R(Mflo,Z)

= Mref,R + vflo←ref,R(Mref,Z) + vref←flo,R(Mflo,Z)

Hence we have

0 = vref←flo,R(Mflo,Z) + vflo←ref,R(Mref,Z)

= vref←flo,R(Mflo,Z) + vflo←ref,R(Href,Z←RMref,R)

= vref←flo,R(Mflo,Z)

+ vflo←ref,R(Href,Z←R(Mflo,R + vref←flo,R(Mflo,Z)))

= vref←flo,R(Mflo,Z)

+ vflo←ref,R(Href,Z←RHflo,R←ZMflo,Z + Href,Z←Rvref←flo,R(Mflo,Z))

For the sake of simplicity, let us denote

M = Mflo,Z

v = vflo←ref,R

v−1 = vref←flo,R

40

Hr = Href,Z←R

Hf = Hflo,R←Z

M ′ = Mref,Z = HrHfM + Hrv
−1(M)

= Href,Z←RHflo,R←ZMflo,Z + Href,Z←Rvref←flo,R(Mflo,Z)

Computing the inverse transformation, i.e. the vector field vref←flo,R = v−1,
aims at minimizing the above expression. Computing the inverse vector field
can be achieved by minimizing

v−1(M) + v(M ′) = v−1(M) + v(HrHfM + Hrv
−1(M)) (5.3)

E = v−1(M) + δ + v(HrHfM + Hr(v−1(M) + δ))

= v−1(M) + δ + v(M ′ + Hrδ)

recalling that v(M ′ + δ) ≈ v(M ′) + (v.∇t)(M ′)δ

= v−1(M) + δ + v(M ′) + (v.∇t)(M ′)Hrδ

Please note that the derivative of v = vflo←ref,R are computed with respect to
M = Mref,Z, i.e. in the voxel frame.

E = 0

⇔ δ = −
(
Id + (v.∇t)(M ′)Hr

)−1 (
v−1(M) + v(M ′)

)
5.7.3.2 Implementation

(Id + (v.∇t)Hr)
−1

are precomputed (Iref frame).
For every point M = Mflo,Z, we iterate:

1. computation of M ′ = Mref,Z = HrHfM + Hrv
−1(M)

2. computation of (Id + (v.∇t)Hr)
−1

(M ′) and v(M ′)

3. test on ‖v−1(M) + v(M ′)‖ (ending condition)

4. computation of δ = (Id + (v.∇t)Hr)
−1

(M ′)
(
v−1(M) + v(M ′)

)
5. update of v−1(M): v−1(M)← v−1(M)− αδ

5.7.3.3 Initialization

From M ′ = Mref,Z, we compute

Mflo,Z = Hflo,Z←RMflo,R

= Hflo,Z←R (Mref,R + vflo←ref,R(Mref,Z))

= Hflo,Z←R (Href,R←ZMref,Z + vflo←ref,R(Mref,Z))

Please note that Mflo,Z has real coordinates, though it is a point defined in
the discrete frame. −v(M ′) is then distributed to the discrete points around
M = Mflo,Z.

41

Chapter 6

Image interpolation

6.1 Linear transformations

Let us consider two images I0 and I1, and the transformation A0←1 that allows
to resample I0 into I1 frame, ie to compute I0 ◦A0←1.

To interpolate an image It at an intermediary position t ∈ [0 . . . 1] from both
I0 and I1, we have to resample both I0 and I1 in It frame and then combine
them.

We have to estimate both A0←t and A1←t, ie the transformations from It
towards I0 and I1, that enable to resample I0 and I1 in the frame of It by
I0 ◦A0←t and I1 ◦A1←t.

Indeed, let us consider I0. To resample this image in It frame, we pick every
point (voxel) Mt of It frame, transform it into I0 and compute (interpolate)
its value there: it then requires the transformation from It towards I0 that is
denoted by A0←t.

If we assume the ”linearity” of the motion from M0 to M1, an intermediary
point Mt can be defined

1. either from M0 and M1 with

Mt = (1− t)M0 + tM1 = (1− t)A0←1M1 + tM1

= (tId + (1− t)A0←1)M1

2. or from M1 with

Mt = M1 + (1− t)−−−−→M1M0 = M1 + (1− t)(M0 −M1)

= M1 + (1− t)(A0←1M1 −M1) = (tId + (1− t)A0←1)M1

thus
At←1 = tId + (1− t)A0←1

and A1←t is computed by inverting the previous matrix

A1←t = A−1t←1

42

The computation of A0←t can be done

1. either with a similar calculation to the one of A1←t, i.e. by first computing
At←0 with

At←0 = (1− t)Id + tA1←0

with A1←0 = A−10←1 and second inverting it, ie A0←t = A−1t←0,

2. or by observing that Mt is partway on the ”line” joining M0 and M1 and
at a ”distance” t from M1 and (1− t) from M0. We have then

Mt = (1− t)M0 + tM1 ⇔ M0 =
1

1− t
Mt −

t

1− t
M1

⇔ M0 =
1

1− t
Mt −

t

1− t
A1←tMt

⇔ M0 =

(
1

1− t
Id− t

1− t
A1←t

)
Mt

Thus

A0←t =
1

1− t
Id− t

1− t
A1←t

Finally, the image It can be interpolated from the resampled I0 and I1 into
It frame, ie I0 ◦A0←t and I1 ◦A1←t with

It = (1− t)× I0 ◦A0←t + t× I1 ◦A1←t

[Pay attention] When dealing with rigid transformations, the above interpo-
lation scheme does not result in a rigidly displaced object/image, since a
linear combination of matrices representing rigid displacements does not
represent a rigid displacement (in the general case). If one wants to get an
interpolation of the rigid displacement, one has to compute intermediary
displacements along the geodesic line (in the rigid transformation mani-
fold) from the identity to the final transformation R0←1. Typically, if one
rotates a sphere, it may be wanted that each point of the sphere follows a
circle arc instead of a straight line.

6.2 Non-linear transformations defined by vec-
tor fields

Let us consider two images I0 and I1, and the transformation T0←1 that al-
lows to resample I0 into I1 frame, ie to compute I0 ◦ T0←1. Please note that
T0←1 is a function defined from I1 towards I0. When dealing with non-linear
transformations, T0←1 may be represented by a vector field u0←1.{

T0←1 = Id+ u0←1

T0←1(M) = M + u0←1(M) ⇐⇒ M0 = M1 + u0←1(M1)

43

To interpolate an image It at an intermediary position t ∈ [0 . . . 1] from both
I0 and I1, we have to estimate both T0←t and T1←t, ie the transformations from
It towards I0 and I1, that enable to resample I0 and I1 in the frame of It by
I0 ◦ T0←t and I1 ◦ T1←t.

If we assume the ”linearity” of the deformation from M1 to M0, an interme-
diary point Mt can be defined

1. either from M0 and M1 with

Mt = (1− t)M0 + tM1 = (1− t) (M1 + u0←1(M1)) + tM1

= M1 + (1− t)u0←1(M1)

2. or from M1 with

Mt = M1 + (1− t)−−−−→M1M0 = M1 + (1− t)(M0 −M1)

= M1 + (1− t)u0←1(M1)

thus Tt←1 is defined by the vector field ut←1 = (1 − t)u0←1, and T1←t is then
simply obtained by inverting Tt←1

T1←t = T−1t←1

Let u1←t be the vector field representing T1←t, and we have

M1 = Mt + u1←t(Mt)

[Pay attention] u1←t is not −ut←1 = −(1−t)u0←1. The transformation Tt←1

allows to compute the point Mt ∈ It that is the transformed point M1 ∈ I1
(Mt and M1 have different coordinates as soon as Tt←1 is different from
the identity transformation) by

Mt = M1 + ut←1(M1) (6.1)

Using the opposite of ut←1 to define the inverse of Tt←1 comes to state
that

M1 = Mt − ut←1(Mt)

However, from Eq. (6.1) we have M1 = Mt − ut←1(M1). Thus, using the
opposite vector field to define the inverse transformation is valid iff

ut←1(Mt) = ut←1(M1)⇔ u0←1(Mt) = u0←1(M1)

This may be a good estimate in case of small (hence Mt will be close to
M1) and slowly varying deformations, but is obviously false in the general
case (see Fig. 6.1).

44

Figure 6.1: Mt is M1 transformed by Tt←1, i.e. Mt = M1 + ut←1(M1) where
ut←1(M1) is the blue vector. T−1t←1 at Mt should then by defined by the opposite
of this blue vector (so that Mt can project on M1). By building the inverse of
Tt←1 with the opposite of the ut←1 vector field, T−1t←1 at Mt would be defined
by −ut←1(Mt), i.e. the dashed red vector (and thus not equal to −ut←1(M1),
the opposite of the blue vector). This can be an acceptable approximation iff
ut←1(Mt) (the red vector) is sufficiently similar to ut←1(M1) (the blue vector).

Mt is partway on the ”line” joining M0 and M1 and at a ”distance” t from
M1 and (1− t) from M0. We have then

Mt = (1− t)M0 + tM1 ⇔ M0 =
1

1− t
Mt −

t

1− t
M1

⇔ M0 =
1

1− t
Mt −

t

1− t
T1←tMt

⇔ M0 =
1

1− t
Mt −

t

1− t
(Mt + u1←t(Mt))

⇔ M0 = Mt −
t

1− t
u1←t(Mt)

The transformation T0←t is then represented by the vector field
(
− t

1−tu1←t

)
.

Finally, the image It can be interpolated from the resampled I0 and I1 into
It frame, ie I0 ◦ T0←t and I1 ◦ T1←t with

It = (1− t)× I0 ◦ T0←t + t× I1 ◦ T1←t

45

Index

applyTrsf, 4, 6, 9, 12, 14–20, 26
applyTrsfToPoints, 15

baladin, 13, 14
blockmatching, 4–7, 13, 16–20, 22, 38
buildPyramidImage, 9, 15

composeTrsf, 7, 8, 14–16, 18
copyTrsf, 16, 17
createGrid, 4, 17, 21
createTrsf, 17
cropImage, 17, 18

invTrsf, 14, 18, 19

pointmatching, 8, 12, 19, 20, 25, 26
printImage, 21
printTrsf, 14, 21

46

