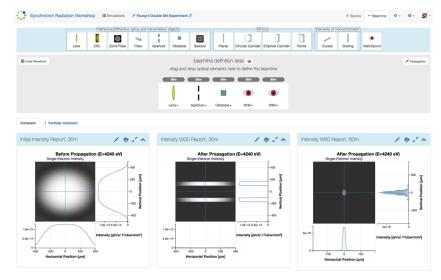
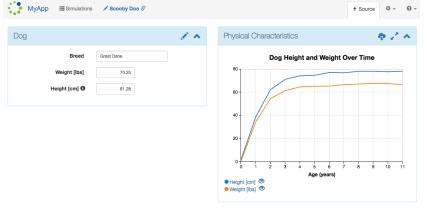


Robert Nagler, Paul Moeller, David Bruhwiler

Maksim Rakitin, Oleg Chubar


presented at Gateways 2018

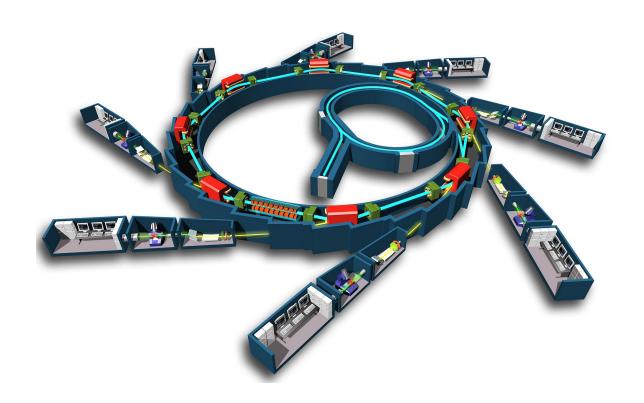

26 September 2018 rsl.link/sgci18

Overview

- Goals
- Technology
- Demo
- Hello, World!

Goals

- Increase access to computational physics codes
 - Zero-install for instant startup
 - Legacy file import for existing users
- Ease sharing among scientists
 - Platform to deliver models to our customers
 - Share links to simulations in publications
- Reproducible research
 - Full version and dependency management
- Support legacy computational codes
 - Most codes are decades old with well-known file formats
 - Authors are busy and prioritize research over coding
- Seamless reversion to command line for experts
 - Export to native format for HPC and local use


Technology

- Javascript GUI
 - AngularJS, D3.js, VTK.js, Bootstrap
 - Accessible on phone, desktop, and HPC (in situ)
- Python Server
 - Physicists use Python; Many codes python-wrapped
 - Flask, Numpy, OAuth, SQLAIchemy
- Schema-driven Rendering
 - Views and models are fully described
- JSON Database
 - Internal and external formats identical
 - Forward compatibility, forever!
- Containerized Execution
 - Docker: reliable builds, versioning, protected execution
 - Portability from laptop to cloud

Demo

- Synchrotron Radiation Workshop (SRW)
- Model x-ray beam lines

Conclusion

- Thank you
- Slides, poster, references: <u>rsl.link/sgci18</u>
- Questions?

