# K<sub>2</sub>Hg<sub>2</sub>Te<sub>3</sub> − Straightforward, Large-Scale, Mercury-Flux Synthesis of a Small Band Gap Photoconducting Material

Günther Thiele, <sup>a</sup> Philipp Bron, <sup>b</sup> Sina Lippert, <sup>c</sup> Frederik Nietschke, <sup>d</sup> Oliver Oeckler, <sup>d</sup> Martin Koch, <sup>c</sup> Bernhard Roling, <sup>b</sup> Stefanie Dehnen\*

- a) Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany.
- b) Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
- c) Fachbereich Physik und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany.
- d) Fakultät für Chemie und Mineralogie, Institut für Mineralogie, Kristallographie und Materialwissenschaften, Universität Leipzig, Scharnhorststraße 20, 04275 Leipzig, Germany.

# **Supporting Information**

#### Contents

- 1. Synthesis details
- 2. X-Ray diffraction and refinement details for K<sub>2</sub>Hg<sub>2</sub>Te<sub>3</sub>
- 3. Thermal analyses
- 4. Micro X-ray fluorescence analysis (μ-RFA)
- 5. Thermoelectric measurements
- 6. Photoelectric measurements
- 7. Powder X-ray diffraction (PXRD)
- 8. References

### 1. Synthesis details

WARNING: Mercury compounds are harmful if consumed. They need to be treated with due care and must not be swallowed or inhaled. Skin and eyes must be effectively protected throughout work.

 $K_2Hg_2Te_3$  (1) is obtained by solid-state reaction of thoroughly mixed HgTe and  $K_2Te$  in a 2:1 ratio in a sealed silica glass ampoule with an excess of elemental Hg (1 mL Hg per 20 mL ampoule volume). The ampoule is heated for 3 days to 350°C, the reaction product is pestled and subsequently filtrated to remove remaining excess of Hg. Through application of high vacuum (p <  $10^{-6}$  mbar) and heating to 100 °c for at least 3 days, all remaining surface bound Hg is evaporated. 1 is obtained in quantitative yields as black, highly air and moisture sensitive powder. The synthesis can be scaled from 5 to 150 g (only limited by the size of the ampoule).

# 2. X-Ray diffraction and refinement details for K<sub>2</sub>Hg<sub>2</sub>Te<sub>3</sub>

#### Experimental

Single crystals of  $Hg_2K_2Te_3$  (1) were obtained from the flux method described above. Large black single crystals of improved quality but with an overall smaller yield can be obtained from solvothermal treatment of 2 g of 1 in 2 mL en at 150 °C for two days. A suitable crystal was selected and mounted in Paratone® oil on a STOE IPDS II diffractometer. The crystal was kept at 100(2) K during data collection. Using  $Olex2^{[1]}$ , the structure was solved with the  $ShelXT^{[2]}$  structure solution program using intrinsic phasing and refined with the  $ShelXL^{[3]}$  refinement package using least squares minimization.

#### Crystal data

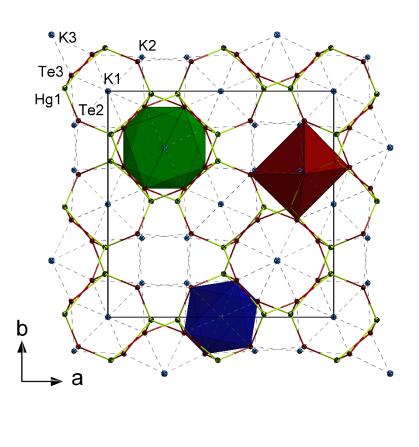
Hg<sub>2</sub>K<sub>2</sub>Te<sub>3</sub> (M= 862.18 g/mol): tetragonal, space group  $P4_2/ncm$  (no. 138), a = 16.0211(4) Å, c = 7.4882(3) Å, V = 1922.04(12) Å<sup>3</sup>, Z = 8, T = 100(2) K,  $\mu$ (MoK<sub>α</sub>) = 41.614 mm<sup>-1</sup>,  $D_{calc}$  = 5.959 g/cm<sup>3</sup>, 2483 reflections measured (5.086° ≤ 2Θ ≤ 58.364°), 1347 unique ( $R_{int}$  = 0.0493,  $R_{sigma}$  = 0.0522) which were used in all calculations. The final  $R_1$  was 0.0397 (I > 2 $\sigma$ (I) and  $wR_2$  was 0.0850 (all data). Full lists of measurement and refinement details are given in tables S1 to S4. Detailed views of the structure are provided in Figure S1.

Table S1: Crystal data and structure refinement for Compound 1.

| Identification code                             | 1                                                                 |
|-------------------------------------------------|-------------------------------------------------------------------|
| Empirical formula                               | $Hg_8K_8Te_{12}$                                                  |
| Formula weight                                  | 3448.72                                                           |
| Temperature/K                                   | 100(2)                                                            |
| Crystal system                                  | tetragonal                                                        |
| Space group                                     | P4 <sub>2</sub> /ncm                                              |
| a/Å                                             | 16.0211(4)                                                        |
| c/Å                                             | 7.4882(3)                                                         |
| Volume/ų                                        | 1922.04(12)                                                       |
| Z                                               | 2                                                                 |
| $\rho_{calc}g/cm^3$                             | 5.959                                                             |
| $\mu/\text{mm}^{-1}$                            | 41.614                                                            |
| F(000)                                          | 2832.0                                                            |
| Crystal size/mm³                                | $0.056 \times 0.035 \times 0.03$                                  |
| Radiation                                       | $MoK_{\alpha} (\lambda = 0.71073)$                                |
| $2\Theta$ range for data collection/ $^{\circ}$ | 5.086 to 58.364                                                   |
| Index ranges                                    | $-15 \le h \le 15, 0 \le k \le 21, 0 \le l \le 10$                |
| Reflections collected                           | 2483                                                              |
| Independent reflections                         | $1347 \left[ R_{\rm int} = 0.0493,  R_{\sigma} = 0.0522  \right]$ |
| Data/restraints/parameters                      | 1347/0/38                                                         |
| Goodness-of-fit on F <sup>2</sup>               | 1.010                                                             |
| Final R indexes $[I>=2\sigma(I)]$               | $R_1 = 0.0397$ , $wR_2 = 0.0815$                                  |
| Final R indexes [all data]                      | $R_1 = 0.0535$ , $wR_2 = 0.0850$                                  |
| Largest diff. peak/hole / e Å <sup>-3</sup>     | 2.80/-4.85                                                        |

Table S2: Fractional Atomic Coordinates ( $\times 10^4$ ) and Equivalent Isotropic Displacement Parameters ( $\mathring{A}^2 \times 10^3$ ) for Compound 1.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalized  $U_{IJ}$  tensor.

| Hg1 | 6909.0(2)  | 131.8(2)    | 4018.1(5)  | 9.18(13) |
|-----|------------|-------------|------------|----------|
| Te2 | 6312.1(4)  | -1312.1(4)  | 2430.4(12) | 6.87(18) |
| Te3 | 5700.4(4)  | 1628.1(4)   | 2594.5(8)  | 5.76(15) |
| K1  | 7500       | 2500        | 5000       | 10.3(8)  |
| K2  | 5000       | 0           | 0          | 8.4(8)   |
| K3  | 6504.8(12) | -1504.8(12) | 7442(4)    | 9.4(6)   |


Table S3: Anisotropic Displacement Parameters (Å $^2\times10^3$ ) for Compound 1. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | $U_{11}$  | $U_{22}$  | $U_{33}$ | $U_{23}$  | $U_{13}$ | $U_{12}$  |
|------|-----------|-----------|----------|-----------|----------|-----------|
| Hg1  | 11.79(19) | 10.97(19) | 4.78(18) | -1.40(14) | 2.10(14) | -2.30(13) |
| Te2  | 7.9(2)    | 7.9(2)    | 4.7(4)   | -0.7(2)   | 0.7(2)   | -0.1(3)   |
| Te3  | 8.0(3)    | 7.2(3)    | 2.1(3)   | -0.2(2)   | -0.3(2)  | 0.6(2)    |
| K1   | 12.2(11)  | 12.2(11)  | 6.4(19)  | 0         | 0        | -3.2(16)  |
| K2   | 9.9(11)   | 9.9(11)   | 5.5(18)  | 0.3(10)   | -0.3(10) | 1.0(14)   |
| K3   | 8.7(8)    | 8.7(8)    | 10.8(14) | -0.5(8)   | 0.5(8)   | 0.3(10)   |

Table S4: Bond Lengths for Compound 1.

| Atom | Atom            | Length/Å   | Atom | Atom            | Length/Å    |
|------|-----------------|------------|------|-----------------|-------------|
| Hg1  | Te2             | 2.7712(6)  | Te2  | $K3^3$          | 3.511(2)    |
| Hg1  | $Te3^1$         | 2.7894(7)  | Te3  | $K1^6$          | 3.7468(6)   |
| Hg1  | Te3             | 3.2608(7)  | Te3  | K1              | 3.6754(6)   |
| Hg1  | $Te3^2$         | 2.7325(7)  | Te3  | K2              | 3.4406(6)   |
| Hg1  | K1              | 3.9790(4)  | Te3  | $K3^7$          | 3.5386(19)  |
| Hg1  | $K3^3$          | 3.8373(11) | K1   | $K1^8$          | 3.74410(15) |
| Hg1  | K3              | 3.724(3)   | K1   | $K1^6$          | 3.74410(15) |
| Te2  | K2              | 3.4857(9)  | K2   | $K3^7$          | 3.911(3)    |
| Te2  | K3              | 3.778(3)   | K2   | $K3^4$          | 3.911(3)    |
| Te2  | $K3^4$          | 3.760(3)   | K3   | K3 <sup>9</sup> | 4.510(6)    |
| Te2  | K3 <sup>5</sup> | 3.511(2)   |      |                 |             |

 $^{1}1\text{-Y,-1/2} + X,1/2\text{-}Z; \,^{2}1/2 + Y,-1/2 + X,1-Z; \,^{3}1 + Y,1/2 - X,-1/2 + Z; \,^{4} + X,+Y,-1+Z; \,^{5}1/2 - Y,-1 + X,-1/2 + Z; \,^{6}1/2 + Y,1-X,1/2 - Z; \,^{7}1 - X,-Y,1-Z; \,^{8}1/2 + Y,1-X,3/2 - Z; \,^{9}3/2 - X,-1/2 - Y,+Z$ 



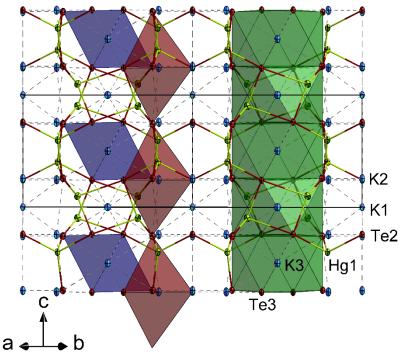



Figure S1: Detailed views of the crystal structure in 1.

## 3. Thermal analyses

Thermogravimetric analysis (TGA) were performed on a NETZSCH STA 409 CD device under Ar atmosphere with the following settings: temperature range 20-700°C, scanning rate of 10 K/min (Figure S2).

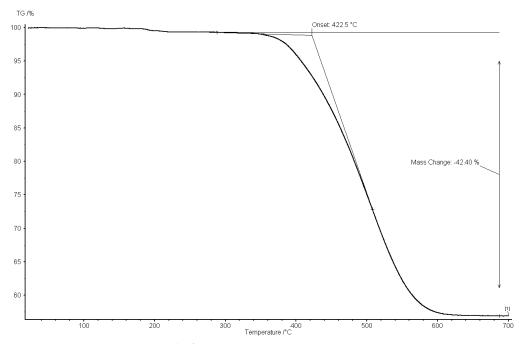



Figure S2: Thermogravimetric results for 1.

As can be gathered from the curves given in Figure S2,  $K_2Hg_2Te_3$  is thermally stable up to approx. 350 °C. Above that temperature, an overall mass loss of 42.40 % is observed that corresponds to the weight-% of mercury in 1 (46.53 %). In combination with the boiling point of elemental mercury (357°C) the following equation can be assumed for the thermal decomposition above 350 °C:

$$K_2Hg_2Te_3 \rightarrow 2 Hg + K_2Te_3$$

# 4. Micro X-ray fluorescence analysis (μ-RFA)

Elemental analyses were performed using an M4-Tornado of Bruker with a rhodium target X-ray tube on a single crystal of 1. Data acquisition was performed with 100 s accumulation time. The radiation emitted by the atoms was analyzed: Hg-L, Te-L, K-K (Figure S3, Table S5). K values are typically overestimated due to decomposition during the measurement setup leading to a migration of K<sup>+</sup> ions to the surface and the formation of potassium oxides-hydroxides. The integral difference to 100% is caused by detection of the sources' K and L lines (rhodium).

Table S5. Quantification results of  $\mu$ -RFA-measurement of  $K_2Hg_2Te_3$  (1). (ImpD.: 71,89 kcps)

| Element | OZ | Series  | Found | Calculated | Calculated |
|---------|----|---------|-------|------------|------------|
|         |    |         | [w.%] | [w.%]      | [At.%]     |
| K       | 19 | K-Serie | 9,07  | 9,07       | 28,33      |
| Te      | 52 | K-Serie | 39,53 | 46,85      | 44,84      |
| Hg      | 80 | L-Serie | 37,19 | 44,08      | 26,83      |
| Sum     |    |         | 85,80 | 100,00     | 100,00     |

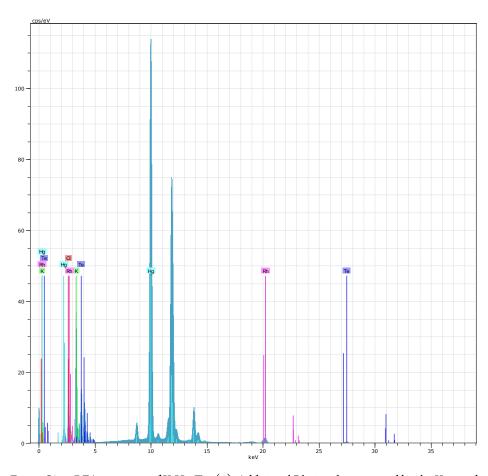



Figure S3: μ-RFA spectrum of K<sub>2</sub>Hg<sub>2</sub>Te<sub>3</sub> (1). Additional Rh signals are caused by the X-ray tube.

#### 5. Thermoelectric measurements

Thermal diffusivity measurements were performed with a Linseis LFA1000 under static He atmosphere with an InSb detector and through-plane sample irradiation with 2 ms pulses of a Nd-YAG laser (532 nm). The data were analyzed using Dusza's model for simultaneous heat loss and finite pulse corrections. [4] The thermal conductivity  $\kappa$  was calculated as a product of the thermal diffusivity D, the density  $\delta$  (4.12 g/cm³; calculated from the experimentally determined mass and volume of the pellet) and the Dulong-Petit heat capacity  $C_p = 0.2025 \, \text{J/gK}$ . Values were averaged from 5 measurement points and linearly interpolated. Measurements of the electrical conductivity and the Seebeck coefficient were done on a Linseis LSR-3 under static He atmosphere with NiCr/Ni and Ni contacts). The samples were pressed to discs of 6 mm diameter and about 1 mm thickness, sintered at 300 °C and polished in a glove box. During mounting the samples in the devices, a  $N_2$  dome was used to minimize exposure to moisture.

For comparison, the thermal conductivity of  $K_2Hg_2Se_3$  is depicted in Figure S4.

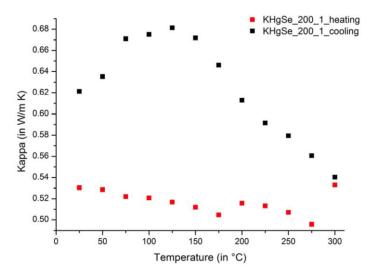



Figure S4: Thermal conductivity of K<sub>2</sub>Hg<sub>2</sub>Se<sub>3</sub>.

#### 6. Photoelectric measurements

The sample is electrically contacted by two tungsten needles with a tip diameter of 5  $\mu$ m and a distance between the needles of 100 $\mu$ m. The sample was illuminated by light from a tungsten lamp after filtering by a monochromator (SPEX 1680). The focused excitation spot covered an area of hundreds of  $\mu$ m. An external voltage of +/- 10 V is applied to the sample.

The setup is placed in a nitrogen filled box. The detection limit of the setup is 100 fA. The photocurrent was recorded with a maximum wavelength resolution of 3 nm. The current was detected with a lock-in amplifier (Stanford research SR 850) after amplification with a current amplifier (Femto DLCPA-100).

The current-voltage characteristics were measured with the same setup. For detection a Keithley 617 Programmable Electrometer was used. The maximum applied voltage was +/- 10 V with voltage steps of 0.5 V. I-V-curves were recorded in dark environment and under white light exposure.

Absorption measurements were measured using a tungsten lamp. The white light transmitted through the sample was detected with an optical spectrum analyzer (ANDO AQ-6315A). The samples were measured as suspensions in Nujol oil between two quartz plates.

# 7. Powder X-ray diffraction (PXRD)

The phase purity of  $K_2Hg_2Te_3$  was determined by X-ray powder diffraction, measured on a Panalytical X'Pert Pro PW3040/60. Co- $K_\alpha$  radiation ( $\lambda$  = 1.78901 Å) was used. As the high absorption coefficient of the compound (see Table S1) hampered a measurement in transmission mode using capillaries, the measurements were carried out in reflection mode, using Scotch© tape (Scotch Magic<sup>TM</sup> dull-transparent) for protection of the sample from reaction with air. The measurement time was restricted to 2 h as 1 reacts with Si sample holders over time. Furthermore, the use of Scotch tape typically affects the reflection intensities to a large extend, and covers the low 2 $\theta$  region, such that we show the raw diagram along with the simulation (Figure S5) and the manually baseline-corrected diagram (Figure S6). An additional reflection at 32° arises from the oxidation during the measurement proven by repetitive measurements over time and an increase in the respective intensity.

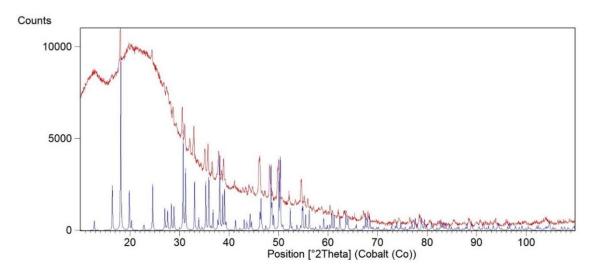



Figure S5: Raw PXRD diagram (red) and simulation (blue) of compound 1.

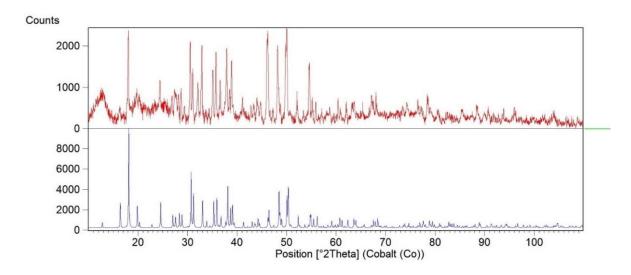



Figure S6: PXRD results with manual baseline correction (red) and simulation (black).

# 8. References

- 1. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341.
- 2. Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3-8.
- 3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.
- 4. Dusza, L. Combined solution of the simultaneous heat loss and finite pulse corrections with the laser flash method. *High Temp. High Press.* **1995/1996,** *27/28*, 467-473.