SUPPORT INFORMATION SECTION

Bromine-terminated azobenzene liquid crystals.

Sergio A. A. Sanchez, Wallison C. Costa, Ivan H. Bechtold, Renato A. P. Halfen, Aloir A. Merlo and Leandra F. Campo*
Instituto de Química, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
Corresponding author email: leandra.campo@ufrgs.br

Instrumentation

Differential scanning calorimetry (DSC) analyses were obtained on a DSC 2910 TA instruments. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained with CDCl_{3} as a solvent on a Varian 300 MHz spectrometer. Chemical shifts are given in parts per million (δ) and are relative to the signal of tetramethylsilane ($\delta=0 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$) as internal reference for solutions in CDCl_{3}. FT-IR/ATR spectra were measured using a Varian 640-IR spectrometer between 4000 and $500 \mathrm{~cm}^{-1}$ and with a resolution of $4 \mathrm{~cm}^{-1}$. All spectra were performed with 16 scans and are given in wavenumbers $\left(\mathrm{cm}^{-1}\right) . \mathrm{CHN}$ analyses were performed on a Perkin-Elmer 2400 CHN Elemental Analyzer. The melting points, phase transition temperatures and mesomorphic textures were taken using a polarizing optical microscrope (POM) Olympus BX43, equipped with a Mettler Toledo FP82HT Hot Stage with an FP90 Central Processor at a heating/cooling rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ (magnification: 10x).X-ray diffraction (XRD) experiments were performed with the X'Pert-PRO (PANalytical) diffractometer system using the linear monochromatic $\mathrm{Cu} \mathrm{K} \alpha_{1}$ beam ($\lambda=$ $1.5405 \AA$), with an applied power of 1.2 kVA . The scans were performed in continuous mode from 2° to 30° (20 angle) and diffracted radiation collected with the X 'Celerator detector. The powder was placed on a glass plate and the patterns collected at the mesophase temperature, by cooling from the isotropic. The experimental procedure is described following the Scheme I.
 1

2

3
3. $\mathrm{NaNO}_{2}, \mathrm{HCl}$, then, PhOH

$$
5 a n=25 f n=
$$

$5 \mathrm{~b} n=35 \mathrm{~g} n=$
5k n = 2
5l $\mathrm{n}=4$
$5 m n=6$
$5 \mathrm{~d} n=55 \mathrm{i} \mathrm{n}=10$
5en=65jn-hexyl

Synthesis of 1-(decyloxy)-4-nitrobenzene (2)
In a round bottom flask with a reflux system dissolve 4-nitrophenol (1) (15 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(33 \mathrm{mmol})$ in acetone. Heat the solution for 30 min . Add a small amount of KI and the 1 -bromodecane is slowly added. The reaction mixture is kept in reflux and monitored by TLC. After the 20 h , the mixture is cooled and filtered, washing with heated acetone; the solvent is removed via rotary evaporator and the resultant material is dissolved in DCM and washed with $\mathrm{H}_{2} \mathrm{O}$. The resulting yellow liquid is purified via column chromatography (ether/petroleum ether 5:95) yielded a white solid. Yield: 53\%. Melting point $=37^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.18(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}) ; 6.93(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=9.4 \mathrm{~Hz}) ; 4.04(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}) ; 1.81(\mathrm{~m}, 2 \mathrm{H}) ; 1.53-1,21(\mathrm{~m}, 14 \mathrm{H}) ; 0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$ $=6.4 \mathrm{~Hz}$).

Synthesis of 4-(decyloxy)aniline (3)
In a inox reactor with 50 ml of dry methanol, add $4,5 \mathrm{mmol}$ of nitrocompound 1 -(decyloxy)-4-nitrobenzene (2) and 10% in weight of Pd / C. Close the reactor and load with 9 bar of H_{2}. Keep the system under agitation until the total use of H_{2} (from 24 to $48 h$). After the reaction completion, the reaction mixture is filtered with celite. The produced reddish liquid is distillated in a rotary evaporator, resulting in quantitative reddish brown solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.77(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}$); $6.66(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=9.0 \mathrm{~Hz}) ; 3.90(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}) ; 2.98\left(\mathrm{~s}\right.$ broad, $\left.\mathrm{NH}_{2}\right) ; 1.76(\mathrm{~m}, 2 \mathrm{H}) ; 1.59-1.17(\mathrm{~m}$, $14 \mathrm{H}) ; 0.91(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz})$

General procedure to the synthesis of (E)-4-((4-(alkoxy)phenyl)diazenyl)phenols (4a-c). $3,0 \mathrm{mmol}$ of 4 -alkoxyaniline (3) was dissolved in 4 mL of HCl 6 M at $0^{\circ} \mathrm{C}$. Maintaining the temperature at $0-5^{\circ} \mathrm{C}$, add a cold $\mathrm{NaNO}_{2}(4.8 \mathrm{mmol})$ on water $(1.5 \mathrm{~mL})$ under agitation to the solution. The diazonium salt formation can be control by starch iodide paper. After the formation of diazonium salt, add, carefully, a cold phenol solution (3.6 mmol) into 2.5 mL NaOH 7 M maintaining the temperature between $0-5^{\circ} \mathrm{C}$. Let stir for around 30 min (at least) and acidify the resulting mixture with concentrated HCl ; the resulting precipitate is filtered, washed with water and dry naturally. After the solid is dried, it's washed with petroleum ether. Produces a reddish brown solid.
(E)-4-(4-(methoxyphenyldiazenyl)phenol (4a). Yield: 92%. Melting point $=137-140{ }^{\circ} \mathrm{C}$. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 3414, 2846, 1599, 1490, 1435, 1460, 1240. ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): 7.90-7.85 (m, 4H), 7.02-6.97 (m, 4H), $3.88(\mathrm{~s}, 3 \mathrm{H})$.
(E)-4-(4-(heptyloxyphenyldiazenyl)phenol (4b). Yield: 54%. Melting point $=92-94{ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v_{\text {max }}, \mathrm{cm}^{-1}$): $3465,2921,1600,1584,1473,1249 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.79-7.71 (m, 4H), 7.10-6.85 (m, 4H), 3.93-3.89 (t, 2H, 7.5 Hz), 1.74-1.69 (m, 2H), 1.40$1.23(\mathrm{~m}, 8 \mathrm{H}) .0 .83-0.79(\mathrm{t}, 3 \mathrm{H}, \mathrm{j}+7.3 \mathrm{~Hz})$.
(E)-4-(4-(decyloxyphenyldiazenyl)phenol (4c). Yield: 70\%. Melting point $=98-104{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.88(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}$); 7.84 (d, $2 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}$); 7.01 (d, 2H, J = 8.8 Hz); $6.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}) ; 4.05(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}) ; 1.84(\mathrm{~m}, 2 \mathrm{H}) ; 1.59$ $-1.20(\mathrm{~m}, 14 \mathrm{H}) ; 0.92(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz})$.

General procedure to the synthesis of (E)-1-(4-(bromoalkoxy)phenyl)-2-(4(alkoxyphenyl)diazenes (5a-i).
(E)-4-(4-(alkoxyphenyl)diazenyl)phenol (4) (0.5 mmol) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.6 mmol) were dissolved into acetone in a round bottom flask with reflux system under stirred for 15 minutes. α, ω-dibromoalkane (3 mmol) was added drop wise in the reaction mixture and the system was refluxed from 15 to 48 h (monitored by TLC). After the reaction is done, the still hot solution is filtered and washed with hot acetone. The filtrate was collected and evaporated in rotary evaporator; added cold petroleum ether to the concentrated extracts and the resulting precipitate was filtered and washed three times with this same solvent. Recrystallization in ethanol with a few drops of water.
(E)-1-(4-(2-bromoethyloxyphenyl)-2-(4-(decyloxyphenyl)diazene (5a): Yield: 61\%. Melting point $=96.0^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{v}_{\max }, \mathrm{cm}^{-1}\right): 2985,2935,2854,1600,1265,748,704$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.92 (m, 4 H); 7.03 (m, 4 H); 4.39 (t, $2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}$); 4.06 $(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}) ; 3.70(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}) ; 1.84(\mathrm{~m}, 2 \mathrm{H}) ; 1.57-1.22(\mathrm{~m}, 14 \mathrm{H}) ; 0.92(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.3; 159.8; 147.4; 146.7; 124.4; 124.3; 114.8; 114.6; 68.3; 67.9; 31.8; 29.5; 29.4; 29.3; 29.2; 28.8; 26.0; 22.6; 14.1.
(E)-1-(4-(3-bromopropyloxyphenyl)-2-(4-(decyloxyphenyl)diazene (5b): Yield: 54\%.Cr 83.5 SmA 101.6 I. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 3053, 2985, 2927, 1597, 1500, 1265, 748, 704. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.90 (m, 4H); 7.03 (m, 4 H); 4.21 (t, $2 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}$); 4.05 (t, $2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}) ; 3.65(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}) ; 2.38(\mathrm{~m}, 2 \mathrm{H}) ; 1.84(\mathrm{~m}, 2 \mathrm{H}) ; 1.57-1.20(\mathrm{~m}, 14$ H); 0.91 (t, $3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.2; 160.6; 147.2; 146.8; 124.4; 124.3; 114.7; 114.6; 68.3; 65.6; 32.3; 31.9; 29.9; 29.6; 29.5; 29.4; 29.3; 29.2; 26.0; 22.7; 14.2.
(E)-1-(4-(4-bromobutyloxyphenyl)-2-(4-(decyloxyphenyl)diazene (5c): Yield: 59\%. Cr 96.0 SmA 106.0 N 108 I. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 3053, 2985, 2927, 1597, 1500, 1265, 748, 704. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.89 (m, 4 H); 7.01 (m, 4 H); 4.08 (m, 4 H); 3.53 (t, 2 $\mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}) ; 2.12(\mathrm{~m}, 2 \mathrm{H}) ; 2.02(\mathrm{~m}, 2 \mathrm{H}) ; 1.84(\mathrm{~m}, 2 \mathrm{H}) ; 1.55-1.23(\mathrm{~m}, 14 \mathrm{H}) ; 0.92(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.2; 160.8; 147.1; 146.9; 124.3; $124.3 ; 114.7 ; 114.6 ; 68.3 ; 67.1 ; 33.4 ; 31.9 ; 29.6 ; 29.5 ; 29.4 ; 29.3 ; 29.2 ; 27.8 ; 26.0 ; 22.7$; 14.2.
(E)-1-(4-(5-bromopentyloxyphenyl)-2-(4-(decyloxyphenyl)diazene(5d): Yield: 32%. Cr 77.5 SmA 111.5 I. IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 3093, 2935, 2920, 1600 1581, 1498, 1265, 748, 704. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.89 (m, 4 H); 7.01 (m, 4 H); 4.06 (m, 4 H); 3.47 (t, $2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ; 1.98(\mathrm{~m}, 2 \mathrm{H}) ; 1,86(\mathrm{~m}, 4 \mathrm{H}) ; 1.68(\mathrm{~m}, 2 \mathrm{H}) ; 1.56-1.26(\mathrm{~m}, 14 \mathrm{H}) ; 0.92(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.2; 160.9; 147.0; 146.9; 124.3; 114.7; 114.6; 68.3; 67.9; 33.5; 32.5; 31.9; 29.6; 29.5; 29.4; 29.3; 29.2; 28.4; 26.0; 24.8; 22.7; 14.1.
(E)-1-(4-(6-bromohexyloxyphenyl)-2-(4-(decyloxyphenyl)diazene (5e): Yield: 57\%. Cr 80.0 SmA 104.5 N 109.0 I. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 2940, 2905, 1610, 1588, 1475,1285, 748, 704. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.89 (m, 4 H); 7.01 (m, 4 H); 4.05 (m; 4 H); 3.46 (t, 2 H); 2.00-1.76 (m, 6 H); 1.65-1.24 (m, 18 H); 0.98-0.87 (m, 3 H). ${ }^{13} \mathrm{C}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.2; 161.0; 147.0; 146.9; 124.3 114.7; 114.6; 68.3; 68.0; 33.8; 32.7; 14,1 .
(E)-1-(4-(7-bromoheptyloxyphenyl)-2-(4-(decyloxyphenyl)diazene (5f): Yield: 60\%. Cr 64.6 SmA 109 I. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 3053, 2985, 2927, 1597, 1500, 1265, 748, 704. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): 7.89 (m, 4 H); 7.01 (m, 4 H); 4.05 (m, 4 H); 345 (t, $2 \mathrm{H}, \mathrm{J}=$ $6.8 \mathrm{~Hz}) ; 1.96-1.79(\mathrm{~m}, 6 \mathrm{H}) ; 1.58-1.23(\mathrm{~m}, 20 \mathrm{H}) ; 0.92(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, CDCl_{3}): 161.2; 161.1; 146.9; 146.8; 124.3; 114.6; 114.6; 68.3; 68.1; 33.9; 32.7; 31.9; 29.6; 29.5; 29.4; 29.3; 29.2; 29.1; 28.5; 28.1; 26.0; 25.9; 22.7; 14.1.
(E)-1-(4-(8-bromooctyloxyphenyl)-2-(4-(decyloxyphenyl)diazene (5g): Yield: 38\%. Cr 88.2 SmA 107.6 I. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 2987, 2922, 2870, 1602, 1423, 1265, 748, 704. ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.89 (m, 4 H); 7.01 (m, 4 H); 4.05 (m, 4 H); 3.44 (t, $2 \mathrm{H}, \mathrm{J}$ $=6.7 \mathrm{~Hz}) ; 1.98-1.74(\mathrm{~m}, 7 \mathrm{H}) ; 1.62-1,19(\mathrm{~m}, 21 \mathrm{H}) ; 0.92(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, CDCl_{3}): 161.2; 161.1; 146.9; 146.9; 124.3; 114.6; 68.3; 68.2; 34.2; 28.7; 28.1; 26.0; 25.9; 22.7; 14.1.
(E)-1-(4-(9-bromononyloxyphenyl)-2-(4-(decyloxyphenyl)diazene (5h): Yield: 78\%. Cr 55.4 SmA 101.6 I. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 3093, 2935, 2920, 1600, 1581, 1498, 1265, 748, 704. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.88 (m, 4 H); 7.01 (m, 4 H); 4.05 (m, 4 H); 3.44 (t, 2 $\mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ; 1.93-1.79(\mathrm{~m}, 5 \mathrm{H}) ; 1.55-1.24(\mathrm{~m}, 25 \mathrm{H}) ; 0.92(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, CDCl_{3}): 161.2; 161.1; 147.0; 146.9; 124.3; 114.6; 68.3; 68.2; 34.0; 32.8; 31.9; 29.6; 29.5; 29.4; 29.3; 29.3; 29.2; 29.2; 29.2; 28.7; 28.1; 26.1; 26.0; 22.7; 14.2.
(E)-1-(4-(10-bromodecyloxyphenyl)-2-(4-(decyloxyphenyl)diazene (5i): Yield: 39\%. Cr 96.0 SmA 106.2 I. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 3093, 2987, 2935, 2920, 1600, 1581, 1498, 1265, 894, 748, 704. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.89(\mathrm{~m}, 4 \mathrm{H}) ; 7.01(\mathrm{~m}, 4 \mathrm{H}) ; 4.05(\mathrm{~m}, 4 \mathrm{H})$; 3.43 (t, 2 H); $1.95-1.76$ (m, 6 H); $1.57-1.24(\mathrm{~m}, 26 \mathrm{H}) ; 0.92(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, CDCl_{3}): 161.1; 161.1; 146.9; 146.9; 124.3; 114.6; 68.3; 68.3; 34.0; 32.8; 31.9; 29.6; 29.5; 29.4; 29.4; 29.3; 29.3; 29.2; 29.2; 28.7; 28.2; 26.0; 26.0; 22.7; 14.1 .

Synthesis of (E)-1-(4-decyloxyphenyl)-2-(4-hexyloxyphenyl)diazene (5j): $\mathbf{4}$ (0.5 mmol) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.6 \mathrm{mmol})$ were dissolved into acetone in a round bottom flask with reflux system under agitation for 15 minutes. 6-bromohexane (3 mmol) was added drop wise and the system was refluxed from 15 to 48 (monitored by TLC). After the reaction is done, the still hot solution was filtered and washed with hot acetone. The filtrate wasconcentrated in rotary evaporator, cold petroleum ether was added to the concentrated extract, and the resulting precipitate was filtered and washed three times with petroleum ether. Recrystallization in ethanol with a few drops of water.
Yield: 64\%. Cr 88.0 SmA 109.0 I. IR (KBr, $v_{\text {max }} \mathrm{cm}^{-1}$): 2987, 2922, 2870, 1602, 1423, 1265, 748, 704. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.89 (d, $4 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}$); $7.01(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $9.1 \mathrm{~Hz}) ; 4.05(\mathrm{~m}, 4 \mathrm{H}) ; 1.84(\mathrm{~m}, 4 \mathrm{H}) ; 1.64(\mathrm{~s}, 1 \mathrm{H}) ; 1.51(\mathrm{~m}, 4 \mathrm{H}) ; 1.44-1.23(\mathrm{~m}, 16 \mathrm{H})$; 0.93 (t, $6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.1; 146.9; 124.3; 114.6; 68.3; 31.9; 31.6; 29.6; 29.4; 29.3; 29.2; 29.2; 26.0; 25.7; 22.7; 22.6; 14.1; 14.0.
(E)-1-(4-(2-bromoethyloxy)phenyl)-2-(4-(heptyloxy)phenyl)diazene (5k):

Yield: 61%. Cr 105 N (103) I. IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 2987, 2922, 2870, 1602, 1423, 1265, 748, 704. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.80(\mathrm{~m}, 4 \mathrm{H}) ; 7.01(\mathrm{~m}, 4 \mathrm{H}) ; 4.30(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $6.4 \mathrm{~Hz}) ; 4.02(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}) ; 3.70(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}) ; 1.80(\mathrm{~m}, 2 \mathrm{H}) ; 1.40(\mathrm{~m}, 8 \mathrm{H}) ; 16$ $\mathrm{H}) ; 0.93$ (t, $3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.4; 160.0; 147.5; 146.8; 124.4; 124.3; 68.4; 68.0; 31.9; 29.3; 29.0; 28.9; 26.0; 22.6; 14.2.
(E)-1-(4-(4-bromobutoxy)phenyl)-2-(4-(heptyloxyphenyl)diazene (5I):

Yield: 36%. Cr $96.4 \mathrm{SmA}(96.5) \mathrm{N} 114.0 \mathrm{I}^{\circ} \mathrm{C}$ IR (KBr, $\mathrm{v}_{\max }, \mathrm{cm}^{-1}$): 2942, 1610, 1590, $1480,1250,704 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.85(\mathrm{~m}, 4 \mathrm{H}) ; 6.99(\mathrm{~m}, 4 \mathrm{H}) ; 4.02(\mathrm{~m}, 4 \mathrm{H})$; $3.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}) ; 2.15(\mathrm{~m}, 2 \mathrm{H}) ; 2.00(\mathrm{~m}, 2 \mathrm{H}) ; 1.80(\mathrm{~m}, 2 \mathrm{H}) 1.4(\mathrm{~m}, 8 \mathrm{H}) .0 .90(\mathrm{t}$, $3 \mathrm{H}, 7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.2; 160.8; 147.1; 146.9; 124.4; 124.3; 114.7; 114.6; 68.4; 67.2; 33.5; 31.8; 29.4; 29.3; 29.1; 27.9; 26.0; 22.6; 14.1 .
(E)-1-(4-(6-bromohexyloxy)phenyl)-2-(4-(heptyloxy)phenyl)diazene (5m):

Yield: 46%. Cr $103 \mathrm{SmA}(102) \mathrm{N} 111.0 \mathrm{I}^{\circ} \mathrm{C}$ IR (KBr, $\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$): 2942, 1610, 1590, 1480, 1250, 704. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.85 (dd, 4H); 6.99 (m, 4H); $3.99(\mathrm{~m}, 4 \mathrm{H})$; 3.52 (t, 2H, J = 7.5 Hz); 1.83- (m, 6H); 1.50 (m, 6H); 1.40 (m, 6H); 0.88 (t, 3H, 7.4 Hz). ${ }^{13} \mathrm{C}$ NMR (300 MHz, CDCl_{3}): 161.2; 160.8; 147.0; 146.9; 124.4; 124.3; 114.7; 114.6; 68.4; 68.0; 33.8; 32.7; 31.8; 29.2; $29.129 .0 ; 27.9 ; 26.0 ; 22.6 ; 25.3 ; 22.6 ; 14.1$.
(E)-1-(4-(6-bromohexyloxy)phenyl)-2-(4-(methoxy)phenyl)diazene (5n):

Yield: 80%. Cr1 102.0 Cr 106.0 N (99.5) I. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 2965, 1618, 1593, 1473, $1254,704 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.92(\mathrm{~m}, 4 \mathrm{H}) ; 7.05(\mathrm{~m}, 4 \mathrm{H}) ; 4.12(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.7$ $\mathrm{Hz}) ; 3.90(\mathrm{~s}, 3 \mathrm{H}) ; 3.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz})$); $1.90(\mathrm{~m}, 4 \mathrm{H}) ; 1.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.2; 161.1; 147.1 (2C); 124.4 (2C); 114.2 (2C); 68.1; 55.6; 33.8; 32.7; 29.1; 27.9; 25.3.

Anexos

Figure SII. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure SI2. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 a}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

SS-116-C 13

Figure SI3. ${ }^{13} \mathrm{C}$ NMR of 5 a in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI4. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 b}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

SS-159_13C

Figure SI5. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 b}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI6. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 c}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI7. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 c}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI8. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 d}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI9. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 d}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI10. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 e}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI11. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 e}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI12. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 f}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI13. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 f}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI14. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 g}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI15. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 g}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI16. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 h}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI17. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 h}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure $\mathrm{SI} 18 .{ }^{1} \mathrm{HNMR}$ of $\mathbf{5 i}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI19. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 i}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI20. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 j}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI21. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 j}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI22. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 k}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI23. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 k}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI24. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 1}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI25. ${ }^{13} \mathrm{C}$ NMR of 5 I in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI26. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 m}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI27. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 m}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI28. ${ }^{1} \mathrm{HNMR}$ of $\mathbf{5 n}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$.

Figure SI29. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 n}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$.

Figure SI30. Fluorescence spectra of azodyes in dioxane $\left(1.0 \times 10^{-5} \mathrm{M}\right)$.

Figure SI31. Diffractogram of compound 5b at $95^{\circ} \mathrm{C}$.

Figure SI32. Diffractogram of compound $\mathbf{5 c}$ at $105^{\circ} \mathrm{C}$.

Figure SI33. Diffractogram of compound 5d at $95^{\circ} \mathrm{C}$.

Figure SI34. Diffractogram of compound $\mathbf{5 e}$ at $100^{\circ} \mathrm{C}$.

Figure SI35. Diffractogram of compound $\mathbf{5 h}$ at $100^{\circ} \mathbf{C}$)

Figure SI36. Diffractogram of compound 5i at $105^{\circ} \mathrm{C}$.

Table 1. Structural and energetic parameters of some conformers ${ }^{\text {a }}$ extracted from $\mathbf{5 a}, \mathbf{5 b}$ and $5 \mathbf{c}$ by MM2 method.

a. $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and C 4 refer to the conformers analysed for $\mathbf{5 a}, \mathbf{5 b}$ and $\mathbf{5 c}$. For all conformers, see SI file.

