
 

 

  
Abstract—Musicality can be thought of as a property of sound that 
emerges when specific organizational parameters are present. We 
hypothesize that this property is not binary (where an auditory object 
is or is not a musical object), but rather exists on a continuum 
whereby some auditory objects may be considered more or less musi-
cal than other auditory objects.  We suggest that identification of an 
auditory object as being more musical than another begins with a 
modularized analysis of features that coheres into a holistic interpre-
tation. To explore this, we designed two experiments. In the first, 30 
subjects evaluated 50 ten-tone sequences according to how musical 
they thought they were. A special stimulus set was designed that 
controlled for timbre, pitch content, pitch range, rhythm, note and 
sequence length, and loudness. Mean z-scored stimulus ratings 
showed significantly distinct groupings of musical versus non-
musical sequences. In the second, a Principal Component Analysis 
(PCA) of the ratings yielded three components that explain a statisti-
cally significant proportion of variance in the ratings. The stimuli 
were analyzed in terms of parameters such as key correlation, range, 
and contour. These values were correlated with the eigenvalues of the 
significant PCA components in order to determine the dominant 
strategies listeners use to make decisions about musicality. 

 
Keywords—Musicality, principal component analysis, auditory 

perception.  

I. INTRODUCTION 
S a universal trait, humans are born with auditory predis-
positions that develop over time into musical knowledge 
and procedures. Adults with no formal musical training 

have developed the ability to make sophisticated judgments 
about music through years of exposure to a highly stable and 
organized auditory environment. Music cognition has been 
described as an interaction of bottom-up and top-down proc-
esses [1]. Auditory scene analysis constructs coherent objects 
from complex scenes, called auditory objects: the fundamental 
perceptual unit in audition [4][2][13]. When produced by a 
single source, auditory objects comprise multiple acoustic 
events that cohere to form a single auditory stream [27][28]. 
Stream formation is one of the key features of auditory scene 
analysis and is the mechanism by which we are able to attend 
to a specific speaker in a loud crowd (i.e. “the cocktail-party 
effect” [5]) or focus on a single instrument in a musical en-
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semble. Once a stream is formed, cognitive functions such as 
attention and memory are engaged to guide complex behav-
iors, allowing auditory objects to be processed by domain-
specific processes of language or music [14][42].  This paper 
explores the idea that musicality is a property of auditory ob-
jects that emerges when certain organizational features are 
presented in specific ways. The perception of these musical 
objects requires multiple psychological processes to evaluate 
complex acoustic information. Moreover, this work address 
assumptions that musicality is a property that acoustic infor-
mation either has or does not have.  
 Musical memory allows us to recall details about musical 
objects (e.g., recognition of a familiar melody), and contains 
schema that represent generalized information about our musi-
cal environment. In [1], Bharucha points out that humans have 
hierarchical schematic representations of musical features, 
such as metric and tonal organization. The temporal unfolding 
of a musical object allows its features to be matched with 
these schematic representations in an automatic way. Repeated 
exposure to a melody reinforces general mental representa-
tions: the stronger the representation, the easier melody recog-
nition becomes [19]. Studies examining deficits in neurologi-
cally-impaired individuals observe that music perception is 
modular for two reasons.  First, music is functionally distinct 
from language [35] and second, it relies on specialized mod-
ules that represent distinct music-cognitive processes [34]. 
Peretz and Coltheart [34] identified distinct neural networks 
associated with mid-level music processes such as meter, con-
tour, interval, and tonal encoding. Only after an auditory ob-
ject is processed by these modules can it engage what is re-
ferred to as the musical lexicon [34], which contains all of the 
information about music that one has been exposed to over 
one’s lifetime.  The recognition of familiar tunes, they sug-
gest, is dependent on a selection procedure that takes place in 
the musical lexicon after an auditory object has been deter-
mined to be potentially musical by virtue of mid-level analysis 
of the aforementioned modular features.  This idea was also 
explored in [40], which investigated the musical features that 
contributed to the recognition of familiar songs, supporting the 
idea that a song is a temporally unfolding perceptual object. 
Schulkind, et al. [40] found that familiar song recognition is a 
holistic process supported by multiple, interacting musical 
features. Their study was concerned with understanding what 
musical features correlate with the temporal position of object 
recognition. Our study is not concerned with familiar-object 
perception, but rather investigates subjects’ perception of mu-
sicality in novel (never heard before) sequences.   
 We hypothesize that the perception of musicality is not bi-
nary (where an auditory object is or is not a musical object), 

Principal Components Analysis of Musicality in 
Pitch Sequences 

Richard Randall and Adam S. Greenberg 

A 

ISBN 1-876346-65-5 © ICMPC14 ICMPC14, July 5–9, 2016, San Francisco, USA112

Table of Contents
for this manuscript



 

 

but rather exists on a continuum whereby some auditory ob-
jects may be considered more or less musical than other audi-
tory objects.  We suggest that identification of an auditory 
object as being more musical than another begins with a 
modularized analysis of features. The results of this analysis 
produce a percept that may be strongly or weakly associated 
with memories in the musical lexicon. Musicality, therefore, 
can be thought of as a property of sound that emerges when 
certain organizational features are presented in specific ways. 
By first probing an auditory object’s degree of musicality and, 
second, investigating the features and processes that give rise 
to the degree of musicality, we can determine how listeners 
perceive an auditory object as musical. 

Music theorists, empirical musicologists, and music psy-
chologists have approached feature identification and analysis 
in a number of ways. One way is to examine structural fea-
tures of existing music with the premise that, if a particular 
feature is significantly present in a specific way, then there is a 
mental representation or process that has developed in re-
sponse to this feature. Another approach is to posit a general 
idea about “what music is” from the experimenter’s experi-
ence. In both cases, features lead to testable hypotheses and 
the importance of the feature is established when observable 
behavior can be modulated by the manipulation of that feature. 
In both approaches, however, an auditory-object’s status as 
“music” is taken a priori. While the assumption that Mozart’s 
“Hunt Quartet” or an ethnic folk song is axiomatically music 
is appropriate in some contexts, it can inhibit us from under-
standing what a subject-oriented mental representation of mu-
sic might look like. In the current study we seek to uncover an 
operational definition of music by first observing subjects’ 
behavior and then examining the stimuli in an attempt under-
stand how stimuli modulate behaviors. To test this, we asked 
subjects to listen to randomly generated pure-tone sequences 
and then rate each sequence on its musicality. Our first hy-
pothesis is that subjects will be able to effectively group these 
sequences according to their musicality. Our second hypothe-
sis is that a measure can be devised to quantitatively describe 
the psychological processes involved in judging the musicality 
of simple auditory stimuli. We created a profile for each se-
quence, comprised of a set of metrics that describe structural 
features commonly discussed in the music theory and music 
psychology literature. A principal component analysis (PCA) 
was performed on the ratings and the resulting components 
were correlated with the profiles to understand which features 
best account for the variance found in the musicality ratings. 
This approach allows for an exploration of the low-level audi-
tory features that give rise to the perception of musicality in 
auditory objects.  The following describes our two experi-
ments and discussion is reserved for the end.  

II.  EXPERIMENT 1   

A. Methods 

1)  Subjects 
 30 participants (17 female, 13 male) were recruited using 
the Carnegie Mellon University Center for Behavioral and 
Decision Research subject pool. Ages ranged from 19 to 58 
years old with mean of 30.26 (SD 13). All subjects self-

identified as having normal hearing and normal or corrected-
to-normal vision. All were considered non-musicians with a 
mean 2.45 years of formal music training. All were native 
speakers of American English. No subjects reported having 
absolute pitch (AP) or knowledge of any family members with 
AP. 

2)  Stimuli 
 We used 50 sequences, each with 10 pure tones of 500ms 
duration, with an inter-stimulus-interval of 500ms. Each of the 
10 tones was chosen randomly from the diatonic collection 
corresponding to the G-major scale (G4-F#5 or 392Hz-
740Hz). Sequences were randomly transposed to all 12 pitch-
class levels and then transposed back to the original G4-F#5 
span creating an equal distribution of pitches across the chro-
matic scale.  

3)  Task 
 Subjects were asked to provide a rating of musicality for 
each sequence. They were instructed to rate each sequence on 
a Likert scale of 1 to 5. If they thought the sequence was very 
musical, they were asked to press the ‘5’ key on the keyboard; 
if they thought the sequence was not musical at all, they were 
asked to press the ‘1’ key on the keyboard. Subjects were 
asked to use the entire range of ratings and were given 1.5 
seconds to respond. If they responded before the sequence had 
completed or failed to respond in 1.5 seconds, the response 
was not recorded and the experiment moved on to the next 
trial.  

4) Design 
 Subjects completed a practice block of six trials after which 
they were asked if they understood the task. Subjects were 
given the option to complete additional practice trials or to 
move on to the main part of the experiment. The experiment 
was comprised of 15 blocks, each with 20 trials. 50 sequences 
were played eight times apiece for a total of 400 trials. Trials 
were presented in 20 blocks, with a forced 20-second break 
between each block. Stimuli were presented via headphones 
(Sennheiser HD210) at a fixed, comfortable listening volume 
(~82dBA-SPL). The paradigm ran on an Apple Mac Mini and 
responses were recorded on a standard computer keyboard. 
The paradigm was coded using MATLAB with Psychtoolbox 
extensions [3][33].  
 

 
Fig. 1 Group (N=30) z-scored stimulus ratings of 50 sequences. 

Lower scores indicate less-musical sequences and higher scores indi-
cate more-musical sequences.   

5) Results 
 The results, shown in Fig. 1, show clear separability be-
tween the most musical and the least musical sequences, as 
well as a graded representation across the scale. Subjects used 
the entire scale in rating the sequences.  For analysis, ratings 
were divided into two equal sized groups (lower 25 and upper 

113

Table of Contents
for this manuscript



 

 

25). An ANOVA (alpha = 0.05) shows a significant difference 
between the two groups, F(21,3)=17.45, p=0.019.  Fig. 2 
shows the three most musical and the three least musical se-
quences for reference. This result demonstrates that the per-
ception of musicality is inter-subjectively stable and is a qual-
ity that varies across stimuli.   
 

 

 
Fig. 2  The three-most (red) and three-least (blue) musical sequences 

with z-scores. 

III. EXPERIMENT 2 

A. Methods 
 We identify five feature categories that figure predomi-
nantly in the music-theoretic and music-psychological litera-
ture: interval, contour, tonality, motive, and entropy. This list 
is not complete, nor comprehensive, but it is representative. 
Each feature is represented as a metric so we can understand 
the consequences of its variation. Metrics were derived from 
each sequence using Music21 [7], Midi Toolbox [10], standard 
statistical analysis software (MATLAB and SPSS), and cus-
tom scripts. Like Humdrum Toolkit [15] before it, Music21 
and Midi Toolbox come with a set of analytic tools or routines 
grounded in recent psychological and music-theoretic litera-
ture that effectively explore certain musical features. Other 
features we explored required more creative treatments for 
them to be useful in our analysis.  Below are descriptions of 
the features we used, their psychological and music theoretical 
context, and some general predictions about how they might 
relate to the results of experiment 1.  

1)  Intervals 
 A pitch interval is the distance in semitones between two 
tones and a melodic interval is the distance between two adja-
cent pitches in a sequence. We created an intervallic profile 
for each sequence by calculating the mean interval size (the 
average of all consecutive melodic intervals), standard devia-
tion (SD) of the mean, and range [19]. In addition, we calcu-
lated the melodic interval variability (MIV), a version of the 
coefficient of intervallic variation of a sequence used in mu-
sic/language research [32].  

2) Contour 
 Contour refers to the shape of musical materials (e.g., 
pitches, rhythms, timbres, tempi,) [29]. In a simple melodic 
context where variation occurs only in the pitch domain, con-
tour refers to shape of the sequence as the pitch ascends and/or 
descends in frequency space. Analysis of the Essen Folk Song 
collection reveals that the predominant contour for 10-note 
sequences is a clear arch shape that gradually rises from a 
starting point, peaks midway, and returns to end at the original 
or near-original starting point [16]. Using [16]’s 10-note arch 
as an archetype, we defined a function that returns a value that 
represents how well each sequence fits this archetype (e.g. 
correlation). The contour correlation value ranges from 1 to 0, 
where 1 represents equivalence between a sequence and the 
archetype. The contour of a sequence is usually easier to re-
member than exact interval information [9][8]. Given the 
strength of Huron’s findings, we predict that sequences that 
more closely fit this archetype will be perceived as being more 
musical than sequences that do not fit the archetype. 

3) Tonality 
 Tonality is the property whereby tones in a scale are hierar-
chically organized around a central pitch. Key finding algo-
rithms correlate a musical excerpt with a key according to a 
probabilistic distribution based on the Krumhansl tonal profile 
[22]. Supporting [34]’s findings, recent behavioral research 
asserts that identification of a tonal center is an elemental 
process at the core of how all listeners experience music [11]. 
We used the key finding algorithms implemented in Music21 
to find key centers of each sequence [7].  While the algorithms 
are in many ways similar, each is methodologically different 
and the methods described by [7] are not comprehensive with 
respect to all available approaches. Since the sequences we 
used are only 10 notes in length and the key-finding algo-
rithms are based on statistics whose power increases with the 
number of pitches, we selected only the highest correlation for 
each sequence. The actual key correlation of a sequence is 
irrelevant for this study; our maximum key correlation metric 
represents the likelihood that a certain key, or tonal center, can 
be inferred. Since [34] proposes that the inference of key is 
necessary for an auditory object to be musical, we hypothesize 
that sequences with higher key correlations will be considered 
more musical than those with lower correlations.   

4) Motive 
 The use of motives (small, related, and easily remembered 
musical ideas) is an important component of the overall musi-
cal experience, as motives allow listeners to conflate smaller 
musical ideas into a single larger concept. Following [4], when 
sounds cohere they form an auditory stream that is separable 
from other sounds or other streams. However, [49] maintains 
that coherence allows multiple streams to be compared with 
one another, thus promoting a higher-level of perceptual orga-
nization – a property [49] shows is commonly found in music 
of the Western classical canon. In this sense, motivic coher-
ence is similar to compression, whereby complex auditory 
scenes comprising multiple auditory objects are made easier to 
interpret and remember by virtue of a similarity between ob-
jects. While there is a literature addressing the segmentation of 
music into smaller units, such approaches rely on features 
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(e.g., such as varied rhythm) that our melodic stimuli do not 
possess. Because our sequences are relatively feature-poor, we 
used prediction by partial matching (PPM) to measure the 
compressibility of each sequence. PPM is an adaptive statisti-
cal compression technique that predicts the nth symbol in a 
string by using a context that optimally varies in length ac-
cording to its predictive success [26]. We used a PPM encoder 
on consecutive intervals in each sequence and limited the con-
text size to a maximum of 5. Since motive-rich music is more 
highly valued than motive-poor music by some music scholars 
[31][6][12][49], we expect that greater compressibility will 
correlate with greater musicality.  

5) Entropy 
 Probabilistic entropy has a rich history in music scholarship 
largely centered on style analysis [48][20][41]. It has also 
been used to model melodic complexity, musical expectation, 
and aesthetic experience [25][10][23]. Entropy is closely re-
lated to ideas of compression found in our PPM analysis and 
the probabilistic distribution found in our key finding analysis. 
Relative entropy (Hr) is a convenient and standard metric for 
characterizing how varied the distribution of symbols (pitches) 
is given a fixed alphabet (the diatonic scale). It is difficult to 
make predictions about how varied levels of uncertainty might 
affect musicality. We might predict that a 10-note sequence 
composed using a single pitch might be equally as musical as 
a 10-note sequence employing all seven diatonic pitches. Nev-
ertheless, because of its continued appearance in music-related 
studies, we included relative entropy in the sequence profile.  
 Fig. 3 shows the aforementioned metrics associated with the 
three most- and least-musical sequences.  
 

 
Fig. 3 Feature metrics for the three-most and three-least musical se-

quences shown. 

IV. RESULTS  
 The first three intervallic features (Range, Mean, and SD) 
are strongly negatively correlated (p=<0.001) with z-mean 
scores. Subjects found that sequences with smaller range, 
smaller mean-interval size, and smaller standard deviation of 
the mean to be more musical (Table 1).  This confirms our 
prediction and supports the Huron’s detailed work showing 
that cross-culturally, sequences privilege small intervals [19]. 
Interestingly, features such as MIV, Contour, Key, Hr, and 
PPM do not significantly correlate with the ratings.  
 We hypothesize that subjects’ ratings will have uncorrelated 
principal components that will each correlate with the differ-
ent musical features described above. That is, components are 
separable in terms of these features suggesting that these fea-

tures are used, to varying degrees, in combination when sub-
jects make musicality judgments of pitch sequences. PCA of 
the ratings was performed and permutation testing showed that 
only the first three components were significant, explaining a 
combined 38% of the variance; however, this is a conservative 
measure. Because information is often embedded in additional 
components, we include the top five. The feature profile of 
each tune was correlated with the eigenvalues of the signifi-
cant PCA components in order to identify dominant strategies 
listeners use to make decisions about musicality.  The PCA 
analysis is shown in Fig. 4.  
 

TABLE 1 
SIGNIFICANT CORRELATIONS BETWEEN FEATURES AND RATINGS. 

 
  
 Table 2 shows correlations between eigenvalues of the first 
five components and the eight metrics. Significant correlations 
are highlighted in red.  Of the eight, only intervallic features of 
Range, Mean, and SD correlate significantly with the first 
component. Mean also correlates strongly with the second 
component as does Key. Hr and PPM appear less strongly 
followed by MIV.  Contour correlates with the third compo-
nent followed closely by a reappearance of PPM.   
 

 
Fig. 4 A principal components analysis (PCA) on subjects’ ratings 

returns three significant uncorrelated components explaining 38% of 
the variance. Gray bars indicate critical R2 values from permutation 

testing; blue bars indicate R2 values from PCA. 

V.  DISCUSSION 
 The goal of this study was to understand the conditions un-
der which randomly generated sequences are organized into 
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(or perceived as) auditory objects.  Despite the extensive work 
that has been done on auditory stream formation, few studies 
have examined how this process plays out in novel musical 
contexts. Notable treatments address how bistable auditory 
streams are formed in polyphonic music and how acoustic 
features, such as timbre, contribute to object formation 
[47][24][45]. Unlike previous studies that present multi-stable 
auditory scenes, this study presents a single stream in a non-
competitive auditory environment. The streams were con-
trolled for range, timbre, tempo, and event duration, so as to 
minimize the possibility that any one stream could be inter-
preted as multi-stable. However, the perception of multiple 
streams and how it contributes to musical object formation 
remains an open question.  

 
TABLE II 

SIGNIFICANT CORRELATIONS (IN RED) BETWEEN FEATURES AND COEFFICIENTS 

 
 

 Additional analysis was performed in an attempt to under-
stand how select musical features interact with each other to 
support the perception of musicality.  Fig. 5 shows the linear 
combination of metrics that significantly correlate with com-
ponent 1 plotted against the eigenvalues.  Musicality ratings 
are color coded with red as most musical and blue as least 
musical. A clear pattern is observed whereby higher musical-
ity ratings cluster towards smaller values and lower musicality 
ratings cluster upward toward larger values.  This is shown 
more clearly in Fig. 6, which limits the linear combination to 
significantly correlated metrics of the ten most and least musi-
cal.  
 Comparing Figs. 5 and 6 we see that there is an organiza-
tional difference between high and low musical sequences. For 
the significant metrics, their strong bilateral separation be-
tween high and low musical sequences along the x axis shows 
that subjects are using these features (Mean, Range, and SD) 
consistently to make musicality judgments. Furthermore, sepa-
rable groups along the y axis show that as composite values of 
the metrics increase, so too does variance.   
 In contrast, Fig. 7 plots the linear combination of metrics 
that do not significantly correlate with component 1 against its 

eigenvalues.  The pattern is more diffuse with a slight bilateral 
distribution of high versus low musicality across the x axis, 
but no grouping along the y axis.  We interpret this as evi-
dence that the non-significant metrics (Key, Hr, PPM, MIV, 
and Contour) are not contributing meaningfully to the variance 
at this level.  
 

 
Fig. 5  Linear combination of metrics significantly correlated with 

component 1 plotted against eigenvalues. Z-score for each sequence 
is color-coded (red = high, blue=low). 

 
 Our analysis shows that common features used to describe 
musical works can explain how subjects determine the degree 
to which an auditory object is musical in a limited way. It 
raises interesting questions about the ontological role of these 
(and other) analytic descriptions.  For instance, we might 
claim that while key membership is important for determining 
whether or not a sequence of tones is a musical sequence of 
tones, that quality might only be important if specific interval-
lic features are present as well.  We might also assert that 
while contours in music exhibit regular patterns (e.g., the “me-
lodic arch”), such patterns may not play a particularly strong 
role in musical auditory object formation, or the role they play 
might be dependant on the presence other features. 
 PCA has been used by [39] and [37] in music perception 
studies to simplify high-dimensional models. Here, we use 
PCA in an exploratory way to identify components that ex-
plain the variance found in the data. All features described in 
section III-A significantly correlate with one or more of the 
components.  However, components, even if significant, may 
not be statistically independent from one another; therefore, 
we cannot make any claims about the independence of com-
ponents: nor can we make claims about ordering. In other 
words, the fact that component 1 is most strongly correlated 
with interval analysis does not mean that it does not impact 
component 2. 
 Music perception in its most basic sense is dependent on 
listeners’ ability to recognize the presence or absence of struc-
tural features and to build a representation of auditory objects. 
This study explores how such features relate to the perceived 
musicality of a pitch sequence. It combines perspectives from 
music theory, computational musicology, and music percep-
tion to identify a set of features that, while not exhaustive, all 
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represent musical experiences.  Experiment 2 is constrained by 
the set of features we have chosen. Whether or not a feature 
has explanatory power, of course, depends on the encoding of 
that feature.  It is possible that we are limited in thinking about 
musical features in specific ways, finding just enough evi-
dence to continue considering them an important part of our 
mental representations of music. 
 
 

 
Fig. 6 Linear combination of metrics significantly correlated with 
component 1 plotted against eigenvalues for the 10 most musical 

(blue) and 10 least musical (green) sequences. 
 
 

 
Fig. 7 Linear combination of metrics not significantly correlated with 
component 1 plotted against eigenvalues. Z-score for each sequence 

is color coded (red = high, blue=low). 
 
 Our approach to explicate these mental representations pro-
vides a new way to examine music. This study sought to un-
derstand the boundary conditions for how auditory objects can 
become musical objects.  We show that musicality is a vari-
able quality that auditory objects possess in greater or lesser 
degrees.  We also show that there is considerable inter-
subjective agreement about what constitutes a highly musical 
object. We see that musicality is a property of auditory objects 
that emerges under specific conditions, and exists on a contin-
uum. Placement on this continuum is the result of multiple 
interacting features. Our results are informative for future mu-

sic studies and our empirically derived collection of 10-tone 
sequences is fertile territory for exploration. Future work in-
cludes identifying the neural correlates of the varied percep-
tion of auditory objects. 
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