Supporting Information

Densities and apparent molar volumes of aqueous solutions of $K_4Fe(CN)_6$, $K_3Fe(CN)_6$, $K_3Co(CN)_6$, $K_2Ni(CN)_4$ and $KAg(CN)_2$ at 293 to 343 K

Lubomir Hnedkovsky^{*}, Yaser Kianinia, Glenn Hefter

Chemistry Department, Murdoch University, Murdoch, WA 6150, Australia

*E-mail: l.hnedkovsky@murdoch.edu.au

chemical name [CASRN]	source	initial mass fraction purity	purification method y				
Potassium hexacyanoferrate(II)	Chem-	>0.985	recrystallization from water (2×)				
[14459-95-1]	Supply		(futer (2/))				
Potassium hexacyanoferrate(III) [13746-66-2]	Baker Analyzed	0.999	none				
Potassium	Honkin &	& 0.995 s	recrystallization from				
hexacyanocobaltate(III) [13963-58-1]	Williams		water (2×)				
Potassium tetracyanonickelate(II)			recrystallization from				
hydrate [14220-17-8]	Aldrich	>0.99	water (2×)				
Potassium							
dicyanoargentate(I) [506-61-6]	Aldrich	not stated	none				
^{<i>a</i>} Note that this table is identical to that published previously ¹ (as Table 1)							

Table S1. Sample Sources and Purities^a

^{*a*} Note that this table is identical to that published previously¹ (as Table 1).

<i>1</i> /K	$V^{\circ} / \text{cm}^{\circ} \cdot \text{mol}^{-1}$							
	K^{+a}	$[Fe(CN)_6]^{4-}$	$\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3-}$	$[Co(CN)_{6}]^{3-}$	$[Ni(CN)_4]^{2-}$	$[Ag(CN)_2]^-$		
293.15	3.5	97.6	134.4	131.7	103.8	66.9		
298.15	3.5	99.1	135.8	133.0	105.0	68.0		
303.15	3.6	99.9	136.7	133.8	105.9	68.8		
308.15	3.6	100.8	137.7	134.7	106.7	69.7		
313.15	3.6	101.5	138.4	135.4	107.4	70.5		
318.15	3.6	101.9	139.0	135.9	108.0	71.2		
323.15	3.6	102.1	139.4	136.2	108.4	71.8		
328.15	3.6	102.1	139.6	136.3	108.7	72.4		
333.15	3.6	101.9	139.6	136.3	108.9	72.9		
338.15	3.6	101.5	139.5	136.1	109.0	73.4		
343.15	3.6	100.9	139.3	135.8	108.9	73.8		

Table S2. Standard Molar Volumes of Ions, V^{0} , at Experimental Temperatures, T

^{*a*} based on the widely accepted value of $V^{\circ}(H^+) = -5.5 \text{ cm}^3 \cdot \text{mol}^{-1}$ reported by Conway²

Figure S1. Locations of maxima, $V_{\phi}^{\max}(T, m)$ on the $V_{\phi} - T$ curves shown in the temperature-molality plane: red – K₄Fe(CN)₆, blue – K₃Co(CN)₆, green – K₃Fe(CN)₆, black – K₂Ni(CN)₄. Dashed lines represent extrapolations outside the experimental range.

Figure S2. Apparent molar volumes, V_{ϕ} , of K₄Fe(CN)₆(aq) as function of temperature, *T*, at selected molalities, *m*. From bottom to top: $m/\text{mol} \cdot \text{kg}^{-1} = 0.020, 0.040, 0.060, 0.100, 0.150, 0.250, 0.400.$

Figure S3. Apparent molar volumes, V_{ϕ} , of K₃Fe(CN)₆(aq) as function of temperature, *T*, at selected molalities, *m*. From bottom to top: *m*/mol·kg⁻¹ = 0.018, 0.037, 0.054, 0.091, 0.135, 0.225, 0.400.

Figure S4. Apparent molar volumes, V_{ϕ} , of K₃Co(CN)₆(aq) as function of temperature, *T*, at selected molalities, *m*. From bottom to top: *m*/mol·kg⁻¹ = 0.015, 0.030, 0.050, 0.080, 0.120, 0.201, 0.357.

Figure S5. Apparent molar volumes, V_{ϕ} , of K₂Ni(CN)₄(aq) as function of temperature, *T*, at selected molalities, *m*. From bottom to top: *m*/mol·kg⁻¹ = 0.020, 0.040, 0.060, 0.101, 0.151, 0.250, 0.348.

Figure S6. Apparent molar volumes, V_{ϕ} , of KAg(CN)₂(aq) as function of temperature, *T*, at selected molalities, *m*. From bottom to top: $m/\text{mol}\cdot\text{kg}^{-1} = 0.020, 0.030, 0.060, 0.101, 0.151, 0.251, 0.350.$

 $(z_{anion})^2$ **Figure S7.** Standard molar volumes of cyanometallate anions, $V^0(Y^{n-})$, at T = 298.15 K as a function of the square of the anion charge, z_{anion}^2 : violet \blacktriangle - Ag(CN)₂⁻; blue \blacksquare - Ni(CN)₄²⁻; red \blacklozenge - Co(CN)₆³⁻; black \blacklozenge - Fe(CN)₆³⁻; green \blacktriangledown - Fe(CN)₆⁴⁻.

References

(1) Kianinia, Y.; Hnedkovsky L.; Senanayake, G.; Akilan, C.; Khalesi, M. R.; Abdollahy, M.; Darban, A. K.; Hefter, G. Heat capacities of aqueous solutions of K₄Fe(CN)₆, K₃Fe(CN)₆,

 $K_3Co(CN)_6$, $K_2Ni(CN)_4$, and $KAg(CN)_2$ at 298.15 K. J. Chem. Eng. Data **2018**, 63, 1773-1739.

(2) Conway, B. E. The evaluation and use of properties of individual ions in solution. *J. Solution Chem.*, **1978**, *7*, 721-770.