Supporting Information

Accessing Two-Stage Regioselective Photoisomerization in Unsymmetrical N,C-Chelate Organoboron Compounds: Reactivity of B(ppz)(Mes)Ar

Cally Li, Soren K. Mellerup, Xiang Wang, Suning Wang* Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada

Table of Contents

- S1. Experimental Methods and Synthetic Details
- S2. NMR Characterization Data of 1 7
- S3. NMR Photoisomerization Data of 1 7
- S4. Photophysical Properties of 1 7
- S5. UV/Vis Photoisomerization Data of 1 7
- S6. TD-DFT Calculation Data of 1 6
- S7. X-Ray Crystal Structure Data of 4 and 6
- **S8. References**

<u>S1: Experimental Methods and Synthetic Details</u>

All experiments were carried out under an inert atmosphere of N_2 . All starting materials were purchased from Sigma-Aldrich and used without further purification. 1-(2-bromophenyl)-1Hpyrazole^[1] and 9-(4-bromophenyl)-9*H*-carbazole^[2] were prepared according to literature procedures. All solvents were dried over Na and degassed. ¹H, ¹¹B, and ¹³C NMR spectra were recorded on a Bruker Avance 400, 600, or 700 MHZ spectrometer. Deuterated solvents were purchased from Cambridge Isotopes and dried/degassed prior to use. Photochemical reactions were performed in J-Young NMR tubes and photochemical reactions were carried out using a Rayonet Photochemical Reactor. High resolution mass spectra (HRMS) were obtained using a Micromass GCT TOF-EI Mass spectrometer. Excitation and emission spectra were recorded using a Photon Technologies International QuantaMaster Model 2 spectrometer. UV-Visible spectra were recorded on a Varian Cary 50 spectrometer. Photoluminescent quantum yields were measured using a Hamamatsu QY spectrometer (C11347-11). DFT and TD-DFT calculations were performed using the Gaussian 09 suite of programs^[3] on the High Performance Computing Virtual Laboratory (HPCVL) at Queen's University. Geometry optimizations and vertical excitations of all compounds were obtained at the cam-B3LYP^[4]/SVP^[5] level of theory, with the resulting structures confirmed to be stationary points through vibrational frequency analysis.

Synthesis of B(OMe)₂(Mes):

 $B(OMe)_2(Mes)$ was prepared according to literature procedures.^[6] Mesityl magnesium bromide was prepared from 2-bromomesitylene (10.0 g, 50.3 mmol), magnesium turnings (1.22 g, 50.3 mmol), and a small iodine crystal in 100 mL of dry/degassed THF. The mixture was refluxed for 2 hours at 80 °C until all the magnesium disappeared, and slowly cooled to -78 °C for 30 minutes using a dry ice/acetone bath. $B(OMe)_3$ (~5.59 mL, 50.3 mmol) was added quickly and the solution was slowly warmed to room temperature overnight. The solvent was removed *in vaccuo* and the residue was extracted with dry/degassed hexanes (200 mL). The crude mixture was filtered through Celite under N₂ and concentrated under reduced pressure to afford $B(OMe)_2(Mes)$ as a cloudy oil (5.19 g, 52% yield). The ¹H NMR of $B(OMe)_2(Mes)$ agreed with that reported in the literature.^[7]

Synthesis of B(OMe)(Mes)(R) Reagents:

In a 50 mL oven dried Schlenk flask under N₂, the appropriate Grignard reagent (1.05 eq; 5.3 mmol in 15 mL THF) was prepared using the method described above (*i.e.* bromobenzene, 4-bromotoluene, bromobenzene-d₅, and 1-bromonaphthalene) or with the low-temperature halogen-magnesium exchange described by Knochel (*i.e.* 1,3- bis(trifluoromethyl)-5-bromobenzene).^[8] To prepare the (4-(9*H*-carbazol-9-yl)phenyl)lithium solution, 9-(4-bromophenyl)-9*H*-carbazole (1.61 g, 5 mmol) was dissolved in THF (~15 mL) and cooled to -78 °C using a dry ice/acetone bath. After 30 minutes, n-BuLi (2.3 mL, 5.8 mmol, 2.5 M in hexanes) was added dropwise and the mixture was stirred for 1 hour to afford the lithiated reagent. A separate 50 mL oven dried Schlenk flask under N₂ was charged with B(OMe)₂(Mes) (0.96 g, 5 mmol) and THF (~10 mL). Both the B(OMe)₂(Mes) solution and the appropriate R-Nu reagent were then cooled to -78 °C simultaneously, after which the R-Nu mixture was cannula transferred to the borate solution. The resulting B(OMe)(Mes)(R) solution was warmed to ambient temperature overnight and used as is in the preparation of **1** – **6**.

Synthesis of B(F)(Mes)₂ Reagent:

In a 50 mL oven dried Schlenk flask under N₂, mesityl magnesium bromide (35.1 mmol, 2.05 eq.) was prepared using the method described above. The Grignard reagent was then cooled to 0 $^{\circ}$ C using an ice bath, after which BF₃*Et₂O (~2.11 mL, 17.1 mmol, 1 eq.) was added in one portion and the mixture allowed to warm to room temperature overnight. The following day, the THF was removed *in vaccuo* and the residue was extracted with dry/degassed hexanes (200 mL). The extract was then filtered through Celite under inert atmosphere. The crude mixture was filtered through Celite under N₂ and concentrated under reduced pressure to afford B(F)(Mes)₂ as an off-white solid (4.142 g, 15.4 mmol, 90% yield). The ¹H NMR of B(F)(Mes)₂ agreed with that reported in the literature^[9] and the product was used as is in the preparation of **7**.

General Procedure for the Synthesis of 1 - 6.

In an oven dried 50 mL Schlenk flask under N₂, 1-(2-bromophenyl)-1*H*-pyrazole (0.74 g, 3.3 mmol) was dissolved in 15 mL of dry/degassed Et₂O. The solution was cooled to -78 °C for 30 minutes, after which n-BuLi (1.5 mL, 3.63 mmol, 2.5 M in hexanes) was added dropwise. As the lithiated ligand solution was allowed to stir for 1 hour, the B(OMe)(Mes)(R) mixture was cooled to the same temperature. After the allotted hour of stirring, the borate mixture was cannula transferred into the lithiation flask and the completed reaction mixture was slowly warmed to room temperature overnight. The products were extracted with CH₂Cl₂, washed with H₂O, and dried with MgSO₄. Flash column chromatography using a gradient elution (10:1 \rightarrow 4:1 hexanes: ethyl acetate) was used to purify the desired products. **1** – **6** were obtained in low to moderate yields (5–50%).

General Procedure for the Synthesis of 7.

In an oven dried 50 mL Schlenk flask under N₂, 1-(2-bromophenyl)-1*H*-pyrazole (0.38 g, 1.7 mmol) was dissolved in 15 mL of dry/degassed Et₂O. The solution was cooled to -78 °C for 30 minutes, after which n-BuLi (0.72 mL, 1.8 mmol, 2.5 M in hexanes) was added dropwise. The lithiated ligand solution was allowed to stir for 1 hour at 78 °C. After the allotted hour, B(F)(Mes)₂ (0.53 g, 2.0 mmol, 1.2 eq.) was added to the flask and the mixture was allowed to stir overnight. The products were extracted with CH₂Cl₂, washed with H₂O, and dried with MgSO₄. Purification by flash column chromatography using a gradient elution (10:1 \rightarrow 4:1 hexanes: CH₂Cl₂) afforded **7** as a pale-yellow solid (0.44 g, 69%).

S2: NMR Characterization Data of 1 – 7

Figure S1. ¹H NMR spectrum of **1** in C_6D_6 .

Figure S3. ¹¹B NMR spectrum of 1 in C_6D_6 .

Figure S4. ¹H NMR spectrum of 2 in C_6D_6 .

Figure S5. ¹³C NMR spectrum of 2 in C_6D_6 .

Figure S6. ¹¹B NMR spectrum of 2 in C_6D_6 .

Figure S7. ¹H NMR spectrum of 3 in C_6D_6 .

Figure S8. ¹³C NMR spectrum of 3 in C_6D_6 .

Figure S9. ¹¹B NMR spectrum of 3 in C₆D₆.

Figure S11. ¹³C NMR spectrum of 4 in C_6D_6 .

Figure S12. ¹¹B NMR spectrum of 4 in C_6D_6 .

Figure S13. ¹H NMR spectrum of 5 in C₆D₆.

Figure S14. ¹³C NMR spectrum of 5 in C_6D_6 .

Figure S15. ¹¹B NMR spectrum of **5** in C_6D_6 .

Figure S16. ¹⁹F NMR spectrum of 5 in C_6D_6 .

Figure S17. ¹H NMR spectrum of **6** in C_6D_6 .

Figure S18. ¹³C NMR spectrum of 6 in C_6D_6 .

Figure S19. ¹¹B NMR spectrum of 6 in C_6D_6 .

Figure S20. ¹H NMR spectrum of 7 in C_6D_6 .

Figure S21. ¹³C NMR spectrum of 7 in C_6D_6 .

Figure S22. ¹¹B NMR spectrum of **7** in C_6D_6 .

S3: NMR Photoisomerization Data of 1-7

In a N₂ filled glovebox, 1 - 7 were added to J-Young NMR tubes to obtain concentrations of 10^{-2} M in C₆D₆ (~0.4 mL). The NMR tubes were sealed with their teflon caps and removed from the glove box. Photochemical experiments were carried out using a Rayonet Photochemical Reactor (300 nm) and the photoisomerization processes of 1 - 7 were monitored periodically by ¹H, ¹¹B, and ¹⁹F NMR (where applicable) until all compounds were converted to their diazaborepin isomers (1b - 4b) or no additional spectral change was observed. The resulting photochemical transformations of compounds 2 and 3 yielded mixtures of products (2b + 2b' and 3b + 3b'), from which the identities of 2b' and 3b' could not be confirmed by NMR due to overlap with the chemical shifts of 2b and 3b.

Figure S23. Stacked ¹H-NMR spectra showing the conversion of $\mathbf{1} \rightarrow \mathbf{1a} \rightarrow \mathbf{1b}$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (**1a**) or blue (**1b**).

Figure S24. Stacked ¹¹B-NMR spectra showing the conversion of $\mathbf{1} \rightarrow \mathbf{1a} \rightarrow \mathbf{1b}$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (**1a**) or blue (**1b**).

Figure S25. ¹H NMR spectrum of 1a in C₆D₆.

Figure S26. ¹³C NMR spectrum of 1a in C_6D_6 .

Figure S27. ¹¹B NMR spectrum of 1a in C_6D_6 .

Figure S28. $^{1}H^{-1}H$ COSY NMR spectrum of 1a in C₆D₆ with diagnostic correlations.

Figure S29. ¹H NMR spectrum of **1b** in C₆D₆. *Unknown impurities.

Figure S30. ¹³C NMR spectrum of 1b in C₆D₆.

Figure S31. ¹¹B NMR spectrum of 1b in C₆D₆.

Figure S32. $^{1}H^{-1}H$ COSY NMR spectrum of **1b** in C₆D₆ with diagnostic correlations.

Figure S33. 1 H- 13 C HSQC NMR spectrum of **1b** in C₆D₆ showing the diagnostic chemical shift of the chiral carbon atom.

Figure S34. ¹H-¹H NOESY NMR spectrum of 1b in C_6D_6 with diagnostic correlations.

Figure S35. Stacked ¹H-NMR spectra showing the conversion of $2 \rightarrow 2a + 2b \rightarrow 2b + 2b'$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (2a), blue (2b), or black (2b').

Figure S36. Stacked ¹¹B-NMR spectra showing the conversion of $2 \rightarrow 2a + 2b \rightarrow 2b$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (2a) or blue (2b).

Figure S37. ¹H NMR spectrum of 2b and 2b' (unidentified product) in C₆D₆.

Figure S38. ¹³C NMR spectrum of 2b and 2b' (unidentified product) in $C_6D_{6.}$

Figure S39. ¹¹B NMR spectrum of 2b in C₆D₆.

Figure S40. ¹H-¹H COSY NMR spectrum of 2b + 2b' in C₆D₆ with diagnostic correlations.

Figure S41. ¹H-¹³C HSQC NMR spectrum of $2\mathbf{b} + 2\mathbf{b}$ ' in C₆D₆ showing the diagnostic chemical shift of the chiral carbon atom in $2\mathbf{b}$.

Figure S42. ¹H-¹H NOESY NMR spectrum of 2b + 2b' in C₆D₆ with diagnostic correlations.

Figure S43. Stacked ¹H-NMR spectra showing the conversion of $3 \rightarrow 3a \rightarrow 3b + 3b'$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (3a), blue (3a), or black (3b').

Figure S44. Stacked ¹¹B-NMR spectra showing the conversion of $3 \rightarrow 3a \rightarrow 3b + 3b'$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (3a) or blue (3a).

Figure S45. ¹H NMR spectrum of **3a** in C_6D_6 .

Figure S46. ¹³C NMR spectrum of 3a in C_6D_6 .

Figure S47. ¹¹B NMR spectrum of 3a in C_6D_6 .

Figure S48. ¹H-¹H COSY NMR spectrum of 3a in C₆D₆ with diagnostic correlations.

Figure S49. ¹H NMR spectrum of 3b and 3b' (unidentified product) in C₆D₆.

Figure S50. ¹³C NMR spectrum of 3b and 3b' (unidentified product) in C₆D₆.

Figure S51. ¹¹B NMR spectrum of 3b in C₆D₆.

Figure S52. Stacked ¹H-NMR spectra comparing **1b** (top) and **3b** (bottom) highlighting the absent chemical shifts of the deuterium atoms in **3b** relative to the chemical shifts of the cyclohexadienyl protons in **1b**.

Figure S53. ¹H-¹H COSY NMR spectrum of 3b + 3b' in C₆D₆ with diagnostic correlations.

Figure S54. ¹H-¹³C HSQC NMR spectrum of 3b + 3b' in C₆D₆.

Figure S55. ¹H-¹H NOESY NMR spectrum of 3b + 3b' in C₆D₆ with diagnostic correlations.

Figure S56. Stacked ¹H-NMR spectra showing the conversion of $\mathbf{4} \rightarrow \mathbf{4a} \rightarrow \mathbf{4b}$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (**4a**) or blue (**4a**).

Figure S57. Stacked ¹¹B-NMR spectra showing the conversion of $\mathbf{4} \rightarrow \mathbf{4a} \rightarrow \mathbf{4b}$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (**4a**) or blue (**4a**).

Figure S58. ¹H NMR spectrum of 4a in C₆D₆.

Figure S59. ¹³C NMR spectrum of 4a in C_6D_6 .

Figure S60. ¹¹B NMR spectrum of 4a in C₆D₆.

Figure S61. ¹H-¹H COSY NMR spectrum of 4a in C₆D₆ with diagnostic correlations.

Figure S62. ¹H NMR spectrum of **4b** in C₆D₆. *Unknown impurities.

Figure S63. ¹³C NMR spectrum of 4b in C₆D₆.

Figure S64. ¹¹B NMR spectrum of 4b in $C_6D_{6.}$

Figure S65. ¹H-¹H COSY NMR spectrum of 4b in C_6D_6 with diagnostic correlations.

Figure S66. ¹H-¹³C HSQC NMR spectrum of 4b in C₆D₆.

Figure S67. ¹H-¹H NOESY NMR spectrum of 4b + 4b' in C₆D₆ with diagnostic correlations.

Figure S68. Stacked ¹H-NMR spectra showing the conversion of $5 \rightarrow 5 + 5a \rightarrow 5a$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (5a).

Figure S69. Stacked ¹¹B-NMR spectra showing the conversion of $5 \rightarrow 5 + 5a \rightarrow 5a$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (5a).

Figure S70. ¹H NMR spectrum of **5a** in C_6D_6 .

Figure S71. ¹³C NMR spectrum of 5a in C_6D_6 .

Figure S72. ¹¹B NMR spectrum of 5a in C_6D_6 .

Figure S73. ¹⁹F NMR spectrum of 5a in C_6D_6 .

Figure S74. $^{1}H^{-1}H$ COSY NMR spectrum of 5a in $C_{6}D_{6}$ with diagnostic correlations.

Figure S75. Stacked ¹H-NMR spectra showing the conversion of $6 \rightarrow 6 + 6a \rightarrow 6a$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (6a).

Figure S76. Stacked ¹¹B-NMR spectra showing the conversion of $\mathbf{6} \rightarrow \mathbf{6} + \mathbf{6a} \rightarrow \mathbf{6a}$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (**6a**) or black (unknown impurity).

Figure S77. ¹H NMR spectrum of **6a** in C₆D₆. *Unknown impurities.

Figure S78. ¹³C NMR spectrum of 6a in C_6D_6 .

Figure S79. ¹¹B NMR spectrum of 6a in C₆D₆. *Unknown impurity.

Figure S80. ¹H-¹H COSY NMR spectrum of **6a** in C₆D₆ with diagnostic correlations.

Figure S81. Stacked ¹H-NMR spectra showing the conversion of $7 \rightarrow 7 + 7a \rightarrow 7a$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (7a).

Figure S82. Stacked ¹¹B-NMR spectra showing the conversion of $7 \rightarrow 7 + 7a \rightarrow 7a$ under N₂ in C₆D₆ (300 nm irradiation) with diagnostic chemical shifts highlighted in red (7a).

Figure S83. ¹H NMR spectrum of **7a** in C_6D_6 .

Figure S84. ¹³C NMR spectrum of 7a in C_6D_6 .

Figure S85. ¹¹B NMR spectrum of 7a in C₆D₆.

Figure S86. ¹H-¹H COSY NMR spectrum of 7a in C_6D_6 with diagnostic correlations.

S4: Photophysical Properties of 1 – 7

Figure S87. UV-Vis (left) and fluorescence (right) spectra of 1 - 6 in toluene at 10^{-4} M. Inset: Photographs showing the colors of 1 - 6.

Table S1. Summary of pertinent photophysical data for 1 - 7.

	1	2	3	4	5	6	7
$\lambda_{abs} (nm)$	300	292	296	296, 333, 347	294	297	305
λ_{em} (nm)	392	384	391	352, 368	374	383	398
$\epsilon (M^{-1} cm^{-1})$	7108	5108	6100	20946	6526	13257	3223
$\Phi_{ m fl}$	0.19	0.11	0.08	0.33	0.10	0.12	0.12

S5: UV/Vis Photoisomerization Data of 1 – 7

Figure S88. Stacked UV-Vis spectra showing the conversion of $1 \rightarrow 1a$ (left) and $2 \rightarrow 2a$ (right) in toluene at 10⁻⁴ M with 300 nm irradiation. Inset: Photographs showing the solution colors.

Figure S89. Stacked UV-Vis spectra showing the conversion of $3 \rightarrow 3a$ (left) and $4 \rightarrow 4a$ (right) in toluene at 10⁻⁴ M with 300 nm irradiation. Inset: Photographs showing the solution colors.

Figure S90. Stacked UV-Vis spectra showing the conversion of $5 \rightarrow 5a$ (left) and $6 \rightarrow 6a$ (right) in toluene at 10⁻⁴ M with 300 nm irradiation. Inset: Photographs showing the solution colors.

Figure S91. Stacked UV-Vis spectra showing the conversion of $7 \rightarrow 7a$ (left) in toluene at 10^{-4} M and UV-Vis spectra of 1b - 4b (right). Inset: Photographs showing the solution colors.

 Φ_{PI} Determination: In a N₂ filled glovebox, quartz cuvettes were filled with 3.5 mL of 10⁻⁵ M solutions of **5** and **7** in toluene, sealed with a rubber septum, and wrapped with parafilm/Teflon tape. The samples were removed from the glovebox, irradiated with monochromatic 350 nm light, and their UV/Vis spectral absorption change was monitored over time. The rates of formation of **5a** and **7a** were then used to calculate the photoisomerization quantum yield (Φ_{PI}) of **5** and **7** using ppyBMes₂ ($\Phi_{PI} = 0.88$) as a chemical actinometer.^[6]

Tuble 52. Summary of photophysical data for 1a 7a and 15 4b.							
	1	2	3	4	5	6	7
"a " λ _{abs} (nm)	439	435	433	417	373	400	465
$\Phi_{ m PI}$	-	-	-	-	0.55	-	0.31
"b" λ _{abs} (nm)	476	485	484	476, 507	-	-	-

Table S2. Summary of photophysical data for 1a - 7a and 1b - 4b.

<u>S6. TD-DFT Calculation Data of 1 – 6</u>

Spin Excitation Oscillator Compound **Transition Configuration** State Energy (nm, eV) Strength HOMO-4 \rightarrow LUMO (16%) S_1 HOMO-1 \rightarrow LUMO (13%) 267.72 (4.91) 0.0981 $HOMO \rightarrow LUMO (60\%)$ HOMO-4 \rightarrow LUMO (13%) S_2 HOMO-1 \rightarrow LUMO (47%) 252.40 (5.13) 0.0395 HOMO \rightarrow LUMO (30%) HOMO-4 \rightarrow LUMO (45%) HOMO-1 \rightarrow LUMO (23%) HOMO-2 \rightarrow LUMO (3%) HOMO-1 \rightarrow LUMO+1 0.0673 S_3 241.88 (5.17) (3%) HOMO-1 \rightarrow LUMO+4 (3%) HOMO \rightarrow LUMO (3%) 1 HOMO \rightarrow LUMO+1 (3%) HOMO-5 \rightarrow LUMO (10%) HOMO-2 \rightarrow LUMO (26%) HOMO-1 \rightarrow LUMO (10%) HOMO-4 \rightarrow LUMO (9%) HOMO-4 \rightarrow LUMO+1 (3%) S_4 HOMO-3 \rightarrow LUMO (2%) 239.96 (5.21) 0.0351 HOMO-2 \rightarrow LUMO+1 (2%) $HOMO-2 \rightarrow LUMO+2$ (7%)HOMO-2 \rightarrow LUMO+3 (5%) HOMO-1 \rightarrow LUMO+4

Table S3. TD-DFT calculated electronic transitions for **1** along with their corresponding excitation energies and oscillator strengths.

		(60/)		
		(0%)		
		HOMO \rightarrow LUMO+1 (6%)		
		HOMO \rightarrow LUMO+3 (2%)		
		HOMO-5 \rightarrow LUMO (20%)		
		$HOMO-2 \rightarrow LUMO+2$ (18%)		
		$HOMO-2 \rightarrow LUMO+3$ (9%)		
		$HOMO-1 \rightarrow LUMO+4$ (5%)		
	S 5	HOMO-4 \rightarrow LUMO+1 (4%)	238.07 (5.21)	0.0170
		HOMO-3 \rightarrow LUMO (9%)		
		$HOMO-3 \rightarrow LUMO+1$ (2%)		
		$HOMO-1 \rightarrow LUMO+1$ (8%)		
		HOMO \rightarrow LUMO+1 (2%)		
		HOMO \rightarrow LUMO+2 (4%)		
		HOMO \rightarrow LUMO+4 (3%)		

Table S4. TD-DFT calculated electronic transitions for **1a** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	S_1	HOMO \rightarrow LUMO (96%)	383.39 (3.23)	0.0933
		HOMO \rightarrow LUMO+1 (72%)		0.0180
1a	S_2	HOMO \rightarrow LUMO+2 (12%)	318.37 (3.89)	
		HOMO \rightarrow LUMO+3 (5%)		
		HOMO \rightarrow LUMO+4 (6%)		
	S 3	HOMO-3 \rightarrow LUMO (28%)	290 67 (4 27)	0.0653
		HOMO-1 \rightarrow LUMO (61%)		
		HOMO-4 \rightarrow LUMO+1 (2%)		

		HOMO \rightarrow LUMO+1 (3%)		
		HOMO \rightarrow LUMO+1 (21%)	274.72 (4.51)	0.0159
	C	HOMO \rightarrow LUMO+2 (39%)		
	54	HOMO \rightarrow LUMO+3 (12%)		
		HOMO \rightarrow LUMO+4 (21%)		
		HOMO-3 \rightarrow LUMO (21%)		
		HOMO-1 \rightarrow LUMO (19%)		0.0100
		HOMO \rightarrow LUMO+2 (18%)	253.65 (4.89)	
	S 5	HOMO \rightarrow LUMO+3 (30%)		
		$HOMO-1 \rightarrow LUMO+2$ (2%)		
		HOMO \rightarrow LUMO+4 (2%)		

Table S5. TD-DFT calculated electronic transitions for 1b along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	S_1	HOMO \rightarrow LUMO (97%)	491.45 (2.52)	0.1450
		HOMO \rightarrow LUMO+1 (84%)		
	C	HOMO \rightarrow LUMO+2 (4%)	259 52 (2 46)	0.1104
	3_2	HOMO \rightarrow LUMO+3 (7%)	558.55 (5.40)	0.1104
		HOMO \rightarrow LUMO+5 (3%)		
		HOMO \rightarrow LUMO+2 (82%)		0.0246
1b	S ₃	HOMO \rightarrow LUMO+1 (8%)	347.88 (3.56)	
		HOMO \rightarrow LUMO+3 (7%)		
		HOMO \rightarrow LUMO+2 (11%)		0.1074
	S	HOMO \rightarrow LUMO+3 (77%)	323.74 (3.83)	
	34	HOMO \rightarrow LUMO+1 (5%)		0.1074
		HOMO \rightarrow LUMO+5 (2%)		
		HOMO \rightarrow LUMO+5 (80%)		0.0009
	S 5	HOMO \rightarrow LUMO+3 (6%)	278.09 (4.46)	
		HOMO \rightarrow LUMO+6 (7%)		

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
		HOMO-4 \rightarrow LUMO (16%)		
		HOMO-2 \rightarrow LUMO (56%)		
	S_1	$HOMO-5 \rightarrow LUMO+1$ (2%)	263.91 (4.70)	0.1156
		HOMO-3 → LUMO (6%)		
		HOMO-1 \rightarrow LUMO (4%)		
		HOMO \rightarrow LUMO (8%)		
		HOMO \rightarrow LUMO (83%)		
	\mathbf{S}_2	HOMO-4 \rightarrow LUMO (4%)	251.84 (4.92)	0.0263
		HOMO-2 \rightarrow LUMO (5%)		
		HOMO-1 \rightarrow LUMO (35%)		
	S_3	$HOMO-1 \rightarrow LUMO+2$ (12%)		
2		HOMO-5 \rightarrow LUMO (7%)	240.03 (5.17)	0.0108
		$HOMO-2 \rightarrow LUMO+1$ (4%)		
		$HOMO-1 \rightarrow LUMO+3$ (6%)		
		$HOMO-1 \rightarrow LUMO+5$ (2%)		
		HOMO \rightarrow LUMO (2%)		
		HOMO \rightarrow LUMO+4 (4%)		
		HOMO \rightarrow LUMO+5 (7%)		
		HOMO-4 \rightarrow LUMO (44%)		
		HOMO-2 \rightarrow LUMO (15%)		
	S_4	HOMO-5 \rightarrow LUMO (6%)	238.43 (5.20)	0.0913
		HOMO-3 \rightarrow LUMO (8%)		
		HOMO-1 \rightarrow LUMO (3%)		

Table S6. TD-DFT calculated electronic transitions for 2 along with their corresponding excitation energies and oscillator strengths.

		$HOMO-1 \rightarrow LUMO+2$ (3%)		
		HOMO \rightarrow LUMO+4 (2%)		
		HOMO \rightarrow LUMO+5 (3%)		
		HOMO-5 \rightarrow LUMO (20%)		
		$HOMO-2 \rightarrow LUMO+1$ (18%)		
		HOMO-4 \rightarrow LUMO (9%)		
		HOMO-4 \rightarrow LUMO (5%)		0.0137
	~	HOMO-3 \rightarrow LUMO (4%)		
	S_5	HOMO-2 \rightarrow LUMO (9%)	236.98 (5.23)	
		HOMO-2 \rightarrow LUMO (2%)		
		HOMO-1 \rightarrow LUMO (8%)		
		HOMO-1 \rightarrow LUMO (2%)		
		HOMO \rightarrow LUMO (4%)		
		HOMO \rightarrow LUMO (3%)		

Table S7. TD-DFT calculated electronic transitions for **2a** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	\mathbf{S}_1	HOMO \rightarrow LUMO (96%)	378.46 (3.28)	0.0863
		HOMO \rightarrow LUMO+1 (73%)		
	S.	HOMO \rightarrow LUMO+2 (15%)	210 72 (2 88)	0.0225
	32	HOMO \rightarrow LUMO+3 (6%)	319.73 (3.88)	
		HOMO \rightarrow LUMO+4 (2%)		
2a	S_3	HOMO-3 \rightarrow LUMO (35%)		0.0649
		HOMO-1 \rightarrow LUMO (54%)	288.43 (4.30)	
		$HOMO-4 \rightarrow LUMO+1$ (2%)		
		HOMO \rightarrow LUMO+1 (3%)		
	S_4	HOMO \rightarrow LUMO+1 (20%)	273 10 (4 54)	0.0163
		HOMO \rightarrow LUMO+2 (50%)	275.10 (4.54)	

	HOMO \rightarrow LUMO+3 (14%)		
	HOMO \rightarrow LUMO+4 (9%)		
	HOMO-3 \rightarrow LUMO (38%)		
	HOMO-1 \rightarrow LUMO (36%)		
S 5	HOMO \rightarrow LUMO+3 (11%)	253.66 (4.89)	0.0086
	$HOMO-1 \rightarrow LUMO+2$ (2%)		
	HOMO \rightarrow LUMO+2 (5%)		

Table S8. TD-DFT calculated electronic transitions for **2b** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	S_1	HOMO \rightarrow LUMO (97%)	494.79 (2.51)	0.1395
		HOMO \rightarrow LUMO+1 (80%)		
	S_2	HOMO \rightarrow LUMO+2 (5%)	363.78 (3.41)	0.1048
		HOMO \rightarrow LUMO+3 (9%)		
		HOMO \rightarrow LUMO+1 (11%)		0.0329
	S ₃	HOMO \rightarrow LUMO+2 (80%)	349.20 (3.55)	
2 h		HOMO \rightarrow LUMO+3 (6%)		
20	S 4	HOMO \rightarrow LUMO+2 (11%)		0.0972
		HOMO \rightarrow LUMO+3 (77%)	326.06 (3.80)	
		HOMO \rightarrow LUMO+1 (6%)		
		HOMO \rightarrow LUMO+4 (52%)		
	S_5	HOMO \rightarrow LUMO+5 (33%)	279.53 (4.44)	0.0010
		HOMO \rightarrow LUMO+3 (5%)		0.0019
		HOMO \rightarrow LUMO+6 (4%)		

Table S9. TD-DFT calculated electronic transitions for **4** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
4	\mathbf{S}_1	HOMO \rightarrow LUMO+1 (85%)	283.94 (4.37)	0.0657

	$HOMO-1 \rightarrow LUMO+6$ (9%)		
	HOMO-4 \rightarrow LUMO (46%)		
C.	HOMO \rightarrow LUMO (38%)	267 21 (4 64)	0 1459
3_2	HOMO-5 \rightarrow LUMO (3%)	207.31 (4.04)	0.1438
	HOMO \rightarrow LUMO+2 (3%)		
	HOMO-1 \rightarrow LUMO+1 (75%)		
S_3	HOMO \rightarrow LUMO+6 (16%)	256.33 (4.84)	0.1194
	HOMO \rightarrow LUMO+12 (2%)		
	HOMO-5 \rightarrow LUMO (13%)		
	HOMO-2 \rightarrow LUMO (55%)		
S_4	HOMO \rightarrow LUMO (10%)	253.51 (4.89)	0.0522
	HOMO-4 \rightarrow LUMO (8%)		
	HOMO \rightarrow LUMO+2 (2%)		
	HOMO-2 \rightarrow LUMO (25%)		
	HOMO \rightarrow LUMO+2 (25%)		
	HOMO-5 \rightarrow LUMO (5%)		
	HOMO-4 \rightarrow LUMO (5%)		
S_5	$HOMO-4 \rightarrow LUMO+2$ (6%)	249.56 (4.97)	0.1315
	HOMO \rightarrow LUMO (4%)		
	HOMO \rightarrow LUMO+4 (8%)		
	HOMO \rightarrow LUMO+5 (7%)		

Table S10. TD-DFT calculated electronic transitions for **4a** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	C.	HOMO-1 \rightarrow LUMO (12%)	365 33 (3 30)	0 1167
4a	31	HOMO \rightarrow LUMO (84%)	303.33 (3.39)	0.1107
	S_2	HOMO \rightarrow LUMO+1 (65%)	222 02 (2.85)	0.0190
		HOMO \rightarrow LUMO+3 (19%)	322.03 (3.83)	0.0189

		$HOMO-1 \rightarrow LUMO+1$ (8%)		
		HOMO \rightarrow LUMO+4 (2%)		
		HOMO-5 \rightarrow LUMO (25%)		
		HOMO-3 \rightarrow LUMO (24%)		
	S.	$HOMO-1 \rightarrow LUMO+2$ (23%)	284 48 (4 35(8))	0.00.00
	D 3	HOMO \rightarrow LUMO+2 (12%)	204.48 (4.33(8))	0.0909
		$HOMO-2 \rightarrow LUMO+7$ (3%)		
		HOMO-1 \rightarrow LUMO (5%)		
		HOMO-5 \rightarrow LUMO (16%)		
	c	HOMO-3 \rightarrow LUMO (16%)	284.07 (4.36)	0.0349
		$HOMO-1 \rightarrow LUMO+2$ (35%)		
	54	HOMO \rightarrow LUMO+2 (18%)		
		$HOMO-2 \rightarrow LUMO+7$ (5%)		
		HOMO \rightarrow LUMO (3%)		
		HOMO \rightarrow LUMO+1 (15%)		
		HOMO \rightarrow LUMO+3 (59%)		
	S_5	$HOMO-1 \rightarrow LUMO+1$ (9%)	269.97 (4.59)	0.0158
		$HOMO-1 \rightarrow LUMO+3$ (4%)		
		HOMO \rightarrow LUMO+4 (5%)		

Table S11. TD-DFT calculated electronic transitions for 4b along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
4b	S_1	HOMO \rightarrow LUMO (96%)	483.27 (2.57)	0.2036
	S.	HOMO \rightarrow LUMO+1 (80%)	262 25 (2.42)	0.1210
	32	HOMO \rightarrow LUMO+3 (4%)	362.35 (3.42)	0.1310

	HOMO \rightarrow LUMO+4 (9%)		
	HOMO \rightarrow LUMO+5 (2%)		
	HOMO \rightarrow LUMO+3 (84%)		
S_3	HOMO \rightarrow LUMO+1 (8%)	338.86 (3.66)	0.0416
	HOMO \rightarrow LUMO+4 (4%)		
	HOMO \rightarrow LUMO+4 (81%)		
S_4	HOMO \rightarrow LUMO+1 (7%)	318.18 (3.90)	0.0750
	HOMO \rightarrow LUMO+3 (8%)		
	HOMO-1 \rightarrow LUMO (75%)		
	$HOMO-1 \rightarrow LUMO+1$ (8%)		
S_5	HOMO-1 \rightarrow LUMO+4 (4%)	292.44 (4.24)	0.0941
	HOMO-1 \rightarrow LUMO+5 (3%)		

Table S12. TD-DFT calculated electronic transitions for **5** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
		HOMO-2 \rightarrow LUMO (81%)		0 1367
	S ₁	HOMO-3 \rightarrow LUMO (3%)	259.24 (4.78)	
5		$HOMO-3 \rightarrow LUMO+2$ (3%)	237.24 (4.70) 0.1307	
	S_2	HOMO \rightarrow LUMO (88%)	251.95 (4.92)	0.0227
	S_3	$HOMO-2 \rightarrow LUMO+1$ (10%)	241.24 (5.14)	0.0203
		HOMO-1 \rightarrow LUMO (40%)		
		$HOMO-1 \rightarrow LUMO+4$ (11%)		
		HOMO-4 \rightarrow LUMO (5%)		
		HOMO-3 \rightarrow LUMO (5%)		
		HOMO \rightarrow LUMO+5 (7%)		

		HOMO \rightarrow LUMO+6 (2%)		
		$HOMO-2 \rightarrow LUMO+1$ (25%)		
		$HOMO-1 \rightarrow LUMO+4$ (12%)		
		$HOMO-5 \rightarrow LUMO+2$ (6%)		
		$HOMO-5 \rightarrow LUMO+3$ (3%)		
		HOMO-4 \rightarrow LUMO (4%)		
	S_4	HOMO-3 \rightarrow LUMO (5%)	238.97 (5.19)	0.0243
		$HOMO-3 \rightarrow LUMO+1$ (7%)		
		$HOMO-3 \rightarrow LUMO+2$ (5%)		
		HOMO-1 \rightarrow LUMO (5%)		
		$HOMO-1 \rightarrow LUMO+3$ (2%)		
		HOMO \rightarrow LUMO+5 (9%)		
		HOMO \rightarrow LUMO+6 (2%)		
		HOMO-4 \rightarrow LUMO (12%)		
		HOMO-3 \rightarrow LUMO (10%)		
		$HOMO-3 \rightarrow LUMO+1$ (16%)		
	S 5	$HOMO-2 \rightarrow LUMO+2$ (11%)		
		$HOMO-5 \rightarrow LUMO+2$ (5%)	237.15 (5.23)	0.0244
		$HOMO-5 \rightarrow LUMO+3$ (3%)		
		$HOMO-2 \rightarrow LUMO+3$ (4%)		
		HOMO-1 \rightarrow LUMO (6%)		
		$\begin{array}{c} \text{HOMO-1} \rightarrow \text{LUMO+4} \\ (7\%) \end{array}$		

	HOMO \rightarrow LUMO+1 (2%)	
	HOMO \rightarrow LUMO+5 (6%)	

Table S13. TD-DFT calculated electronic transitions for **5a** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	c	HOMO \rightarrow LUMO (78%)	220.04 (2.66)	0.0024
	\mathbf{S}_1	HOMO \rightarrow LUMO+1 (18%)	559.04 (5.00)	0.0924
		HOMO \rightarrow LUMO (18%)		
	S_2	HOMO \rightarrow LUMO+1 (68%)	321.83 (3.85)	Oscillator Strength 0.0924 0.0285 0.0647 0.0339 0.0377
		HOMO \rightarrow LUMO+2 (12%)		
		HOMO-3 \rightarrow LUMO (42%)		
	S ₃	HOMO-1 \rightarrow LUMO (48%)	281.06 (4.41)	0.0647
		$HOMO-4 \rightarrow LUMO+1$ (2%)		
5a		HOMO-3 \rightarrow LUMO (44%)		
	S_4	HOMO-1 \rightarrow LUMO (42%)	256.35 (4.84)	0.0924 0.0285 0.0647 0.0339 0.0377
		$HOMO-1 \rightarrow LUMO+3$ (3%)		
		$HOMO-3 \rightarrow LUMO+1$ (11%)		
	C	HOMO \rightarrow LUMO+2 (63%)	255 57 (1 85)	0.0377
	35	$\begin{array}{c} \text{HOMO-1} \rightarrow \text{LUMO+1} \\ (7\%) \end{array}$	233.37 (4.03)	0.0377
		HOMO \rightarrow LUMO+1 (9%)		

Table S14. TD-DFT calculated electronic transitions for **6** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
		HOMO \rightarrow LUMO (75%)		
6	S_1	HOMO \rightarrow LUMO+1 (14%)	282.26 (4.39)	0.1134
		HOMO-4 \rightarrow LUMO (7%)		

	HOMO-3 \rightarrow LUMO+1 (32%)		
	HOMO \rightarrow LUMO+2 (13%)		
	HOMO \rightarrow LUMO+3 (28%)		
S_2	$HOMO-3 \rightarrow LUMO+2$ (3%)	269.49 (4.60)	0.0094
	$HOMO-2 \rightarrow LUMO+1$ (2%)		
	HOMO \rightarrow LUMO+1 (6%)		
	HOMO \rightarrow LUMO+4 (9%)		
	HOMO \rightarrow LUMO (11%)		
	HOMO \rightarrow LUMO+1 (70%)		
S_3	$HOMO-3 \rightarrow LUMO+1$ (3%)	267.50 (4.63)	0.0945
	$HOMO-3 \rightarrow LUMO+3$ (3%)		
	HOMO \rightarrow LUMO+2 (8%)		
	HOMO-4 \rightarrow LUMO (39%)		
\mathbf{S}_4	HOMO-1 \rightarrow LUMO (46%)	255.08 (4.86)	0.0710
	HOMO \rightarrow LUMO (4%)		
	HOMO-4 \rightarrow LUMO (37%)		
S_5	HOMO-1 \rightarrow LUMO (44%)	249.08 (4.98)	0.0584
	HOMO \rightarrow LUMO (3%)		

Table S15. TD-DFT calculated electronic transitions for **6a** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
6а	\mathbf{S}_1	HOMO \rightarrow LUMO (93%)	358.61 (3.46)	0.0922
	c	HOMO-1 \rightarrow LUMO (10%)		
		HOMO \rightarrow LUMO+1 (60%)	306.40 (4.05) 0.0	0.0200
	\mathbf{s}_2	HOMO \rightarrow LUMO+2 (18%)		0.0200
		HOMO \rightarrow LUMO+3 (4%)		

		HOMO-1 \rightarrow LUMO (69%)		
		HOMO \rightarrow LUMO+1 (12%)		0.0967
	S ₃	HOMO-4 \rightarrow LUMO (7%)	295.15 (4.20)	
		HOMO-3 \rightarrow LUMO (3%)		
		HOMO \rightarrow LUMO+3 (2%)		
		HOMO \rightarrow LUMO+1 (14%)		
		HOMO \rightarrow LUMO+2 (68%)		
	\mathbf{S}_4	$HOMO-1 \rightarrow LUMO+2$ (3%)	275.10 (4.51)	0.0640
		HOMO \rightarrow LUMO+5 (2%)		
		HOMO \rightarrow LUMO+6 (2%)		
		$HOMO-1 \rightarrow LUMO+1$ (30%)		
		HOMO \rightarrow LUMO+3 (33%)		0.0349
	S 5	$HOMO-3 \rightarrow LUMO+1$ (4%)		
		$HOMO-1 \rightarrow LUMO+2$ (4%)	261.68 (4.74)	
		HOMO \rightarrow LUMO+1 (5%)		
		HOMO \rightarrow LUMO+5 (5%)		
		HOMO \rightarrow LUMO+6 (7%)		

Table S16. TD-DFT calculated electronic transitions for **7** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
		HOMO-4 \rightarrow LUMO (11%)		
	\mathbf{S}_1	HOMO \rightarrow LUMO (77%)	274.85 (4.51)	0.0703
7		HOMO-2 \rightarrow LUMO (3%)		
/		HOMO-2 \rightarrow LUMO (13%)		
	\mathbf{S}_2	HOMO-1 \rightarrow LUMO (70%)	258.17 (4.80)	0.0322
		HOMO-4 \rightarrow LUMO (4%)		

		HOMO \rightarrow LUMO (5%)		
		HOMO-4 \rightarrow LUMO (53%)		
	S_3	HOMO-1 \rightarrow LUMO (16%)	247 78 (5.00)	0.0882
		HOMO \rightarrow LUMO (10%)	247.78 (3.00)	
		HOMO-2 \rightarrow LUMO (9%)		
		HOMO-4 \rightarrow LUMO (12%)		
		HOMO-2 \rightarrow LUMO (29%)		
		HOMO-5 \rightarrow LUMO (4%)		
		HOMO-4 \rightarrow LUMO+1 (4%)		
		$HOMO-3 \rightarrow LUMO+2$ (3%)		0.0164
	S4	$HOMO-2 \rightarrow LUMO+1$ (7%)	244.61 (5.07)	
		$HOMO-2 \rightarrow LUMO+3$ (4%)		
		HOMO-1 \rightarrow LUMO (2%)		
		$HOMO-1 \rightarrow LUMO+5$ (4%)	_	
		HOMO \rightarrow LUMO+1 (8%)		
		HOMO \rightarrow LUMO+4 (4%)		
		HOMO \rightarrow LUMO+5 (3%)		
		HOMO-3 \rightarrow LUMO (21%)		
	\mathbf{S}_5	$HOMO-1 \rightarrow LUMO+3$ (14%)		0.0036
		$HOMO-3 \rightarrow LUMO+1$ (4%)		
		$HOMO-3 \rightarrow LUMO+2$ (6%)	241.00 (5.14)	
		$HOMO-3 \rightarrow LUMO+5$ (4%)		
		HOMO-2 \rightarrow LUMO+2 (7%)		
		HOMO-2 \rightarrow LUMO+6		

	(5%)	
	HOMO \rightarrow LUMO+1 (5%)	
	HOMO \rightarrow LUMO+4 (7%)	
	HOMO \rightarrow LUMO+5 (7%)	

Table S17. TD-DFT calculated electronic transitions for **7a** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	C	HOMO \rightarrow LUMO (94%)	404 75 (2.06)	0.0659
	\mathbf{S}_1	HOMO \rightarrow LUMO+1 (2%)	404.75 (3.06)	0.0658
		HOMO \rightarrow LUMO+1 (79%)		
	\mathbf{S}_2	HOMO \rightarrow LUMO+2 (9%)	330.18 (3.76)	0.0199
		HOMO \rightarrow LUMO+4 (6%)		
		HOMO-3 \rightarrow LUMO (28%)		0.0512
	S_3	HOMO-1 \rightarrow LUMO (57%)	202 00 (4 25)	
		HOMO \rightarrow LUMO+1 (3%)	292.00 (4.23)	
		HOMO \rightarrow LUMO+2 (5%)		
	S 4	HOMO \rightarrow LUMO+1 (13%)		0.0319
7 a		HOMO \rightarrow LUMO+2 (44%)		
		HOMO \rightarrow LUMO+4 (26%)	282.63 (4.39)	
		HOMO-1 \rightarrow LUMO (4%)		
		HOMO \rightarrow LUMO+5 (7%)		
		HOMO \rightarrow LUMO+3 (69%)		
		HOMO-3 \rightarrow LUMO (8%)		
	S -	HOMO-1 \rightarrow LUMO (5%)	256 42 (4 82)	0.0046
	35	HOMO \rightarrow LUMO+2 (5%)	230.43 (4.83)	0.0040
		HOMO \rightarrow LUMO+4 (3%)		
		HOMO \rightarrow LUMO+5 (3%)		

Table S18. Primary orbitals which contribute to the calculated transitions of 1 (iso = 0.03). Most H atoms have been omitted for clarity.

Table S19. Primary orbitals which contribute to the calculated transitions of 1a (iso = 0.03). Most H atoms have been omitted for clarity.

J.		J.	
LUMO+1	LUMO	HOMO	HOMO-1

Table S20. Primary orbitals which contribute to the calculated transitions of 1b (iso = 0.03). Most H atoms have been omitted for clarity.

Table S21. Primary orbitals which contribute to the calculated transitions of **2** (iso = 0.03). Most H atoms have been omitted for clarity.

LUMO	HOMO	HOMO-1	HOMO-2

Table S22. Primary orbitals which contribute to the calculated transitions of 2a (iso = 0.03). Most H atoms have been omitted for clarity.

LUMO+1	LUMO	НОМО	HOMO-1

Table S23. Primary orbitals which contribute to the calculated transitions of 2b (iso = 0.03). Most H atoms have been omitted for clarity.

LUMO+1	LUMO	НОМО	HOMO-1

Table S24. Primary orbitals which contribute to the calculated transitions of **4** (iso = 0.03). Most H atoms have been omitted for clarity.

Table S25. Primary orbitals which contribute to the calculated transitions of 4a (iso = 0.03). Most H atoms have been omitted for clarity.

Table S26. Primary orbitals which contribute to the calculated transitions of **4b** (iso = 0.03). Most H atoms have been omitted for clarity.

Table S27. Primary orbitals which contribute to the calculated transitions of 5 (iso = 0.03). Most H atoms have been omitted for clarity.

Table S28. Primary orbitals which contribute to the calculated transitions of 5a (iso = 0.03). Most H atoms have been omitted for clarity.

LUMO+1	LUMO	HOMO	HOMO-1

Table S29. Primary orbitals which contribute to the calculated transitions of **6** (iso = 0.03). Most H atoms have been omitted for clarity.

LUMO+1	LUMO	НОМО	HOMO-1

Table S30. Primary orbitals which contribute to the calculated transitions of 6a (iso = 0.03). Most H atoms have been omitted for clarity.

Table S31. Primary orbitals which contribute to the calculated transitions of **7** (iso = 0.03). Most H atoms have been omitted for clarity.

LUMO	HOMO	HOMO-1	HOMO-2

Table S32. Primary orbitals which contribute to the calculated transitions of 7a (iso = 0.03). Most H atoms have been omitted for clarity.

Figure S92. Predicted UV/Vis spectra of **1** (left) and **1a** (right) for their first five excited states.^[10]

Figure S93. Predicted UV/Vis spectra of **1b** (left) and **2** (right) for their first five excited states.^[10]

Figure S94. Predicted UV/Vis spectra of **2a** (left) and **2b** (right) for their first five excited states.^[10]

Figure S95. Predicted UV/Vis spectra of **4** (left) and **4a** (right) for their first five excited states.^[10]

Figure S96. Predicted UV/Vis spectra of **4b** (left) and **5** (right) for their first five excited states.^[10]

Figure S97. Predicted UV/Vis spectra of 5a (left) and 6 (right) for their first five excited states.^[10]

Figure S98. Predicted UV/Vis spectra of 6a (left) and 7 (right) for their first five excited states.^[10]

Figure S99. Predicted UV/Vis spectra of 7a for its first five excited states.^[10]

S7. X-Ray Crystal Structure Data of 4 and 6

Colourless crystals of **4** and off-white crystals of **6** were grown by layering CH₂Cl₂ solutions of each with hexanes. Single crystals were mounted on a sample holder and diffraction data were collected on a Bruker D8-Venture dffractometer with Mo K_{α} radiation at 180 K. Data were processed using the Bruker APEX III software and SHELXTL software package (SHELXTL-2014/7)^[11] and corrected for absorption effects. All non-hydrogen atoms were refined anisotropically. The crystal data of **4** and **6** have been deposited at the Cambridge Crystallographic Data Center (CCDC No. 1858646, 1858647).

Figure S100. The crystal structure of 4 with labeling schemes.

Table S33. Crystal Data and Structural Refinement for 4.		
Identification code	4	
Empirical formula	C36 H30 B N3	

Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

515.44 180(2) K 0.71073 Å Triclinic P-1 a = 10.6235(9) Å $\alpha = 72.283(3)^{\circ}$. b = 12.3400(13) Å $\beta = 72.107(3)^{\circ}$. c = 12.5242(13) Å $\gamma = 64.832(3)^{\circ}$. 1385.1(2) Å³ 2 1.236 Mg/m^3 0.072 mm⁻¹ 544 0.150 x 0.100 x 0.080 mm³ 2.165 to 27.235°. -13<=h<=13, -15<=k<=15, -16<=l<=16 47718 6154 [R(int) = 0.1716] 99.9 % Semi-empirical from equivalents 0.745 and 0.545 Full-matrix least-squares on F² 6154 / 0 / 365 1.065 R1 = 0.0747, wR2 = 0.1844R1 = 0.1776, wR2 = 0.27100.024(4) 0.710 and -0.285 e.Å⁻³

	Х	У	Z	U(eq)	
B(1)	3049(4)	5222(4)	3092(3)	45(1)	
C(1)	4611(4)	5063(3)	2308(3)	44(1)	
N(1)	3148(3)	5996(3)	3891(2)	50(1)	
C(2)	5342(4)	4547(4)	1329(3)	56(1)	
N(2)	4466(3)	6050(3)	3627(3)	54(1)	
C(3)	6683(4)	4515(4)	766(4)	67(1)	
N(3)	2993(3)	730(3)	6465(2)	51(1)	
C(4)	7342(5)	4992(4)	1182(4)	71(1)	
C(5)	6670(4)	5516(4)	2157(3)	60(1)	
C(6)	5336(4)	5527(3)	2679(3)	50(1)	
C(7)	4574(5)	6625(4)	4341(3)	58(1)	
C(8)	3299(5)	6961(4)	5084(4)	67(1)	
C(9)	2402(5)	6545(4)	4776(3)	64(1)	
C(10)	3010(4)	3963(3)	3981(3)	44(1)	
C(11)	4073(4)	2834(3)	3868(3)	51(1)	
C(12)	4083(4)	1777(3)	4665(3)	54(1)	
C(13)	3001(4)	1817(3)	5629(3)	47(1)	
C(14)	1918(4)	2917(3)	5780(3)	50(1)	
C(15)	1936(4)	3969(3)	4966(3)	49(1)	
C(16)	1802(3)	6003(3)	2360(3)	45(1)	
C(17)	1070(4)	5438(3)	2072(3)	48(1)	
C(18)	14(4)	6136(4)	1437(3)	54(1)	
C(19)	-382(4)	7385(4)	1060(3)	55(1)	
C(20)	382(4)	7931(4)	1280(3)	54(1)	
C(21)	1468(4)	7271(3)	1899(3)	47(1)	
C(22)	2284(4)	7973(3)	1987(3)	56(1)	
C(23)	1415(5)	4071(4)	2354(4)	63(1)	
C(24)	-1569(4)	8108(5)	413(4)	73(1)	
C(25)	2022(4)	176(3)	6665(3)	51(1)	
C(26)	1009(4)	441(4)	6057(3)	61(1)	
C(27)	177(5)	-257(4)	6432(4)	70(1)	
C(28)	358(5)	-1210(5)	7386(4)	76(1)	
C(29)	1362(5)	-1470(4)	7999(4)	69(1)	
C(30)	2223(4)	-769(3)	7638(3)	54(1)	
C(31)	3347(4)	-776(3)	8050(3)	53(1)	

Table S34. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\mathring{A}^2x \ 10^3)$ for **4**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(32)	4011(5)	-1480(4)	8970(3)	64(1)
C(33)	5083(5)	-1245(4)	9122(4)	74(1)
C(34)	5537(5)	-324(4)	8366(4)	72(1)
C(35)	4905(4)	384(4)	7450(4)	61(1)
C(36)	3806(4)	156(3)	7300(3)	51(1)

 Table S35. Bond lengths [Å] and angles [°] for 4.

B(1)-C(1)	1.611(5)	
B(1)-C(10)	1.621(5)	
B(1)-C(16)	1.627(5)	
B(1)-N(1)	1.630(5)	
C(1)-C(6)	1.377(5)	
C(1)-C(2)	1.407(5)	
N(1)-C(9)	1.332(5)	
N(1)-N(2)	1.362(4)	
C(2)-C(3)	1.370(5)	
N(2)-C(7)	1.354(5)	
N(2)-C(6)	1.402(5)	
C(3)-C(4)	1.368(6)	
N(3)-C(36)	1.388(5)	
N(3)-C(25)	1.389(5)	
N(3)-C(13)	1.430(4)	
C(4)-C(5)	1.404(6)	
C(5)-C(6)	1.362(5)	
C(7)-C(8)	1.362(6)	
C(8)-C(9)	1.443(6)	
C(10)-C(11)	1.386(5)	
C(10)-C(15)	1.399(5)	
C(11)-C(12)	1.378(5)	
C(12)-C(13)	1.384(5)	
C(13)-C(14)	1.378(5)	
C(14)-C(15)	1.389(5)	
C(16)-C(17)	1.417(5)	
C(16)-C(21)	1.417(5)	
C(17)-C(18)	1.394(5)	
C(17)-C(23)	1.516(5)	
C(18)-C(19)	1.379(5)	
C(19)-C(20)	1.380(5)	
C(19)-C(24)	1.508(5)	

C(20)-C(21)	1.399(5)
C(21)-C(22)	1.507(5)
C(25)-C(26)	1.378(5)
C(25)-C(30)	1.405(5)
C(26)-C(27)	1.374(6)
C(27)-C(28)	1.394(6)
C(28)-C(29)	1.375(6)
C(29)-C(30)	1.404(5)
C(30)-C(31)	1.435(5)
C(31)-C(32)	1.397(5)
C(31)-C(36)	1.407(5)
C(32)-C(33)	1.366(6)
C(33)-C(34)	1.396(6)
C(34)-C(35)	1.376(6)
C(35)-C(36)	1.387(5)
C(1)-B(1)-C(10)	111.8(3)
C(1)-B(1)-C(16)	112.4(3)
C(10)-B(1)-C(16)	119.2(3)
C(1)-B(1)-N(1)	94.3(3)
C(10)-B(1)-N(1)	102.8(3)
C(16)-B(1)-N(1)	113.1(3)
C(6)-C(1)-C(2)	115.6(3)
C(6)-C(1)-B(1)	112.7(3)
C(2)-C(1)-B(1)	131.7(3)
C(9)-N(1)-N(2)	107.2(3)
C(9)-N(1)-B(1)	141.6(3)
N(2)-N(1)-B(1)	111.0(3)
C(3)-C(2)-C(1)	122.8(4)
C(7)-N(2)-N(1)	110.9(3)
C(7)-N(2)-C(6)	136.9(3)
N(1)-N(2)-C(6)	112.2(3)
C(4)-C(3)-C(2)	118.5(4)
C(36)-N(3)-C(25)	108.8(3)
C(36)-N(3)-C(13)	126.1(3)
C(25)-N(3)-C(13)	124.6(3)
C(3)-C(4)-C(5)	121.4(4)
C(6)-C(5)-C(4)	117.5(4)
C(5)-C(6)-C(1)	124.1(4)
C(5)-C(6)-N(2)	126.3(3)
C(1)-C(6)-N(2)	109.5(3)
-------------------	----------
N(2)-C(7)-C(8)	107.6(4)
C(7)-C(8)-C(9)	105.9(4)
N(1)-C(9)-C(8)	108.4(4)
C(11)-C(10)-C(15)	115.6(3)
C(11)-C(10)-B(1)	123.0(3)
C(15)-C(10)-B(1)	121.2(3)
C(12)-C(11)-C(10)	122.8(3)
C(11)-C(12)-C(13)	120.0(3)
C(14)-C(13)-C(12)	119.5(3)
C(14)-C(13)-N(3)	119.7(3)
C(12)-C(13)-N(3)	120.8(3)
C(13)-C(14)-C(15)	119.3(3)
C(14)-C(15)-C(10)	122.8(3)
C(17)-C(16)-C(21)	116.3(3)
C(17)-C(16)-B(1)	121.9(3)
C(21)-C(16)-B(1)	121.7(3)
C(18)-C(17)-C(16)	120.3(3)
C(18)-C(17)-C(23)	115.7(3)
C(16)-C(17)-C(23)	123.9(3)
C(19)-C(18)-C(17)	123.3(4)
C(18)-C(19)-C(20)	116.7(3)
C(18)-C(19)-C(24)	121.3(4)
C(20)-C(19)-C(24)	121.9(4)
C(19)-C(20)-C(21)	122.3(4)
C(20)-C(21)-C(16)	120.9(3)
C(20)-C(21)-C(22)	116.1(3)
C(16)-C(21)-C(22)	123.0(3)
C(26)-C(25)-N(3)	129.1(3)
C(26)-C(25)-C(30)	122.4(4)
N(3)-C(25)-C(30)	108.5(3)
C(27)-C(26)-C(25)	117.7(4)
C(26)-C(27)-C(28)	121.4(4)
C(29)-C(28)-C(27)	120.9(4)
C(28)-C(29)-C(30)	118.9(4)
C(29)-C(30)-C(25)	118.6(4)
C(29)-C(30)-C(31)	134.2(4)
C(25)-C(30)-C(31)	107.2(3)
C(32)-C(31)-C(36)	119.0(4)
C(32)-C(31)-C(30)	134.2(4)

C(36)-C(31)-C(30)	106.9(3)
C(33)-C(32)-C(31)	119.3(4)
C(32)-C(33)-C(34)	121.2(4)
C(35)-C(34)-C(33)	120.9(4)
C(34)-C(35)-C(36)	118.1(4)
C(35)-C(36)-N(3)	129.8(4)
C(35)-C(36)-C(31)	121.6(4)
N(3)-C(36)-C(31)	108.6(3)

Symmetry transformations used to generate equivalent atoms:

Table S36. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for **4**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U33	U ²³	U13	U12	
B(1)	48(2)	52(2)	40(2)	-11(2)	-6(2)	-24(2)	
C(1)	42(2)	46(2)	44(2)	-1(2)	-11(2)	-19(2)	
N(1)	55(2)	52(2)	44(2)	-6(1)	-9(1)	-23(2)	
C(2)	51(2)	59(2)	47(2)	-1(2)	-3(2)	-21(2)	
N(2)	56(2)	57(2)	55(2)	-3(2)	-19(2)	-28(2)	
C(3)	57(2)	83(3)	58(3)	-23(2)	0(2)	-25(2)	
N(3)	59(2)	47(2)	44(2)	-4(1)	-7(1)	-22(2)	
C(4)	72(3)	91(3)	64(3)	-27(3)	-10(2)	-38(3)	
C(5)	57(2)	71(3)	61(3)	-14(2)	-12(2)	-30(2)	
C(6)	50(2)	49(2)	51(2)	-2(2)	-14(2)	-22(2)	
C(7)	68(3)	60(3)	57(2)	-7(2)	-17(2)	-32(2)	
C(8)	74(3)	65(3)	60(3)	-11(2)	-11(2)	-27(2)	
C(9)	82(3)	55(3)	48(2)	-11(2)	-8(2)	-22(2)	
C(10)	45(2)	46(2)	41(2)	-10(2)	-8(2)	-17(2)	
C(11)	57(2)	50(2)	40(2)	-14(2)	5(2)	-21(2)	
C(12)	61(2)	46(2)	43(2)	-12(2)	2(2)	-16(2)	
C(13)	53(2)	44(2)	42(2)	-9(2)	-6(2)	-20(2)	
C(14)	46(2)	55(2)	44(2)	-10(2)	0(2)	-21(2)	
C(15)	43(2)	47(2)	49(2)	-9(2)	-6(2)	-14(2)	
C(16)	42(2)	55(2)	36(2)	-9(2)	-3(1)	-21(2)	
C(17)	44(2)	57(2)	42(2)	-10(2)	-5(2)	-21(2)	
C(18)	46(2)	75(3)	43(2)	-15(2)	-3(2)	-25(2)	
C(19)	44(2)	74(3)	39(2)	-10(2)	-6(2)	-16(2)	
C(20)	53(2)	58(2)	41(2)	-8(2)	-9(2)	-14(2)	

C(21)	47(2)	52(2)	37(2)	-7(2)	-3(2)	-18(2)
C(22)	70(3)	49(2)	49(2)	-2(2)	-12(2)	-28(2)
C(23)	73(3)	64(3)	68(3)	-11(2)	-26(2)	-34(2)
C(24)	52(2)	98(4)	54(3)	-10(2)	-14(2)	-14(2)
C(25)	59(2)	49(2)	41(2)	-8(2)	-4(2)	-22(2)
C(26)	72(3)	63(3)	49(2)	-8(2)	-9(2)	-33(2)
C(27)	79(3)	79(3)	62(3)	-7(2)	-16(2)	-42(3)
C(28)	88(3)	86(3)	66(3)	-5(3)	-9(3)	-53(3)
C(29)	92(3)	67(3)	48(2)	-3(2)	-5(2)	-42(3)
C(30)	67(2)	49(2)	42(2)	-9(2)	-3(2)	-25(2)
C(31)	69(3)	47(2)	40(2)	-8(2)	-9(2)	-20(2)
C(32)	86(3)	60(3)	41(2)	-8(2)	-14(2)	-24(2)
C(33)	97(4)	68(3)	56(3)	-7(2)	-30(2)	-23(3)
C(34)	81(3)	76(3)	65(3)	-13(3)	-24(2)	-27(3)
C(35)	65(3)	61(3)	58(3)	-12(2)	-12(2)	-25(2)
C(36)	62(2)	50(2)	40(2)	-12(2)	-8(2)	-20(2)

Table S37. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **4**.

	Х	у	Z	U(eq)	
H(2)	4888	4207	1046	68	
H(3)	7143	4169	101	80	
H(4)	8275	4968	804	85	
H(5)	7128	5851	2442	73	
H(7)	5390	6768	4326	70	
H(8)	3051	7383	5682	80	
H(9)	1444	6646	5141	77	
H(11)	4826	2786	3213	61	
H(12)	4833	1022	4554	65	
H(14)	1165	2956	6435	60	
H(15)	1189	4724	5083	58	
H(18)	-456	5732	1254	65	
H(20)	164	8784	1003	64	
H(22A)	2039	8768	1461	84	
H(22B)	3306	7510	1785	84	
H(22C)	2039	8095	2774	84	
H(23A)	1123	3804	3182	95	

2441	3647	2114	95
905	3877	1949	95
-1541	7628	-96	110
-1453	8873	-43	110
-2484	8292	957	110
889	1084	5400	73
-537	-85	6032	84
-220	-1687	7617	92
1472	-2114	8655	82
3721	-2115	9485	77
5529	-1716	9753	89
6291	-184	8486	87
5213	1010	6935	73
	2441 905 -1541 -1453 -2484 889 -537 -220 1472 3721 5529 6291 5213	$\begin{array}{ccccc} 2441 & 3647 \\ 905 & 3877 \\ -1541 & 7628 \\ -1453 & 8873 \\ -2484 & 8292 \\ 889 & 1084 \\ -537 & -85 \\ -220 & -1687 \\ 1472 & -2114 \\ 3721 & -2115 \\ 5529 & -1716 \\ 6291 & -184 \\ 5213 & 1010 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure S101. The crystal structure of 6 with labeling schemes.

Table S38. Crystal Data and Structure	uctural Refinement for 6 .	
Identification code	6	
Empirical formula	C28 H25 B N2	
Formula weight	400.31	
Temperature	180(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 8.2022(5) Å	<i>α</i> = 90°.

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

b = 12.6631(10) Å $\beta = 100.564(3)^{\circ}$. c = 20.9039(15) Å $\gamma = 90^{\circ}$. 2134.4(3) Å³ 4 1.246 Mg/m^3 0.072 mm⁻¹ 848 0.120 x 0.120 x 0.080 mm³ 1.889 to 27.186°. -10<=h<=10, -16<=k<=16, -26<=l<=26 43856 4751 [R(int) = 0.1358]99.9 % Semi-empirical from equivalents 0.745 and 0.641 Full-matrix least-squares on F² 4751 / 0 / 284 1.069 R1 = 0.0565, wR2 = 0.1311R1 = 0.1352, wR2 = 0.18360.0112(17)0.387 and -0.266 e.Å⁻³

	X	У	Z	U(eq)	
B(1)	7126(3)	2699(2)	5579(1)	31(1)	
C(1)	6229(3)	2800(2)	4825(1)	35(1)	
N(1)	8730(3)	2029(2)	5421(1)	34(1)	
C(2)	4713(3)	3203(2)	4524(1)	44(1)	
N(2)	8687(3)	1939(2)	4774(1)	37(1)	
C(3)	4227(4)	3175(3)	3857(1)	49(1)	
C(4)	5257(4)	2733(2)	3468(2)	50(1)	
C(5)	6765(4)	2294(2)	3741(1)	44(1)	
C(6)	7200(3)	2345(2)	4411(1)	36(1)	
C(7)	10152(3)	1567(2)	4656(2)	47(1)	
C(8)	11159(3)	1419(2)	5247(2)	47(1)	
C(9)	10241(3)	1717(2)	5709(1)	41(1)	
C(10)	8104(3)	3763(2)	5885(1)	32(1)	
C(11)	8208(3)	4618(2)	5488(1)	38(1)	
C(12)	9266(4)	5482(2)	5680(2)	47(1)	
C(13)	10252(3)	5493(2)	6278(2)	48(1)	
C(14)	10203(3)	4653(2)	6717(1)	40(1)	
C(15)	11240(3)	4648(3)	7341(2)	49(1)	
C(16)	11226(4)	3832(3)	7760(2)	52(1)	
C(17)	10148(3)	2984(3)	7579(1)	45(1)	
C(18)	9121(3)	2963(2)	6985(1)	38(1)	
C(19)	9114(3)	3788(2)	6528(1)	33(1)	
C(20)	5946(3)	2072(2)	5998(1)	29(1)	
C(21)	5836(3)	958(2)	6036(1)	31(1)	
C(22)	4823(3)	484(2)	6414(1)	35(1)	
C(23)	3838(3)	1057(2)	6760(1)	37(1)	
C(24)	3858(3)	2141(2)	6694(1)	35(1)	
C(25)	4868(3)	2656(2)	6321(1)	32(1)	
C(26)	4719(3)	3847(2)	6279(1)	43(1)	
C(27)	6761(3)	231(2)	5655(1)	41(1)	
C(28)	2751(4)	517(3)	7168(2)	53(1)	

Table S39. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10³) for **6**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

 Table S40.
 Bond lengths [Å] and angles [°] for 6.

B(1)-C(1)	1.618(4)
B(1)-C(20)	1.626(4)
B(1)-C(10)	1.638(4)
B(1)-N(1)	1.648(3)
C(1)-C(2)	1.383(4)
C(1)-C(6)	1.402(4)
N(1)-C(9)	1.335(3)
N(1)-N(2)	1.351(3)
C(2)-C(3)	1.380(4)
N(2)-C(7)	1.355(3)
N(2)-C(6)	1.410(3)
C(3)-C(4)	1.392(4)
C(4)-C(5)	1.381(4)
C(5)-C(6)	1.382(4)
C(7)-C(8)	1.368(4)
C(8)-C(9)	1.382(4)
C(10)-C(11)	1.377(4)
C(10)-C(19)	1.444(4)
C(11)-C(12)	1.408(4)
C(12)-C(13)	1.359(4)
C(13)-C(14)	1.410(4)
C(14)-C(15)	1.420(4)
C(14)-C(19)	1.422(3)
C(15)-C(16)	1.356(4)
C(16)-C(17)	1.398(4)
C(17)-C(18)	1.366(4)
C(18)-C(19)	1.416(4)
C(20)-C(25)	1.416(3)
C(20)-C(21)	1.417(3)
C(21)-C(22)	1.384(3)
C(21)-C(27)	1.510(3)
C(22)-C(23)	1.384(4)
C(23)-C(24)	1.381(4)
C(23)-C(28)	1.506(4)
C(24)-C(25)	1.398(3)
C(25)-C(26)	1.514(4)
C(1)-B(1)-C(20)	110.7(2)
C(1)-B(1)-C(10)	114.8(2)
C(20)-B(1)-C(10)	119.2(2)

C(1)-B(1)-N(1)	94.78(19)
C(20)-B(1)-N(1)	115.6(2)
C(10)-B(1)-N(1)	98.65(18)
C(2)-C(1)-C(6)	115.9(2)
C(2)-C(1)-B(1)	133.0(2)
C(6)-C(1)-B(1)	111.1(2)
C(9)-N(1)-N(2)	106.2(2)
C(9)-N(1)-B(1)	140.4(2)
N(2)-N(1)-B(1)	111.61(19)
C(3)-C(2)-C(1)	121.2(3)
N(1)-N(2)-C(7)	110.5(2)
N(1)-N(2)-C(6)	111.7(2)
C(7)-N(2)-C(6)	137.5(2)
C(2)-C(3)-C(4)	120.5(3)
C(5)-C(4)-C(3)	120.9(3)
C(4)-C(5)-C(6)	116.4(3)
C(5)-C(6)-C(1)	125.0(3)
C(5)-C(6)-N(2)	124.4(2)
C(1)-C(6)-N(2)	110.5(2)
N(2)-C(7)-C(8)	107.0(3)
C(7)-C(8)-C(9)	106.1(2)
N(1)-C(9)-C(8)	110.2(3)
C(11)-C(10)-C(19)	117.1(2)
C(11)-C(10)-B(1)	119.4(2)
C(19)-C(10)-B(1)	122.6(2)
C(10)-C(11)-C(12)	122.8(3)
C(13)-C(12)-C(11)	120.2(3)
C(12)-C(13)-C(14)	120.5(3)
C(13)-C(14)-C(15)	121.1(3)
C(13)-C(14)-C(19)	119.5(3)
C(15)-C(14)-C(19)	119.4(3)
C(16)-C(15)-C(14)	121.5(3)
C(15)-C(16)-C(17)	119.3(3)
C(18)-C(17)-C(16)	121.0(3)
C(17)-C(18)-C(19)	121.6(3)
C(18)-C(19)-C(14)	117.2(2)
C(18)-C(19)-C(10)	122.9(2)
C(14)-C(19)-C(10)	119.9(2)
C(25)-C(20)-C(21)	116.2(2)
C(25)-C(20)-B(1)	119.2(2)

C(21)-C(20)-B(1)	124.5(2)
C(22)-C(21)-C(20)	121.0(2)
C(22)-C(21)-C(27)	116.6(2)
C(20)-C(21)-C(27)	122.3(2)
C(23)-C(22)-C(21)	122.6(2)
C(24)-C(23)-C(22)	116.8(2)
C(24)-C(23)-C(28)	121.8(2)
C(22)-C(23)-C(28)	121.4(3)
C(23)-C(24)-C(25)	122.6(2)
C(24)-C(25)-C(20)	120.5(2)
C(24)-C(25)-C(26)	116.6(2)
C(20)-C(25)-C(26)	122.8(2)

Table S41. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for **6**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U33	U ²³	U13	U12	
B(1)	30(1)	31(2)	33(2)	-1(1)	6(1)	3(1)	
C(1)	37(1)	30(2)	38(2)	1(1)	4(1)	-4(1)	
N(1)	35(1)	35(1)	34(1)	-5(1)	10(1)	-2(1)	
C(2)	43(2)	46(2)	42(2)	0(1)	2(1)	2(1)	
N(2)	39(1)	38(1)	37(1)	-4(1)	12(1)	0(1)	
C(3)	46(2)	57(2)	39(2)	4(1)	-6(1)	2(1)	
C(4)	52(2)	48(2)	45(2)	2(1)	-1(1)	-4(1)	
C(5)	54(2)	41(2)	37(2)	-6(1)	11(1)	-9(1)	
C(6)	45(2)	32(2)	31(1)	-2(1)	8(1)	-9(1)	
C(7)	40(2)	46(2)	57(2)	-7(2)	16(1)	7(1)	
C(8)	33(1)	48(2)	60(2)	-13(2)	11(1)	6(1)	
C(9)	31(1)	44(2)	49(2)	-7(1)	7(1)	3(1)	
C(10)	31(1)	30(1)	38(2)	-1(1)	12(1)	2(1)	
C(11)	41(2)	33(2)	44(2)	-3(1)	12(1)	0(1)	
C(12)	52(2)	33(2)	60(2)	0(1)	24(2)	-3(1)	
C(13)	42(2)	36(2)	70(2)	-14(2)	22(2)	-9(1)	
C(14)	31(1)	41(2)	49(2)	-16(1)	13(1)	-3(1)	
C(15)	34(2)	56(2)	56(2)	-27(2)	7(1)	-5(1)	
C(16)	39(2)	71(2)	45(2)	-22(2)	3(1)	7(2)	
C(17)	40(2)	59(2)	35(2)	-5(1)	6(1)	6(1)	
C(18)	32(1)	43(2)	38(2)	-3(1)	8(1)	2(1)	

C(19)	28(1)	35(2)	37(2)	-10(1)	10(1)	0(1)
C(20)	27(1)	31(1)	28(1)	-2(1)	3(1)	1(1)
C(21)	27(1)	33(2)	31(1)	-1(1)	2(1)	2(1)
C(22)	33(1)	33(2)	38(2)	4(1)	6(1)	-2(1)
C(23)	33(1)	44(2)	35(2)	3(1)	6(1)	-4(1)
C(24)	31(1)	43(2)	32(1)	-7(1)	7(1)	0(1)
C(25)	28(1)	37(2)	31(1)	-4(1)	5(1)	0(1)
C(26)	41(2)	36(2)	55(2)	-4(1)	17(1)	2(1)
C(27)	44(2)	29(2)	51(2)	-3(1)	14(1)	2(1)
C(28)	51(2)	59(2)	54(2)	11(2)	21(2)	-3(2)

Table S42. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **6**.

_

_

Х	у	Z	U(eq)	
3994	3505	4783	53	
3181	3458	3661	59	
4917	2734	3008	60	
7467	1974	3482	53	
10427	1435	4242	56	
12267	1163	5325	56	
10628	1702	6166	49	
7539	4625	5066	46	
9291	6058	5391	56	
10979	6072	6402	58	
11960	5229	7467	59	
11941	3837	8172	63	
10130	2415	7873	54	
8394	2380	6877	45	
4802	-265	6437	42	
3157	2554	6909	43	
3673	4067	6402	65	
4738	4074	5832	65	
5650	4170	6575	65	
7946	243	5846	61	
6603	467	5202	61	
6336	-490	5672	61	
	x 3994 3181 4917 7467 10427 12267 10628 7539 9291 10979 11960 11941 10130 8394 4802 3157 3673 4738 5650 7946 6603 6336	xy 3994 3505 3181 3458 4917 2734 7467 1974 10427 1435 12267 1163 10628 1702 7539 4625 9291 6058 10979 6072 11960 5229 11941 3837 10130 2415 8394 2380 4802 -265 3157 2554 3673 4067 4738 4074 5650 4170 7946 243 6603 467 6336 -490	xyz 3994 3505 4783 3181 3458 3661 4917 2734 3008 7467 1974 3482 10427 1435 4242 12267 1163 5325 10628 1702 6166 7539 4625 5066 9291 6058 5391 10979 6072 6402 11960 5229 7467 11941 3837 8172 10130 2415 7873 8394 2380 6877 4802 -265 6437 3157 2554 6909 3673 4067 6402 4738 4074 5832 5650 4170 6575 7946 243 5846 6603 467 5202 6336 -490 5672	xyzU(eq) 3994 3505 4783 53 3181 3458 3661 59 4917 2734 3008 60 7467 1974 3482 53 10427 1435 4242 56 12267 1163 5325 56 10628 1702 6166 49 7539 4625 5066 46 9291 6058 5391 56 10979 6072 6402 58 11960 5229 7467 59 11941 3837 8172 63 10130 2415 7873 54 8394 2380 6877 45 4802 -265 6437 42 3157 2554 6909 43 3673 4067 6402 65 4738 4074 5832 65 5650 4170 6575 65 7946 243 5846 61 6603 467 5202 61 6336 -490 5672 61

H(28A)	2171	1051	7382	80
H(28B)	3437	78	7499	80
H(28C)	1937	72	6889	80

S8: References:

- 1) Das, A.; Ghosh, I.; König, B. Chem. Commun. 2016, 52, 8695–8698.
- 2) Wang, L.; Ji, E.; Liu, N.; Dai, B. Synthesis. 2016, 48, 737–750.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. H.; Nakatsuji, M.; Caricato, X.; Li, H. P. F.; Hratchian, A.; Izmaylov, J.; Bloino, G.; Zheng, J. L.; Sonnenberg, M.; Hada, M.; Ehara, K.; Toyota, R.; Fukuda, J.; Hasegawa, M.; Ishida, T.; Nakajima, Y.; Honda, O.; Kitao, H.; Nakai, T.; Vreven, J. A.; Montgomery Jr., J. E.; Peralta, F.; Ogliaro, M.; Bearpark, J. J.; Heyd, E.; Brothers, K. N.; Kudin, V. N.; Staroverov, T.; Keith, R.; Kobayashi, J.; Normand, K.; Raghavachari, A.; Rendell, J. C.; Burant, S. S.; Iyengar, J.; Tomasi, M.; Cossi, N.; Rega, J. M.; Millam, M.; Klene, J. E.; Knox, J. B.; Cross, V.; Bakken, C.; Adamo, J.; Jaramillo, R.; Gomperts, R. E.; Stratmann, O.; Yazyev, A. J.; Austin, R.; Cammi, C.; Pomelli, J. W.; Ochterski, R. L; Martin, K.; Morokuma, V. G.; Zakrzewski, G. A.; Voth, P.; Salvador, J. J.; Dannenberg, S.; Dapprich, A. D.; Daniels, O.; Farkas, J. B.; Foresman, J. V.; Ortiz, J.; Cioslowski, J.; Fox, D. J. Gaussian 09 Revision C.01, 2010.
- 4) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37, 785-789. (b) Becke, A. D. J. Chem. Phys., 1993, 98, 1372-1377. (c) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- (a) Schaefer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571-2577. (b) Schaefer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829-5835.
- 6) Mellerup, S. K.; Li, C.; Peng, T.; Wang, S. Angew. Chem. Int. Ed. 2017, 56, 6093–6097.
- Mellerup, S. K.; Li, C.; Radtke, J.; Wang, X.; Li, Q-S.; Wang, S. Angew. Chem. 2018, 130, 1–6.
- Leazer Jr., J. L.; Cvetovich, R.; Tsay, F. -R.; Dolling, U.; Vickery, T.; Bachert, D. J. Org. Chem. 2003, 68, 3695–3698.

- 9) Dorkó, E.; Varga, E.; Gáti, T.; Holczbauer, T.; Pápai, I.; Mehdi, H.; Soós, T. Synlett. 2014, 25, 1525–1528.
- 10) Data used in creating the predicted UV/Vis spectra generated by GaussSum V2.2: O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. *J. Comp. Chem.* **2008**, *29*, 839–845.
- 11) SHELXTL, version 6.14; Bruker AXS: Madison, WI, 2000–2003.