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Conditional Filtering [Thuburn et al., 2018]
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» Each location of the continuous fluid is given one of a number of labels,
depending on the model complexity. Eg:

Io(x.1) 1 if fluid is in stable atmosphere
X7 = .
0 0 otherwise
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> Apply a spatial filter, for example averaging over grid boxes:

O; I;

pi = Lip
piw; = Ipu
pi6; lip6

» Derive equations of motion for each fluid and parametrise interactions



Conditionally Filter the Compressible Euler Equations

doipiu; i — Qo=
7;; +V- (aipiuw; + Fgi) + ¢, lipOVE — oipig = Y (0jpju;Sji — 0ipiw;Sy)
J#i
J0:0;
a’tp’ +V- (o) = Y (ip;Sji — 0ipiSiy)

J#

d0;p;6; .

la? ‘+V- (O'ipiuiei +FS’F) =Y (0jp;8;Sji — 0ipiBiSiy)
J#i

Note sub-filter scale fluxes (due to non-linearities):

Iipu® = o;pu;6; Jng'F
Lipuud = o;puu;+ FglF

Assume that pressure is uniform between fluids and that:
L,pOVr =0;p;6,Vr+ Z o;0;d;; + Fgllé
J#i
> d;j is drag exerted by fluid j on fluid i
> 0;p;S;; is mass transfer rate from fluid 7 to fluid j
» Straightforward to do the same for moisture variables



Advective Form

Need to solve in advective (or vector invariant) form to avoid problems when
o; — 0 and for bounded advection of o;. Ignoring sub-filter-scale fluxes:

au,- O:0;
5 +u;-Vu; = -2Q xu; —cpeiVn+g+Z ( J'p{Sii(uj —w;) D,;,')

j#i \OiPi
doip;
5 tp +V-(cipiw;) = ) (0jp;Sji — 0ipiSy)
J#i
26; O;pj
at‘f'ui'vei:;( ]l jiSﬁ(ej_ei))

Equation of State ponFTK = Rp;0; = RpO = RY ; 0ip;0;



Numerical Solution [Weller and Mclntyre, submitted]

» Finite Volume Advection

> Bounded advection of o;p; (TVD scheme with van-Leer limiter)
> 0; and u; advected using using flux form operators:

u; - Vei =V. (Gilli) — 6,-V -u;
» Lorenz C-grid staggering
» Semi-implict: implicit acoustic waves

> Velocity and density in each fluid expressed as a function of Exner pressure, 7
> Substituted into continuity equation to get Helmholtz equation for &



Rising Bubble, two fluids with different initial conditions

» No transfer terms, stabilisation or ~ sw0
sub-filter fluxes

» Two initially hydrostatically
balanced, stationary fluids

» Fluid 0 (stable fluid):

2500 +

> 6p =300K

0.5 circle near the ground
> 0y =

1 elsewhere

» Fluid 1 (buoyant fluid): 4
{300K+ 6’ in circle . =
=

2500

300K elsewhere E]m
> 01 = {

0.5 circle near the ground
0 elsewhere



Stabilisation

» If we ignore sub-filter scale fluxes, drag and mass transfers then these
equations are ill posed [Stewart and Wendroff, 1984]

Effective stabilisation options:



Stabilisation

» If we ignore sub-filter scale fluxes, drag and mass transfers then these
equations are ill posed [Stewart and Wendroff, 1984]

Effective stabilisation options:
» Diffusion between fluids (diffuse o;) Weller and Mclntyre [submitted]

K
GipiSij = —- max (V* (gp; — oipi) , 0)



Stabilisation

» If we ignore sub-filter scale fluxes, drag and mass transfers then these
equations are ill posed [Stewart and Wendroff, 1984]

Effective stabilisation options:
» Diffusion between fluids (diffuse o;) Weller and Mclntyre [submitted]

K
GipiSij = —- max (V* (gp; — oipi) , 0)

» Drag between fluids

o; Cpp
Dij:*] DP
Pi T

[u; — ;| (0; —w;)



Stabilisation

» If we ignore sub-filter scale fluxes, drag and mass transfers then these
equations are ill posed [Stewart and Wendroff, 1984]

Effective stabilisation options:
» Diffusion between fluids (diffuse o;) Weller and Mclntyre [submitted]

K
GipiSij = —- max (V* (gp; — oipi) , 0)

» Drag between fluids

o; Cpp
Dij:*] DP
Pi T

u; —wj| (u; —w))
» Remove divergence local to just one fluid: Weller and Mclntyre [submitted]
1
oipiS; = EmaX(GijV'llj— o;piV-u;, 0)

leads to a bounded transport equation for o;



Stabilisation
» If we ignore sub-filter scale fluxes, drag and mass transfers then these
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Effective stabilisation options:
Diffusion between fluids (diffuse o;) Weller and McIntyre [submitted]

v

K
GipiSij = —- max (V* (gp; — oipi) , 0)

» Drag between fluids
O; CDi
Dy = =P w0 w)
» Remove divergence local to just one fluid: Weller and Mclntyre [submitted]
1
oipiS; = EmaX(GijV'llj— o;piV-u;, 0)

leads to a bounded transport equation for o;

v

Diffusion of vertical velocity (a sub-filter-scale flux) (John Thuburn)



Stabilisation by removing divergence local to one fluid

Continuity equation:

8’:)1 +V-(oipwi) =) (0jp;Sji — 0ipiSy)
J#i
Transfer converging fluid:
1
O'ip,'S,'j = E max (G,p]V ‘0 — G,-p,»V -, 0)

leads to a bounded transport equation for o;



Stabilisation by removing divergence local to one fluid

Continuity equation:

8’tpl +V-(oipiw;) =Y (0p;Sji — 0ipiSis)
J#
Transfer converging fluid:
1
O'ip,'S,'j = E max (G,p]V ‘0 — G,-p,»V -, 0)

leads to a bounded transport equation for o;

do;p;i
ot

+u; 'V(Gipi) = —%pV-u
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Stable treatment of transfer terms

The transfer terms can be large ..
» Operator splitting to ensure boundedness
» Implicit treatment for stability (%Sﬁ — o0 as o;p; — 0)
» Conservation of mass, momentum and heat on transfer
» Kinetic energy diminishing on transfer

For example for 6;:
Advection: 0/ =0"— At{(l —a)u!- Vo' + o) Ve{}
G. .
Transfers: 6/ =0/ + Ay ﬁ S;i (Gin+1 _ 6jn+1)

i OiPi
Shorthand: T;; = At%Sji and re-arrange for i =0, 1,2:
1+ To1 +Too —To1 —To2 gyt 0,
—To 14+Ty0+T2 T 6{1+1 = 91/

—Ta =Ty 1+ T2 + T2 oyt 0;



Drag Between Fluids

From formula for drag on a rising o
bubble

DU—qC——|u,—uJ|( —uj) w0 L
Te Pi

r. = bubble or plume radius.

As o; becomes small we need r. to
become small so that the drag is large

and the vanishing fluid moves with |
the mean flow:

5000 r

Ve = max rmirn Fmax H O; 75000 72500 2500 5000

1
: @@-.. (=]

Try Cp =1, rmin = 100m, rppax = 2000m



Diffusion Between Fluids

» Similar to convective entrainment

» Diffusion coefficient, K5, could be
chosen based on wind shear

K
OipiSij = 76 max (V? (gjp; —

» Total mass is not diffused
» Will control oscillations in &
» Try Kg =200 m?s~!
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Transfer Converging Fluid

» Removes divergence that is local to o
one fluid

» Equation for 6; becomes bounded
> 0;p;S; =

I max (0;p;V -u;— 6;p;V -w;, 0)
» No arbitrary coefficients

7500

5000

2500

—5000 —2500 2500 000

@@-88 axo



Mass Transfer based on Buoyancy Perturbations for
Convection

» Positive 6y anomalies should be 10000
transferred to fluid one

» Write this in terms of PDEs

7500
» How do we diagnose this without

using a reference state?
5000
V2 2
—Kg—2 when V-0y <0
SOl _ { %] [ 0

otherwise 2500 - @

O

v2e 2
S0 = {Kg 911 when V=6; >0

0 otherwise

*5000 *7500 7500 5000
. " @8-.. (=)
» Divergence transfer to stabilise

» Simulation using 6p = 0 everywhere initially
» Warm anomaly initially in fluid O
» Kg =10% m2s~!



Conclusions

» Stable numerical method for solving advective form multi-fluid equations
» Forms of stabilisation:

» Diffusion of mass between fluids
> Drag between fluids
» Transfer converging fluid - no parameters to set

» To mimic convective parameterisation, transfer based on Vv2g;
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