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Context: representation of mixing in PBLs

> Reynolds averaging (¢ = (¢) + ¢')
O (p)=...+ div(<u/¢5'>) 4.

> Diffusive approach for ”local” mixing (K-theory)

=- Boundary layer approximations: horiz. homogeneity and eddy diffusion
(w'¢"y = —K0. (¢) — O {p) = ...+ 0-(KO. () + ...

— Down-gradient fluxes o 1-a
— Turbulence acts as a "mixing” T S

> Mass flux approach for “non-local” mixing e 0%
(e.g. Chatfield & Brost, 1987; Siebesma, 2007) (/q\ %\ Tubuen
- diffusit

\\\\\\

(W'e') = —KO: (p)+awu(pu—(d)) — 0 (¢) = 0-(K0: (¢)) — 0:(owy (§))+..

= advection-diffusion operator to parametrize unresolved scales in PBLs and
beyond (e.g. internal wave breaking or convective adjustment) J
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Context: representation of mixing in PBLs

Standard schemes to provide K:
¢ 0-equation: algebraic computation of the eddy parameters from bulk properties
e 1-equation: prog. eqn for turbulent kinetic energy (TKE) + diagnostic mixing length
e 2-equations: prog. eqn for TKE and for a "generic” length scale (¢, w, ...)

The resulting turbulent viscosity/diffusivity K
— strongly varies spatially (internal & boundary layers), i.e. large values of %

— depends nonlinearly on model variables

. . . . . KAt
— induces stiffness i.e. large vertical parabolic Courant numbers o(?) = Sz

Usual approach (e.g. WRF, LMDZ, all oceanic models):

use of (semi)-implicit temporal schemes with 2nd-order FD discretization
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Context: standard approach

» What could be wrong with second-order scheme in space ?
- Nothing . . . if pure diffusion (i.e. with constant K) is considered
2
9. (K9.¢)\? = 0. (Kd.¢)x + % {Ka;‘¢} +0(A2Y)

- butwith Pe(m) = 222K g >

1
0. (K0.¢)(°» = 0-(K0:6)+ 5 0 (K [Pe<2>az¢ +24AzPeM8%p + 2Az2a§¢])+omz4)

* What could be wrong with (semi)-implicit scheme in time ?
- Lack of monotonic damping (e.g. Manfredi & Ottaviani, 1999; Wood et al., 2007)
possibly leaving noise uncontrolled (+ trigger conv. adjust.)
- Inexact damping for large o(2)

- O(At) errors in coupling with physical parameterizations
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Impact on model solutions

numerical vs exact damping rate Sensitivity to At and Az
Implicit euler + C2 Solution after 30 hours
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Maps of K/K™"™ from oceanic realistic simulations

o Kmum g the diffusivity in the continuous equation
with same damping as the numerical damping

o K/K™m™ > 1 = the damping seen by the model
is smaller than the theoretical damping.

(2) — ;mld _ 27
o gl4) = gmld g — Nog
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Objectives

> Have a better control of numerical sources of error independently from the
physical principles of the subgrid scheme

> Consistency between the parameterizations and the resolved fluid
dynamics (for bottom boundary condition & K(z) computation)
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Outline

1. Spatial discretization

2. Treatment of the bottom boundary condition (MO consistency)

3. Combination with time discretization

4. Combination with subgrid closure schemes
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Spatial discretization
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Objectives & motivations
Constraints

e limit ourselves to tridiagonal linear problems
¢ possibility to have a joint treatment of vertical advection and diffusion
¢ allow a finite-volume interpretation

Possible alternatives

O
> Exponential Compact scheme R
(e.g-McKinnon & Johnson, 1991; Tian & Dai, 2007) hi O [
@)

— Specifically designed for accuracy with large Peclet numbers

> Padé compact finite volume discretization

General form of the discretization

Ky dy. — Ky 1/0dp_
8, (K8, ) = +1/2 +1/2hk 1/2 1/2, dk+1/2 = (az¢)k+1/2

for standard discretization: dj. 1 /2 = (¢x+1 — ¢x)/h (h : vertical layers thickness)
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Parabolic splines reconstruction

Suppose a given set of {¢,,k =1,..., N} and
assume a subgrid parabolic reconstruction
hg h
B(6) = ag® + b + c, 56}—7’“ 7’“[

under the constraints

1 by
. _%¢(§)d£=¢k

* 0:0(+hi/2) = dpy1/2, 0:0(=hi/2) = dp_12

+ Impose the continuity of ¢ at cell interfaces :

Drt1 — Pk

1 2 1
—d —d, —dp,_
6 k+3/2+3 k+1/2+6 k—1/2 = h

v

¢ necessitates inversion of an implicit linear system of equations
e compact accuracy (4th-order for advection, 2nd for diffusion)
¢ Widely used for vertical advection in oceanic models
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Compact Padé Finite Volume methods
Lele, 1992; Kobayashi, 1999

Unknowns : derivatives dk+% on cell interfaces, for m,n € A’

i=1

m m 1 n o n o
Zaidk—i-%—i +dy1+ Zaidk—i-%—i-i = (Z Vi Phts — Z’Yj¢kj+1>
i=1 j=1 j=1

e For (m,n) = (1,1):a1dk7% +dk+% +o¢1dk+% =7 (¢k+1h—¢k)

(a1,m) = (35

5) — 4th-order discretization of d,, L1 (for K = cste)
2
alv 71 (

10
% g — equivalent to parabolic splines reconstruction.

¢ Can be reinterpreted in terms of subgrid reconstruction as parabolic splines
¢ Flexibility provided by o and ~ parameters
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Effective viscosity/diffusivity

wavelength
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« At this point relevant only for internal layers
— not directly applicable to turbulent boundary layers

e lllustration : stationary problem

62 (K(Z)82¢) = pcp
¢(0) = ¢bot
19h 300
¢ ( 20‘°1) Grop 2

with

()_"5(15*

R(z) = Ro (ae*z/@ +(1-
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(hbl - Z) + Kmol

a)efz/ﬁ)

mixing discretization

C2 (dz=50m)

Padé 4th-order (dz=50m)
C2 (dz=5m)

Padé 4th-order (dz=5m)
C2 (dz=1m)

Padé 4th-order (dz=1m)
C2 (dz=50cm)

Padé 4th-order (dz=50cm)
analytical

17 172 174 176 178 18



Treatment of the bottom boundary condition (MO consis-
tency)
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Treatment of boundary cells (neutral case)

Dirichlet boundary condition is never applied in practice
— replaced by a flux condition consistent with wall laws

impose regular
/ transition
hy FDi hy = hy -
.A/ 65‘ - MO + viscous layers|
© )
MO layer } Constant flux MO + viscous layers|
Fxo Z = Zsfe — ﬁ 2z = Zgpe
Knowledge of local " Knowledge of local
value and gradient value and gradient
Current practice Possible FV alternatives
Current practice : FV approach with hq = dg :
0z (kl¢xl(z + 24)0:¢) = 0 0z (klp«l(z + 24)02¢) = O
¢(Z*) = Xsfc Zsfc =  Xsfc
o(h1/2) = ¢ d(h1) = ¢3/2
CRES) (1+2)
$(2) = (91 = Xste) | =% | FXste #(2) = (¢3/2 — Xsfc) s +Xsfe
ln(i—i-é) ln(l—l—z—*l)
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Treatment of boundary cells with Parabolic splines

2nd-order polynomial subgrid reconstruction for z €] — &, M| :
6(x) =B + (dk+1/2‘;dk—1/2)z+dk+1/2—dk 1/2 ( )

Usual treatment of boundary cell (with Dirichlet B.C.)

MY _3 f ! ! 61— x
¢ ( ) 1= d1/2 G dsr2 = Xste = gdijpt pdsn = 1T8fc

Alternative treatment
(14 %)
n (1+22)

P(z) = (¢3/2 — Xste) ( ) + Xsfc = d3/2(h1 + z*)ln (1 + zi) + Xsfc

h . .
— dyjp =dz)o (1 + —) (consistant with constant flux layer)
Zx

1 1 Zx h 627Xsfc . .
—d - 1+ —)In(1+ — ||dsyo = —=—"— (impose regularit
ﬁ65/2+[3+(+h)n(+z*)] 3/2 ¢ (impose regularity)
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Treatment of boundary cells with Parabolic splines

» Asymptotics :
Resolved case (combining the first 2 lines of the matrix)

$2 — Xsfc

1 5 1
gds/z + éds/z + §d1/2 = W

Unresolved case (for h — 0)

1 1 h ¢ — Xsfc
e (o )5

2dy/at+3di)n

Smooth transition between the unresolved and the resolved limit.
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A numerical example (with z, = K01/ (x|¢+]))

500

400

300

200

100

w/o Surface layer

with Surface layer

C2 (dz=50m)
- Padé 4th-order (dz=50m)
C2 (dz=5m)
Padé 4th-order (dz=5m)
C2 (dz=1m)
Padé 4th-order (dz=1m)
C2 (dz=50cm)
-- Padé 4th-order (dz=50cm)
analytical

- P splines (dz=50m)

- P splines (dz=5m)

- P splines (dz=1m)

- P splines (dz=50cm)

C2 (dz=50m)

C2 (dz=5m)
C2 (dz=1m)
C2 (dz=50cm)

analytical

1
16.8 17 17.4

¢
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Combination with time discretization
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Combination with implicit time discretization

Combine Padé-type schemes with implicit Euler :
8n+1 an«kl
+1 +1 +1  _ _Prt1 — Pk
O‘dZ+3/2 + dZ+1/2 + O‘dz—l/z =7 h
—-n+1 Pl At m+1 m+1
[oIn = ¢+ W [Kk+1/2dk+1/2 = Kk—1/2dk_1/2] + At rhsy,
—n+1 — At
Pri1 = Gpp1t o [Kk+3/2d21;/2 = Kk+1/2d2111/2] + At rhsy 1

to end up with the following single tridiagonal problem

a  Kppzpdt o 1 K148\ a  Kp_ipA4t\
(-5 ) + (2= it (5 - 2585t
_ $Z+1 — P n At

h T(rhslﬂ_l — rhsy)

* easy to generalize for non-constant grid-size
e The tridiagonal solve provides the flux and not ¢
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Temporal discretization for diffusion

Relevant properties for a well-behaved numerical solution
(e.g. Manfredi & Ottaviani (1999); Wood et al. (2007))

¢ Unconditional stability

* Monotonic damping (damping increases with increasing wavenumber, i.e. 9g.A < 0)

Non-oscillatory (i.e. A > 0)

* Proper control of grid-scale noise Vo (2

— Convergence & stability are often not sufficient
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Temporal discretization for diffusion

Existing alternatives :

1. Crank-Nicolson : ill-behaved for large time-steps
— short wave-lengths not damped efficiently

2. 2nd-order "Padé” 2-step scheme (e.g Manfredi & Ottaviani 1999; Wood et al. 2007) :

(1+a(KAYK?)¢* = (1 +b(KAt)E?)¢" a = 1+v2,
(1+b(KADE) " = ¢ b 1+1/V2

3. Diagonally-implicit RK (e.g Nazari et al., (2013,2014))

O = g4 (KAt)k2 a1 ¢

6@ = ¢+ (KADR (216D + a226?)

¢ = ¢"+ (KADK (as16") + az20® + assp®)
ot = " 4 (KAOE (b1 + bag® + bsp™®)
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Temporal discretization for diffusion

Existing alternatives :

2. 2nd-order two-step scheme
3. Diagonally-implicit RK

50h 10h 4h 2h 50h 10h 4h 2h
1.0
o =1/10 o?=12| —— Exact
<08 === Imp. Euler (C2)
g N —— RK3opt (C2)
& S -—— é
5 06 N Padé (C2)
B RN
Soa \‘\\1\‘
s Y\ e
£o2
o
10
=1 o2 =5
<os8
s
T
Sos
] 0
B RN N
Soa N R
£ S
2 RS \
f02 Smmea S
\\\"'"""‘-\nm_..
o. (3 3
T3 % no § T3 o«
6=kh 6=kh

e Preserves qualitatively the features of the original equation
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Temporal discretization with FV Padé scheme

lllustration with implicit Euler scheme :

A(0(2),0): 1+ 2ccosb -
1+ 2acos + 4o (sin 5)?
. -1
e 2nd-order accurate in space : o = FYT

o Vv #0,80A <0 — non-oscillatory if A(c®,7) >0

» Two possibilities :
AP m)=0 - vy =2

. . 6
- 2nd-order in time, 4th-order in space — v = ————
5 —60(2)
Implicit Euler + C2 Implicit Euler + Padé FV (v = 2, a = 1/2)
1 1

A

A=17 40@sin(0/2)? ~ 1+ 40@tan(0/2)2
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Temporal discretization for diffusion

50h 10h 4h 2h 50h 10h 4h 2h
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o v/ N ST
X F T
S
6=kh 6=kh

— Padé FV scheme provides flexibility in the spatial
discretization to counteract time discretization errors.
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— Exact

=== Imp. Euler (C2)

—— Imp. Euler (y=2, a=%)
=== Imp. Euler (2,4)

Damping error for v = 2and oo = 1/2

wavelength
50h 10h 4h 2h
5
Exact
+ 2"-order centered
Padé PV (y=2,a=3)
2
1
T [ 3n
0 i g Ed n




Combination with subgrid closure schemes
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Mathematical stability of closure models (e.g. Deleersnijder et al., 2009)
* An example : analogy with a local Ri-dependent model

Ohp = 0. (K(2)0:0),  K(z)=(0:¢)""

> K(z) >0 — ¢ remains bounded
> Original equation can be reexpressed as

8 (9:0) = O- (z?(z)az (az¢)) . K(2) = —(8.¢)2

— the gradient can grow unbounded
e Numerical test: ¢(z,t =0) =2, ¢(z = —1,t) = -1, 9p(z =1,t) =1

to + 10At to + 20At to + 30At to + 100A¢ to + 250A¢
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Mathematical stability of closure models (e.g. Deleersnijder et al., 2009)

* An example : analogy with a local Ri-dependent model
Op = 0: (K(2)0:0),  K(2) = (8:9)"
> K(z) >0 — ¢ remains bounded
> Original equation can be reexpressed as
0 (0:9) = 0 (K(2)0: (9:0)) . K(2) = —(0:0)2

— the gradient can grow unbounded

¢ |ll-behaved solution due to the continuous formulation of the closure model and not
to the details of its numerical discretisation

— 0-equation closures are hard to study since it can change the diffusive nature of
the equation

* More generally, spurious oscillations generally noticed are of a mathematical or a
numerical nature ?
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Energetic consistency — mixing terms vs turbulent closure

For X-equation closures with X > 0 a global energy budget can be derived

—H
—H

— K (t9zu)2
Ks 0,b

Ou — 0, (Kmdsu)
Otb — 8, (K0,b)

o 0, KE — 0. (K, 0.KE)
0 0, P — 8, ((—2)K,0.b)

HTKE — 8, (K8, TKE) = P+ B — ¢
Energy budget in a water column (ignoring the contribution of B.C.) :

Zto Ztop
E=| (KE+PE+TKE)dz: — &E= —/ edz

Zbot Zbot

» The discrete counterpart of it tells you exactly how to discretize forcing
terms in the TKE equation
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Wind-induced deepening of boundary layer

Kato & Phillips : On the penetration of a turbulent layer into stratified fluid, J. Fluid Mech., 1969
Price : On the scaling of stress-driven entrainment experiments, J. Fluid Mech., 1979

> Single column experiments with 0-equation closure (KPP, Large et al., 1994)

- Use subgrid reconstruction to detect critical Ri-number
- "Energy consistent” discretization of the Richardson number

Standard approach Implicit Euler + FV Padé (o = 1/2, v = 2)

Solution after 30 hours Solution after 30 hours

0 o
-10 -10
E -20 E -20
£ £
a =
@
Q -30 8 -3
—40 40 nz=75, dt=360 s
nz=750, dt=360 5
nz=75, dt=1800 s
_s0 _s0 nz=75, dt=3600 s
135 14.0 145 15.0 155 0.00 0.01 0.02 0.03 135 140 145 15.0 155 0.00 0.01 0.02 0.03
Temperature [Celsius] Turbulent viscosity [m? s71] Temperature [Celsius] Turbulent viscosity [m? s71]
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Summary

» Padé FV approach provides a good combination of simplicity and flexibility
to handle diffusive terms with minimal changes in existing codes

- Allows a good combination with surface layer param. and existing
time-stepping

- Provides degrees of freedom to mitigate numerical errors in time or to impose
desired properties

» Simple single column test (Kato & Phillips) indicates a reduced sensitivity
to numerical parameters
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Perspectives

» Nonlinear stability (inputs on known pathological behaviors are welcome)

Bottom boundary condition
- Neutral case — stratified case

Single column tests & global ocean simulation within NEMO

» Add representation of oceanic molecular sublayer + MO layer in the top
most oceanic grid box for OA coupling purposes (e.g. Zeng & Beljaars, 2005)
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