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Introduction Dynamics versus Physics

Dynamics versus Physics

Dynamical core – inviscid dry Euler equation, which includes
Advection of momentum and passive traces
Pressure gradient
Gravitational term
Coriolis term

Physical parameterizations
"Turbulent" diffusion
Surface fluxes, temperature and moisture in the soil
Phase transfer (microphysics)
Falling hydrometeors
Radiation depending on phase state of the atmosphere
Convection, large scale vertical redistribution

All together we should have a well-defined "mathematical" model and
look for suitable numerics
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Introduction Dynamics versus Physics

Numerical schemes for DyCore

How good are methods for a dry numerical core for a "full" model
formulation

Full Eulerian (finite differences/volumes/elements)
Spatial low order methods, most of the codes
High order discontinuous Galerkin methods and special methods for
source terms
Semi-Lagrangian methods and their large time steps are corroborated
by fast physics
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Smooth parameterization General principles

Parameterization should be suitable for "smooth" time integration
Right hand sides differentiable with respect to state variables
IF THEN ELSE constructs, MAX, MIN are problematic for numerical
differentation
No adhoc change of state variables
Non-prognostic parameterization are hidden constraints like
incompressibility
New trend prognostic convection schemes
No hidden time constants (Relaxation) and time steps and time
derivatives (e.g. vertical acceleration)
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Smooth parameterization Condensation

Replace saturation adjustment by a "smooth" process
Burmeister-Fischer function

ϕ(a, b) = a + b −
√

a2 + b2 .

with the property

ϕ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0 .

In our case we take
a ≡ %∗v (T )− %v

und
b ≡ %c ,

The phase transition term is now

1
trelax

Qph(%v , %l ,T ) =
1

trelax

(
%∗v (T )− %v + %c −

√
(%∗v (T )− %v )2 + %2

c

)
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Smooth parameterization Condensation

Two case
%v > %∗v (T ) than Qph<0 and condensation
%v < %∗v (T ) and %c > 0 than evaporation

Positive supersaturation possible, depends from relaxation time (cf.
Reisner)
Negative %c is "coming" back
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Smooth parameterization Diffusion,Boundary layer, Drag

Move to prognostic mass flux schemes
Boundary layer diffusion schemes and drag parametrizations are a
naturally part of the numerics of the the dynamical core
Transport in the upper soil layers and water levels can also be included
In other areas we are solving advection-diffusion-reaction equations
In the vertical diffusive fluxes are larger than resolved vertical
movement
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Runge-Kutta like methods

Method of lines

Method of lines approach, spatial approximation leads to the time
integration

ẏ = F (t, y)

or with splitting in sub-problems

ẏ =
∑
i

Fi (t, y)
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Runge-Kutta like methods Runge-Kutta methods

ki =∆tF (yn +
s∑

j=1

aijkj), i = 1, . . . , s

yn+1 =yn +
s∑

i=1

biki

or

Yi =yn + ∆t
s∑

j=1

aijF (Yi ), i = 1, . . . , s

yn+1 =yn + ∆t
s∑

i=1

biF (Yi )

Explicit methods for aij = 0 for j > i

Error control and adaptive time step selection possible
A lot of modifications
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Runge-Kutta like methods Partitioned Runge-Kutta

ki =∆tF1(yn +
s∑

j=1

aijkj +
s∑

j=1

âij lj), i = 1, . . . , s

li =∆tF2(yn +
s∑

j=1

aijkj +
s∑

j=1

âij lj), i = 1, . . . , s

yn+1 =yn +
s∑

i=1

biki +
s∑

i=1

b̂i li

or

Yi =yn + ∆t
s∑

j=1

aijF1(Yi ) + ∆t
s∑

j=1

âijF2(Yi ), i = 1, . . . , s

yn+1 =yn + ∆t
s∑

i=1

biF1(Yi ) + +∆t
s∑

i=1

b̂iF2(Yi )

IMEX methods for aij = 0 for j > i
Again a lot of modifications
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Runge-Kutta like methods Split-explicit methods

Classical split-explicit methods for the dynamical core can be written
as partitioned Runge-Kutta methods with splitting the right hand side
with three parts
HEVI methods are a further generalization with five or even more
Runge-Kutta tableaux
Sandu and Günther and others developed the so called Multirate
General Additive Runge-Kutta methods (MGARK)
Can have final implicit stages
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Runge-Kutta like methods Rosenbrock W methods

ki =∆tF (yn +
i−1∑
j=1

aijkj) + ∆tW
i∑

j=1

γijkj , i = 1, . . . , s

yn+1 =yn +
s∑

i=1

biki

or in a matrix free form

(I − γii∆tnW )vi =∆tnF (yn +
i−1∑
j=1

ωijkj) +
i∑

j=1

dijkj , i = 1, . . . , s

yn+1 =yn +
s∑

i=1

mivi
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Runge-Kutta like methods Rosenbrock W methods

Matrix W ≈ ∂F (yn)/∂y

Convergence order does not depend on W

In practical applications γii = γ0

Mainly for stability reasons
If W is identical zero a explicit Runge-Kutta is obtained
IMEX methods with linear implicit term and diagonal form are
Rosenbrock-Methods
With F =

∑
Fi the matrix W ≈

∑
i ∂Fi (yn)/∂y
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Runge-Kutta like methods Rosenbrock W methods

Options for choice of the matrix W

Order processes with respect to time scales and include fast scales
Decompose between vertical and horizontal transport processes
Decompose W on the linear algebra level, approximate matrix
factorization (AMF)
Solve linear system approximately or with a fixed number of time steps
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Runge-Kutta like methods Structure of the W matrix for core

To reduce further computational cost the following approximation to
the Jacobian are applied
The Jacobian with respect to advection is computed for a first order
approximation in space
For a generic variable χ and advection in x-direction

∂(ρu)ρχρ
∂x

the differentiation with respect to ρ is ignored
(I − γ0∆tW ) is replaced by (I − γ0∆tWT )(I − γ0∆tWS) with
W = WT + WS

WT is an approximation to the transport part, WS is an
approximation to the sound part
Further simplifications are possible for special applications
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Runge-Kutta like methods
General structure of the W matrix with respect to the

sound part

Sound part means differentiation of the pressure in the momentum
equations with respect to the thermodynamic variables, differentiation
of the right hand side of the thermodynamic variables with respect to
momentum

WS =

 Du Du1GradD1 . . . DusGradDs

DivT1u T1 . . . 0
DivTsu 0 0 Ts


where D and T are diagonal matrices
In the anelastic cases Ti = 0
Choice of the diagonal matrices for the different formulations

Du1 D1 T1u

C 1 ∂p/∂ρθ θ

A ρ0 1 1
P ρ0θ0 1 (ρ0θ0)/ρ
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Runge-Kutta like methods
General structure of the W matrix with respect to the

sound part

Transport/source system

(I − γ∆tWAD − γ∆tWS)∆w = R

Two types of preconditioning I. With the block-lower-upper triangular
decomposition

I − γ∆tWAD − γ∆tWS = L + D + U

the linear system is preconditioned (Block-Gauss-Seidel) by

P = (U + D)−1D(L + D)−1

II. Preconditioning from the right and the left with

Pr = (I − γ∆tWAD)−1

Pl = (I − γ∆tWS)−1.

JAD stands for advection/diffusion, elements are coupled between grid
cells
JS assembles the source terms, coupling is between different
components in each grid cell
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Runge-Kutta like methods
General structure of the W matrix with respect to the

sound part

Pl(I − γ∆tWAD − γ∆tWS)Pr

can be written in the form

(I − γ∆tPlWAD)Pr = (I + Pl((I − γ∆tWAD) + I ))Pr .

Need to store only the LU-decomposition of the matrix
(I − γ∆tWS)

(I − γ∆tWAD) is inverted by a fixed number of Gauss-Seidel iterations
In the parallel case we use one cell overlap
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Runge-Kutta like methods Implementation in ASAM (All Scale Atmospheric

Split-explicit and Rosenbrock-W-methods in one code
Processes are called in an additive fashion
Each process comes with a function and a Jacobian
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