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Introduction and motivation

If a well posed problem does not exist:
@ An accurate numerical approximation can be made.
@ A stable numerical approximation can be made.
@ An accurate and stable approximation can not be made.
@ Well-posedness is the most important point in coupling procedures.
@ Once well-posedness is established, stability follows almost
automatically by using the SBP-SAT technique.

In this talk we focus on well-posedness, and its link to stability.
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Coupled problem
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Figure: A schematic of the domains and interface y = 0.
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The compressible Navier-Stokes equations

The linearized and symmetrized compressible Navier-Stokes equations are
Ut + AtUs + AUy = €(FS + G). (1)
The viscous fluxes are given by

F¢=AnUc + AUy, G = Ax U+ AxU,,

— | 5y 5y — 2T
where U = e PU PV 2
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The compressible Navier-Stokes equations

The coefficient matrices are:
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The incompressible Navier-Stokes equations

The linearized incompressible Navier-Stokes equations are:

These equations can be rewritten, using (ix + Vy)x = (dx + V), =0, as
BV: + BiVi + BV, = e(Fi + G)), (2)
where the viscous fluxes are
F''= Bi1Vix + BiaVy, G'=BnVi+ BxnV,,

and s = diag(0,1,1), V = [p, pai, pv] " .
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The incompressible Navier-Stokes equations

The coefficient matrices are:
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Interface conditions

The number of interface conditions

The energy method (multiplying the equations by UT and VT
respectively, and integrating over the spatial domains) leads to

d +L
E(HUH% +[IVII7) +2eDh + 2eDh = — , WTEW|y—odx,

Ul = [ uTueR. (VI = [ vTven
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i
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Interface conditions

The number of interface conditions

The matrix E has
@ 5 five positive eigenvalues
@ 4 zero eigenvalues

o five negative eigenvalues

4

5 interface conditions are needed.
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Interface conditions

The form of interface conditions

compressible fluid

incompressible fluid
interface

Figure: A sketch of a fluid-fluid interface seprating the two fluids.
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Interface conditions

The form of interface conditions

Physical intuition
@ Mass conservation
pu-n=—pu-n,

@ For viscous fluids, in the tangential direction, the no-slip condition

holds, i.e,
7-5=1-35,
@ Conservation of momentum
on=—&n, o=ph—er, &=ph—e€T,

where

\]
I

[ 2puy 4+ Aux + vy) p(uy + vy) }

p(uy + vx) 2pvy + Aux + vy)
. [ 2fuiiy A(dy, + ) ]
A, + %) 280,
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Well-posedness

The energy method

At the interface y = 0, we have 7= [0,1]7,7 =[0,—1]7 and 5= [1,0]"
and the interface conditions become

pv =,
u =i,
o (3)
p — 2epvy — eX(ux + vy) =p — 2€fiv,
euluy + vi) =ef(dy + )
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Well-posedness

We derive the energy rate in the semi-norm

VIR = [ VTHEveR, . H = disg(1,61.1)

i

Applying the energy method and inserting the conditions (3) leads to

i(||uuz+ | V|2 H-2¢(Dh + DI )—+/+L26ﬁﬁTT | _d
de N2 TEAER T ERIZT | iy —1) Y ly=0™
+L
—eu/ <(ﬁu—51,6ﬁ)(ux+ vy)>{ dx.
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Well-posedness

The specific choice
01

Il
RN e

yields
L Pre?(y -

d
SUVIB+IVIZ) + 261 + 2c0h = |

= one more condition is needed, as previously indicated.
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Well-posedness

The energy method

We add on the decoupled heat equation for the incompressible fluid

R

A'IN'7 Pr= MLCP.

T+ 0T +0T,) ==
P( t y) By oo

By adding the heat equation, six interface conditions are needed.

We use the continuity of temperature and fluxes across the interface

T=T, kT,=FkT,.
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Well-posedness

Updated interface conditions

i u 1 [ i
p — 2epvy — eA(ux + vy) p — 2€fivy,
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Well-posedness

The energy method

The energy rate will be derived in the new expanded semi-norm
VI = [ VTHLVIR, M = disg(1.61.1,50)
Q2
Applying the energy method and inserting the interface conditions, leads to

d .
E(HUH% + VI3, + 2¢Dh + 2¢Dly = RHS,

+L = A

p d2p

RHS = -2 7, —t— — =
e /—L y<Pr52(’Y -1)  Pr >

The specific choice
s (PY(P) _ 1
2= \p)\pPr)2( -1y
leads to RHS = 0.
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The fully discrete problem
SBP-SAT technique

U; =D:U = (D; ® I4)U = U, D: :Pt_th®IX®Iy’
Uy =Dy U = (Dy @ ly)U =~ Uy, Dy =h ® P Qu® y,
U, =D,U= (D, ® I4)U =~ U, Dy =l ® lk @ P ' Qy,
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The fully discrete problem

SBP-SAT technique

The fully discrete SBP-SAT approximation of problems (1) and (2) are
D:U+[Dyx ® A1 + Dy, ® A2]U — ¢(D«xF° +D,G) =S + Sy,
DV+[Dx @ By + Dy ® Bo]V — ¢(DF' + D,G') =§ +§,,

S and § are given by

S=(I; ® lk ® P, Ey @ I3)Z(do — d).
S =l ® e ® P, Ep ® 13)E(éps — o),
where
o= 2 ®EcIHU, éy= o Eyc l)AV.
St and St are given by
St =(Py ' Eo ® I ® I, @ I4)E5(U — ),
Se =(Pi B @ Iy @ I, ® la)ZH(V — f),
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Applying the discrete energy method leads to
||UK||%XY®,4+||VK||§W®H,4 + 2¢Dly + 2¢Dly = IF + 1T,

where
IF=U"(P:® P, ® Eg® Ay)U — 2eUT (P; @ Py ® Ey ® I)G®
+UT (P ® P ® Eo ® 14)E(do — du)
+(UT(P: @ Py ® By ® I3)Z(d0 — b)) |
~VT(P.® Py ® Ey @ HBo)V + 26V (Py @ Py @ Epp @ H)G'
+VT (P @ Py @ Epy @ H)E (@ — o)
+(VT (P @ Py ® Epy @ H)E(Gyy — ¢0)) -

(4)

F.Ghasemi & J.Nordstrém Coupled Problem PDC18 21 /31



Stability

By choosing the penalty matrices as

T=H'(loA- A;)),i: = (oH A (o A2+),

where
[0 O 0 p 0 0 T
0O 0 -1 0 0 0
0O -1 0 O 0 0
A= p 0 0 O 0 0_ — At 1+ A”
€p ’
0 0 0 0 O_ Pre2(n— 1) 20 =1)
€p
_0 0 00 Prc2(y —1) 0 i

the interface term will be non-positive, i.e. IF < 0.

v
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Stability

Proposition 2
Choosing the penalty matrices as

z‘t::—/m z;::_}:h
yields

IT=[If511,, 01 +11f0lI7, gp, — IV0— Gl 06 — Vo — foll}_ i,

<6115 e+ 1foll7

o @HIy

Proposition (1) and Proposition (2) = Stability.
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Numerical results

The rates of convergence are computed as

0,

log( £~

7
+1)’

where E; is the norm of the error between the approximated and exact
solution. NN; denotes the number of grid points at level ;.

-

q=

Zl'n

log(
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Numerical results

N=M 20 30 40 50

D 6.380  3.508  4.494  4.794
pu 5.657  2.910 3.856  4.160
pv 6.101 3.047 3.977 4271
T 4886  2.955 3.748  4.061
B 5782  3.654 4539  4.900
pi 5.432  3.108 3.852  4.160
Py 5.746  3.246 3.933 4.192
T 5.515 3.186 3.915 4.211

Table: Convergence rates at t = 1, SBP(6,3) in space, SBP(8,4) in time.
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Numerical results
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Figure: Temperature error at x = % and N =M = 20.
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Numerical results
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Figure: Temperature error at x = % and N = M = 50.
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Numerical results
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Figure: A sequence of computed temperature with for different times using
M = N = 50 grid points and third order operators.
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Numerical results
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Figure: A sequence of computed temperature with for different times using
M = N = 50 grid points and third order operators.
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Summary and conclusions

@ We have discussed the coupling of compressible and incompressible
Navier-Stokes equations

@ The decoupled heat equation was added to the incompressible
equations in order to obtain a sufficient number of interface conditions

@ It was shown that the coupled problem with the physical interface
conditions satisfy an energy estimate

@ Stability and accuracy followed immediately form the well-posedness
results using SBP-SAT technique

@ The convergence rates were verified by the method of manufactured
solutions and the results were consistent with the theory within the
SBP framework
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Thank you for listening!
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