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What are Lagrangian and Hamiltonian formulations?

In classical mechanics, there are three (equivalent) ways of
expressing dynamics, or formulations:
© Newtonian Formulation: Force Balances

F = ma

@ Lagrangian (Variational) Formulation: Lagrangian £ and
Variational Principle, canonical (Hamilton's principle,
Lagrangian coordinates), non-canonical (Eulerian coordinates,
Euler-Poincare)

_
5| Laidde =0
0

© Hamiltonian Formulation: Hamiltonian H and Poisson
Brackets/Structure {A, B}, canonical (g;, pi = % Lagrangian
coordinates) non-canonical (Lie-Poisson or curl-form,
semi-direct product), Legendre transform (may not exist!)

dF oF OH oF OH
{F.Hy=>

dt oq; opi Opi 0q;



Why use Lagrangian and Hamiltonian formulations?

Lagrangian and Hamiltonian formulations have proven useful
(amongst other things) for
@ Understanding conservation laws and circulation theorems
@ Inclusion of constraints such as semi-compressibility
© Development of structure-preserving numerical schemes
@ Systematic derivation of consistent new models and
approximations
@ Energy-Casimir theory: Pseudo-energy/momentum, finite
amplitude invariants, wave-activity conservation laws
However, until recently, restricted to reversible dynamics
Key Question: how can we extend these formulations to
irreversible dynamics, such that
—Consistent treatment of irreversible processes, in terms of the 1st
and 2nd laws of thermodynamics
—Recovers the standard approach in absence of irreversible
processes
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Assumptions, Domain and Variables

Fully compressible, multicomponent, multiphase fluid

© Predicted variables: n component densities p;, entropy density
s, relative velocity u (Lagrangian formulation), absolute
momentum m (Lie-Poisson Hamiltonian formulation)

@ General domain Q c M, with associated rotational velocity R
and geopotential ®, arbitrary equation of state

© Can get standard geophysical approximations (shallow,
traditional, spherical) by approximating R, ® and M

Key Assumptions
@ Single velocity u and temperature T for all components
@ Closed boundaries: u-ii =0 on 09

Alternative predicted variables: total density p = >.7_; p;, specific
concentrations q; = %, specific entropy 1 = %, absolute velocity v (leads
to curl-form Hamiltonian and metriplectic formulations, not discussed
further)
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Reversible Dynamics: Lagrangian Formulation

Variational Principle: Given Lagrangian L[u, p;, s|, take variations

-
5J [,[U,,O,',S]dt = Oa
0
where variations du, §p; and Js are given by
du=0:(+u-V¢—¢-Vu dpj=-V-(pi¢) ds=-V-(s()

with - =0o0n 0Q and { =0 for t =0, T. Produces the
Euler-Lagrange equations

oL (5£ oL

0 V— — sV—

tSa Zp o sV 5o =

which are supplemented with k/nemat/c equations
Otpi +V - (piu) =0 Ots+ V- (su)=0

The Lie derivative is £,m = (V x m) x u + V(u-m) + mdivu
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Reversible Dynamics: Hamiltonian Formulation (1)

Get the Hamiltonian H[m, p;, s| using a Legendre transform:
H[m, p;,s] = f u-mdx — L[u, p;, s],
Q

where m := %, where H[m, p;, s| has functional derivatives

oH oH oL oH oL
— =F"=u — =B"=—-—— — =T"=—
om (5;),' (5/),' os 55
The evolution of an arbitrary functional F[m, p;, s] is governed by
dF
— ={F,H
dt { Y }

where the Lie-Poisson bracket {A, B} is anti-symmetric, bilinear,
and satisfies the Leibniz rule and the Jacobi identity:

0A 6B 4B _4A

OA B B A JA B B A
ff" (am Voo~ om Vap,) ‘LS(am Vss‘am'vas)dx
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Reversible Dynamics: Hamiltonian Formulation (11)
Insert % into {F,H} to get general equations of motion

dem+L,m+sVT™ + > p VB =0

depi + V- (pi F™) =0 G5+ V- (sF™) =0

Anti-symmetry of {A, B} gives energy conservation

dH
— ={H,H} = —{H,H} =
= {H.H} = —{H.H} =0
The Lie-Poisson bracket also has Casimirs C[m, p;, s| that satisfy
dC
{A,C} =0 forall A— T {C,H} =0

One example is
C = L pf(n, qi)dx

where f is an arbitrary function, which has as special cases total
mass (f = 1), component mass (f = q;) and total entropy (f =)
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Reversible Dynamics: Specific Equations of Motion

For a fully compressible, multicomponent, multiphase fluid

L[u, pj, s] —f p(K+u-R—®—U)dx
Q

giving absolute momentum m = g—ﬁ = p(u+R) and

H[m, p;, s] :f p|K+®+ U]dx
Q

with internal energy U(a,n, q;), kinetic energy K = $|m — pR|?
and geopotential ®(x). Functional derivatives are

oH oH JH
= ~——=-"K-uR+®+py; —=T
om " 5,0,' u Hi s

with temperature T = %—‘sj, chemical potential pj = g—é{, and

therefore specific equations of motion are
oem+L,m—pV(K+u-R)+pVd+Vp=0
Otpi +V-(piu) =0  Os+V-(su)=0
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Irreversible Dynamics: Lagrangian Formulation (1)

Consider a fluid under the irreversible processes of phase change, heat
conduction, diffusion and viscosity. The variational formulation is

T
5J lﬁ—kZp;DtW;—k(s—a)Dt’y} dt =0
0 i

with no-slip boundary conditions u |59 = 0, and with phenomenological
and variational constraints

oL = . . .
EDtO' = 70'& . Vqujs th"Y +ZJ| 'thW[ +_],'DtW,'

3L =
< Do = =" VC+] VD + i -V Dsw; + jiDsw;

with Lagrangian derivatives Dyx = dpx + V - (ux) and Dix = 0ix +u-Vx
and variations du = 0;¢ + u-V¢{ — ¢ - Vu, dp;, s, dw;, do, 6y where
¢=0w;=8y=0fort=0,T and dy|sq = dwj|ag = 0. To pass from
the phenomenological to variational constraint, replace time derivatives
with delta variations: Dsx = dx + V - ((x) and Dsx = dx + ¢ - Vx



Irreversible Dynamics: Lagrangian Formulation (II)

The Euler-Lagrange equations are

5£ 5£ oL
(9t,0i+V'(,0iU)+V‘ji—ji= 0

oL =

< (Des+V jo) + 0" - Vutjo VT + ) (i Vi +jipi) = 0

where o' is the viscous stress tensor, ji is the diffusion flux for
component i, j; is the conversion rate for component i and js is the
entropy flux density; with boundary conditions js- A = ji-fi = 0 on
0$2; and mass control conditions ) . ji = 0 and ). j;i = 0.

Physics-Dynamics Coupling 2018 Presentation 11 /30



Irreversible Dynamics: Metriplectic Formulation

Now evolution of F[m, p;, s] is governed by

& = (FH}+ (F5)
where the metric bracket (F,S) is symmetric, bilinear and satisfies
the Leibniz rule; and S = SQS is total entropy and a Casimir of the

Lie-Poisson bracket. Also have the requirements

(H,S) = (S,5) =

The first requirement gives lst law of thermodynam/cs ‘:i';' =0,

and the second gives the 2nd law of thermodynamics f'j? =0
_[OA giyot 0B L [3B g w 0A L [ 1OAGB

AWB =] Fdve 5nt] & 5 JT(SS(SS(

0A L. . 0B 0B L. 0A
+ ZJE(—dWJi +J;)$ + ZJE(—dWJi +ji)$

1 5A . . 6B
+ZJ =5V = Jini)

I Vu—div(Tjs))

One of several possible brackets that all give the correct equations of motion

and entropy generation rate. Not quite metriplectic, would need (H,A) =0

Physics-Dynamics Coupling 2018 Presentation 12 / 30



Irreversible Dynamics: Equations of Motion

Now inserting %H into the Lie-Poisson bracket and % into the
metric bracket, where

6S _, 9S_, §S

Sm Spi 5s !
gives the equations of motion
oem+-—V.ot =
Opi+- -+ Vi ji—ji =
8t5+---+V-js—;- Vu+71_JSVT+—ZJ. Nui +jipi) = 0

It remains to parameterize the thermodynamic fluxes (o™, i, ji, js)
in terms of the thermodynamic forces (Def u = %(V u+Vv'u,
VT, Vi, i) to close system, such that the entropy generation
(S,S) = 0 is positive-definite
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Entropy Generation Rate

The entropy generation rate | is given by (5,5) = {/ as
Tl = JoXo = (0% : V) = VT + 3 (i Fpis — jisi)

where J, =(o', ji, ji, js) denotes the thermodynamic fluxes and
Xy = (Def u = %(Vu +VTu), VT, Vyu;, u;) the thermodynamic
forces. Assume a linear relationship between forces and fluxes

Jy = Z Lo sXs
B

where L, g is a matrix of transport coefficients that can depend on
m, p;,s. If L, g is symmetric positive-definite, then so is the
entropy generation rate.
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Parameterization (1)

Split o and Def u into trace-free and scalar parts as
1 1
o = o0 +5(Tr o™)5  Def u= (Def u)© + 3(V-w

with unit diagonal tensor § and trace-free o™"(®) and (Def u)(©.
Applying Curie’s principle gives separate sets of transport
coefficients for each type (scalar, vector, tensor) of process

Scalar processes (bulk viscosity, phase changes, cross-phenomena)

[Trafr] _ [[,00 on] {%V . u]
—Ji Lio L 1

Vector processes (heat conduction, diffusion, Soret and Dufour
cross effects)

Bl wlle
Ji Lis Lij||Vu,
Tensor process (shear viscosity)

o™ = 2, (Def u)©



Parameterization (I1)

1 2
fr — 2uDef u +(5 Log—=

1
3M)V'U5+ 3Z£Oiﬂi5

with shear viscosity coefficient p = 0 and bulk viscosity coefficient
¢ = %Eoo- The Onsager-Casimir reciprocal relationships give
Lsi=Ljs Lij = Lj
Loi = — Lio Lij = Lji

The mass control conditions }; ji = 0 and ), ji = 0 give

ZL,S—EL,J—O vj
Z,c,o_Zz,,_o Vj

Taken together, the mass control conditions and Onsager-Casimir
relationships ensure that L, g and L, g are positive-definite
—1>20— (5,S) = 0—> 2nd law of thermodynamics



Connections to Gassmann et. al (2015)

Making the formal identifications (in the case without
precipitation)

- T 150 o":Vu—eg
| P e Ty P
Jio— i o mi—>% qi— Qg
p — p u—v o > —pvV"

in 0¢s and TI it is easy to show that the two key equations (20)
and (28) from Gassmann et. al (2015) are recovered
© However, interpretation is very different: Gassmann et. al
(2015) works with turbulence-averaged quantities, and
irreversible processes are interpreted as turbulence closures
@ Also differences in how thermodynamic forces are
parameterized, but entropy generation rate is still positive
© Have not yet worked out how Gassmann (2018) fits into this
framework, but we believe it can be done
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Overcoming Limitations and Future Work

More Complete Description of Physical System
Multiple u and T (precipitation)
Open boundaries (precipitation, lower boundary)

Chemical reactions, radiation

© 000

Turbulence averaging: conditional filtering/multi-fluid?
Lagrangian averaging? convected fluid microstructure?
EDMF?

Future Work and Extensions
Numerical discretization: Quasi-Metriplectic

Metriplectic analogue of Energy-Casimir theory

© 00

Semi-compressible fluids: Anelastic, Pseudo-Incompressible,
Boussinesq, Semi-Hydrostatic

@ Non-Eulerian Vertical Coordinates + Quasi-Hydrostatic
Approximation
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Conclusions

Summary and Conclusions
© New variational principle gives consistent (1st and 2nd law of
thermodynamics) Lagrangian description of geophysical fluids
with irreversible processes: requires only a Lagrangian £ and
entropy generation rates
@ Corresponding bracket-type formulation is a metriplectic
formulation:
dF
pr {F,H} + (F,S)
{H,H} =0 {S,H} =0
(H,S) =0 (5,5)=0

© Parameterization can be done such that (S,S) > 0, requires
positive-definite transport coefficient L, g
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Curl-Form: Lagrangian Reversible

Instead of m, we can predict v = %% instead, which gives the

Euler-Lagrange equations
16L 16L 5[,
(i) 1o (55) - Zavs 75 o

where the Lie derivative is Lyv = V x v x u+V(u-v),
supplemented with the kinematic equations

Oepi + V- (gipu) =0 0ts+ V- (npu) =0

Introducing
T=—5—£ Bi:zu-v—é—ﬁ F:=pu
ds pi
gives dev+QxF+) VB +7VT =0

1
These are connected to the curl-form Hamiltonian formulation
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Curl-Form: Hamiltonian Reversible

A change of variables from (m, p;, s) to (v, p;,s) gives the chain
rule for A|v, p;, s| = Alm, p;, s]
JA A oA A 5A dA  OA

573i:5p,'+v'57m o Pom ds  Os
which yields the functional derivatives

6—H:=F:pu (LH;:B,-ZU.V*% (LH::*%

ov dpi dpi ds 0s

The curl-form Poisson bracket is

0A 0B

0A oB 5[5’ 5A
— ; -~ = d
Lz I <5V v5p, ov 5p,> 3

0A oB  oB 0A
_Ln<(5v Vs T ov Vas>dx

where Q = va_
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Curl-Form: Specific Reversible

For multicomponent, multiphase fluids the specific Hamiltonian

yields
6—H::F=pu 6—H:=B;=K+¢+,u,- 5—H::T
ov opi ds

which give the equations of motion in common form as

Gu+V xuxu+22 x u+VK + Vo +aVp=0
depi + V- (gipu) =0
0ts + V- (npu)=0
where we have used Vxvxu=V xuxu+2Q x u, d;v=0:u

and
N qiVB; + VT = VK + V& + aVp

since >..qi =1 and )}, qiVui + nVT = aVp by Gibbs-Duhem



Curl-Form: Irreversible

The curl-form metric bracket is

10A 0B 168 . 0A
(4.B) :fpad' m*fpasd' o
15468 [ -
JT 5 (af :Vu—dw(Tjs))

.. ..0B oB .. .. 0A
+Zf5s(_d|VJl +J:)6pi+ZJ55(—dIVJ| +J:)a
1 (5A oB
+3; |+ i =g

This gives the equations of motion as
1
OVt — -Vt =0
P
Oepi+ -+ V-ji—ji=0

.1 1. 1 . )
(3}5+---+V«Js—?crfr:Vu+7js-VT+7Z(Ji~Vu;+J,-u,-)=0

i
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Single Generator Metric Bracket + Beris & Edwards

Evolution of F[m, p;, s] is governed by

(R H 4 [FH]

where the metric bracket [F,H] is linear in F, possibly nonlinear in
H and satisfies [H,H] = 0 and [S,H] >0

oF 4 oH 6F . 6H . H
AL RPN AR R SRNIEs)

1 F . GH GH. o 0H. _6H

+Eg[—v'(Js(57)g)+U ((TX)'V(Sm
5H 0H . 6H
+ZJ' (5x)5p,]

with x = (m, p;,s). For a single component, this reduces to the
Beris & Edwards (1998) single generator formalism.
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Double Generator and Metriplectic Metric Brackets

@ Kaufman (1984) Axioms: linearity, symmetry and
(5,S) =0, (H,S)=0

@ Metriplectic/GENERIC: linearity, symmetry and (S,S) > 0,
(H,A) = 0. The single component version is Morrison (1984).

© Only difference is (H,A) =0vs. (H,S)=0

@ On physical grounds, macroscopic systems require even
weaker set: linearity, (H,S) = 0 and (S,S) > 0. However,
microscopic systems seems to require the full metriplectic
axioms, which are connected to the fluctuation-dissipation
theorem and transport coefficients.

In all known examples for compressible fluids, metriplectic brackets
(GENERIC) require specifying the parameterization of
thermodynamic fluxes in terms of forces, while the single generator
formalism and Kaufman's axioms do not.
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Parameterization: Atmosphere Specific (I)

Start by rewriting Vu; and js as
j h
. S .
Vi = Vil =iV k=7 + E’_ i i

with V|t the gradient of p;(p, g;j, T) with T held constant,

ni = %(p, T, q;) the partial specific entropy and jsh the sensible
heat flux. Using these, we can rewrite d;s and the entropy
generation rate T/ as

- h = h
Js . 1 Js
1 ] .
+ TZJi Vil + jipi =0
jh
T S H [
Tl = of :Vu—T-VT—Zi:ji Vil + Jipi
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Parameterization: Atmosphere Specific (II)

Express vectorial processes using

—fluxes: sensible heat flux js" = T (js — >2; miji), diffusion flux j;
(instead of js,ji)

—forces: V—TT, Vui| T (instead of VT,V ;)

Gives a parameterization

jsh _ [Ass Asj] ?T
Ji Ais A | | Vuilr |’
where
T —Tm —Tn
0 1 0
_ T _
A=MLMT, for M=| & o .

Since M is invertible (T > 0), L is SPD iff M is SPD — apply
same rules (Onsager-Casimir reciprocal relations, mass control
conditions) to Aj; as Lj;
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