SUPPORTING INFORMATION

An indole diterpenoid isolated from the fungus *Drechmeria* sp. and its antimicrobial activity

Jia-Hao Liang^{a,b,+}, Xiao-Kui Huo^{a,+}, Zhong-Bin Cheng^{c,+}, Cheng-Peng Sun^{a,*}, Jian-Chao Zhao^b, Xiao-Hui Kang^a, Tian-Yuan Zhang^b, Zhong-Jian Chen^d, Tian-Mei Yang^e, Ying-Ying Wu^b, Xiao-Peng Deng^{f,*}, Yi-Xuan Zhang^{b,*}

^aCollege of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China.

^bSchool of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.

^cPharmaceutical College, Henan University, Kaifeng 475004, China.

^dWenshan Sanqi Research Institute, Wenshan University, Wenshan 663000, China.

^eInstitute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.

^fDalian Maternal and Child Care Health Hospital, Dalian 116000, China.

ABSTRACT: One new indole diterpenoid, drechmerin I (1), was isolated from the fermentation broth of *Drechmeria* sp. isolated from the root of *Panax notoginseng*. Its structure was elucidated based on 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) spectroscopic analyses as well as TD DFT calculations of ECD spectra. Drechmerin I (1) was assayed for its antimicrobial activities against *Candida albicans, Staphylococcus aureus, Bacillus cereus, B. subtillis, Pseudomonas aeruginosa,* and *Klebsiella pneumonia,* respectively. Drechmerin I (1) showed antimicrobial activities against *B. subtillis* with an MIC value of 200 µg/mL. The interaction of *S.* *aureus* peptide deformylase with drechmerin I (1) was investigated by molecular docking.

Keywords: *Drechmeria* sp., indole diterpenoid, antimicrobial activity, molecular docking

Content

Table S1. ¹ H (600 MHz) and ¹³ C NMR (150 MHz) data of compound 1 in MeOH- d_4
Table S2. Antibacterial and antifungal activities (MIC value, $\mu g/mL$) of compound 14
Table S3. The optimized conformers of 2'S-1 4
Table S4. B3LYP-calculated relative energies (Kcal/mol) and conformational population (%) for
the most stable conformers of 2'S-14
Table S5. The optimized conformers of 2'R-1
Table S6. B3LYP-calculated relative energies (Kcal/mol) and conformational population (%) for
the most stable conformers of 2' <i>R</i> -15
Figure S1. Selected HMBC and NOESY correlations of compound 1
Figure S2. Calculated and experimental ECD spectra of 1 at the B3LYP/6-311++G (d,p) level6
Figure S3. Interaction of compound 1 with PDF7
Figure S4. ¹ H-NMR spectrum of 1 (600 MHz, MeOH- <i>d</i> ₄)
Figure S5. ¹³ C-NMR spectrum of 1 (150 MHz, MeOH-d ₄)
Figure S6. HSQC spectrum of 1 (600 MHz, MeOH-d ₄)9
Figure S7. HMBC spectrum of 1 (600 MHz, MeOH-d ₄)10
Figure S8. Amplified HMBC spectrum of 1 (600 MHz, MeOH-d ₄)11
Figure S9. NOESY spectrum of 1 (600 MHz, MeOH-d ₄)11
Figure S10. HRESIMS spectrum of 1

No.	$\delta_{ m C}$	$\delta_{\rm H} (J \text{ in Hz})$	No.	$\delta_{ m C}$	$\delta_{\rm H} (J \text{ in Hz})$
2	153.8		18	117.2	
3	52.1		19	126.5	
4	43.9		20	118.9	7.29 d (7.8)
5	27.4	2.62 m	21	119.8	6.92 td (7.8, 1.3)
		1.67 m	22	120.8	6.95 td (7.8, 1.3)
6	29.8	2.23 m	23	112.7	7.27 d (7.8)
		1.82 m	24	141.9	
7	73.1	4.33 d (9.1)			
9	72.9	3.55 (9.4)	25	16.6	1.28 s
10	72.8	3.94 (9.4)	26	19.0	1.16 s
11	61.8	3.63 s	27	76.0	
12	69.0		29	17.0	1.23 s
13	78.9		30	28.7	1.21 s
14	30.7	1.68 m	1'	97.8	4.83 d (5.5)
		1.53 td (13.2, 4.0)	2'	77.6	3.91 d (5.5)
15	22.0	1.96 m	3'	145.4	
		1.60 m	4'	114.3	4.98 br s
16	51.7	2.84 m			4.88 br s
17	28.2	2.65 dd (12.9, 6.1)	5'	19.1	1.76 s
		2.36 dd (12.9, 11.1)			

Table S1. 1 H (600 MHz) and 13 C NMR (150 MHz) data of compound 1 in MeOH- d_4

Table S2. Antibacterial and antifungal activities (MIC value, $\mu g/mL)$ of compound 1

Compound	C. albicans	S. aureus	B. cereus	B. subtillis	P. aeruginosa	K. pneumonia		
1	> 400	> 400	> 400	200	> 400	> 400		
Ampicillin ^a	-	8	2.5	3.5	10	10		
Geneticin ^a	6.3	-	-	-	-	-		
^{<i>a</i>} Positive control.								

Table S3. The optimized conformers of 2'S-1

Table S4. B3LYP-calculated relative energies (Kcal/mol) and conformational

po	pulation ([%]) for	the	most	stable	conformers	of	2'S-	-1
----	------------	-----	-------	-----	------	--------	------------	----	------	----

Comound	conformer	$\Delta E (kcal/mol)^{a}$	Population (%) ^b
	C1	0	83.29
2/5 1	C2	0.001791	12.48
2 3-1	C3	0.002891	3.88
_	C4	0.005174	0.35

^{*a*}Relative to conformer C1 with E6-31+G(d) = -1750.241046 Kcal/mol. ^{*b*}Calculated

using free energy values from Gaussian 09 according to $\Delta G = -RT$ In K.

Table S5. The optimized conformers of 2'*R*-1

Table S6. B3LYP-calculated relative energies (Kcal/mol) and conformational

pop	oulation	(%)	for	the	most	stable	conformers	of	2'	R-	1
-----	----------	-----	-----	-----	------	--------	------------	----	-----------	----	---

Comound	conformer	$\Delta E (kcal/mol)^{a}$	Population (%) ^b
	C1	0	73.75
2′ <i>R</i> -1	C2	0.000984	25.99
_	C3	0.005312	0.26

^{*a*}Relative to conformer C1 with E6-31+G(d) = -1750.2413581 Kcal/mol. ^{*b*}Calculated using free energy values from Gaussian 09 according to ΔG = -RT In K.

Figure S1. Selected HMBC and NOESY correlations of compound 1

Figure S2. Calculated and experimental ECD spectra of 1 at the B3LYP/6-311++G (d,p) level

Figure S3. Interaction of compound 1 with PDF.

Figure S5. ¹³C-NMR spectrum of 1 (150 MHz, MeOH-*d*₄)

Figure S6. HSQC spectrum of 1 (600 MHz, MeOH-d₄)

Figure S7. Amplified HSQC spectrum of 1 (600 MHz, MeOH-*d*₄)

Figure S8. HMBC spectrum of 1 (600 MHz, MeOH-d₄)

Figure S9. Amplified HMBC spectrum of 1 (600 MHz, MeOH-d₄)

Figure S10. NOESY spectrum of 1 (600 MHz, MeOH-d₄)

Figure S11. Amplified NOESY spectrum of 1 (600 MHz, MeOH-d₄)

Figure S12. HRESIMS spectrum of 1