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Abstract—DeepForge is a gateway to deep learning for the sci-
entific community. Utilizing a cloud-based infrastructure, Deep-
Forge facilitates rapid development by promoting accessibility
and reproducibility of experiments. In this demonstration, we
present the core concepts of DeepForge and an image classifica-
tion example.

Index Terms—computer aided analysis, web services, artificial
neural networks, open source software

I. INTRODUCTION

Deep neural networks have shown to be very effective
across a number of different domains including image clas-
sification [1] and speech recognition [2]. They have also
been successfully applied to a number of scientific domains
including chemistry, bioinformatics, and astronomy [3]–[8].
However, there are still significant challenges when using
neural networks in scientific domains. DeepForge is a machine
learning gateway developed to address these challenges and
promote reproducibility and productivity. In this demonstra-
tion, we will be presenting the core concepts of DeepForge and
an image classification example showcasing our work to make
deep neural networks accessible to the scientific community.
This includes designing neural network architectures, building
machine learning pipelines, training machine learning models,
model evaluation, and reproducibility.

II. CORE CONCEPTS

DeepForge presents four main concepts for testing and train-
ing machine learning models. These concepts are Pipelines,
operations, executions, and jobs.

A pipeline is a directed acyclic graph, representing a
given machine learning task, composed of atomic operations.
Pipelines may have one or more inputs and outputs. These
pipelines may perform many different tasks including data re-
trieval, data preprocessing, training a machine learning model,
or model evaluation. Every project may contain multiple of
these pipelines.

An operation is a function which accepts zero or more
named inputs and outputs. Operations also can be parame-
terized by specifying attributes or references at design time.
Attributes contain primitive values and references, as the
name suggests, are a pointer to another existing component
within the platform (such as a neural network architecture).

Operations are implemented in Python and can be composed
into pipelines.

Executing a pipeline, creates an execution. An execution, is
a snapshot of the pipeline containing additional metadata about
the current state of the given execution. Each operation in
the originating pipeline is replaced with a job which contains
metadata such as stdout and any plots generated from running
the operation.

To support the creation and training of neural networks,
DeepForge also contains concepts for architectures and layers.
An architecture represents a neural network architecture and
is composed of layers. A layer is a function with tensor in-
puts and outputs and optionally parameterized with attributes.
When referenced from an operation, DeepForge will generate
the corresponding code for an architecture and provide the
resulting Python object to the operation’s implementation for
training.

III. IMAGE CLASSIFICATION EXAMPLE

Training a neural network effectively requires a couple
main steps including defining the neural network architecture,
retrieving the data, training the neural network with a set of hy-
perparameters, and evaluating the trained network. DeepForge
provides a number of projects demonstrating this process on
a number of different datasets. In this section, we will be
exploring one such project which trains a neural network on
the CIFAR10 dataset.

A. Defining the Architecture

DeepForge provides a simple visual interface for design-
ing neural network architectures. This interface enforces the
semantics of the domain and can provide useful feedback
such as errors in the architecture and dimensionality feedback.
Figure 1 shows a convolutional neural network being edited
from within DeepForge.

B. Building Pipelines

Figure 2 shows an example pipeline in DeepForge. This
pipeline contains four operations: GetCifar10Data, Train,
ScoreModel, and Output. The GetCifar10Data operation is
an operation which fetches and preprocesses the CIFAR10
dataset [9]. This includes partitioning the dataset into training
and test sets.



Fig. 1. Designing a Convolutional Neural Network

After retrieving and preparing the data, the training data
is passed as input to the Train operation. This operation has
attributes for the training hyperparameters including learning
rate and batch size as well as a reference to the neural
network architecture to be used. Clicking on the operation will
expand the operation showing its inputs, outputs, attributes,
and references. An icon allowing the user to edit the operation
interface and implementation is also shown when expanded.

The resulting trained model is passed to the Output and
ScoreModel operations. Output records the produced artifact
as an output and allows it to be downloaded or provided as
input to other pipelines. ScoreModel accepts the trained model
and testing data and evaluates the model on the given data.

Fig. 2. Building Machine Learning Pipelines

C. Training the Model

After defining the architecture and building the training
pipeline, the model can be trained by executing the given
pipeline. Executing the pipeline will create an execution which
contains additional metadata pertaining to the state of the
training. An example of the execution is provided in Figure 3.
In this example, we can see that the first job, GetCifar10Data,
has completed and the platform is currently training the neural
network architecture. The grey jobs are currently queued as
they are awaiting the result of the Train job.

Fig. 3. Executing a Training Pipeline

After the training has completed, the model will be eval-
uated by the ScoreModel job. A copy of the model is also
provided as the output of the execution and will be stored as an
artifact in DeepForge. This will allow the model to be provided
as inputs to other pipelines or exported for use outside of the
platform.

D. Reproducibility

Another important design consideration is the reproducibil-
ity of experiments. Version control is deeply integrated into
the platform and both the project and the associated data is
tracked. Every user action is automatically versioned ensuring
that previous project states can be restored and pipelines can
be executed with the exact code and input data. An example
browsing the history of the project is shown in Figure 4.

Fig. 4. Viewing Project History

IV. CONCLUSION

The presented image classification project provided a simple
example demonstrating a few of the features of DeepForge
that promote accessibility of deep learning and reproducibility
of experiments. We are currently working to extend Deep-
Forge to integrate with existing computational resources such
as NERSC and DOE supercomputers as well as integrate
with existing scientific data sources. Future work includes



developing visualization capabilities for model introspection
and data visualization to provide more insight when training
intelligent machine learning models. By designing accessible
deep learning in a machine learning gateway, we hope to
accelerate the impact of machine learning across scientific
domains.
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