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In silico: Who are the End Users?
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DIGITAL PATIENT
Subject-specific predictions for decision-
support, diagnosis, treatment-planning, 
stratification
FOR THE DOCTOR

IN SILICO CLINICAL TRIALS
Virtual patient cohorts for 3R, 
surrogate outcomes, augmented 
clinical trials
FOR THE INDUSTRY 

PERSONAL HEALTH FORECASTING
Subject-specific predictive models for 
mobile and digital health and wellness
FOR THE PATIENT - CITIZEN
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• Pharmaceuticals
•Medical Devices
• Biologicals
• Combinatory
•….

• Cost-effectiveness
• Risk-effectiveness
• Safety
• Effectiveness

• Efficacy

De-risking medical products

3© INSIGNEO 2018

RequirementsMedical Products



Testing safety and efficacy
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IN VITRO PRE-CLINICAL TESTS

IN VIVO PRE-CLINICAL TESTS

IN VIVO CLINICAL TRIALS



The role of in silico
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Reduce Refine
Reduce suffering
improve accuracy

Replace



3R: in vitro tests
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3R: animal tests
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Duchenne knock-out
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https://doi.org/10.1186/s13395-017-0143-9


3R: clinical trials
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Reduce
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http://dx.doi.org/10.1016/j.ress.2013.11.005

and patients. For lead manufacturers, there is a need to assess the
performance of new designs prior to embarking on extensive
clinical trials.

A challenge for reliability assessment of implanted medical
devices, particularly for cardiac leads, is the complexity and
variability of the human body. Loads and deflection in the
implanted environment can be influenced by both physician and
patient [16]. Physician training and patient factors may result in
different implant locations [14,17,18]. Patient activity levels may
range from completely sedentary to highly active [19].

Although quantitative life prediction of structures has been
studied for many decades [20], incorporating uncertainty in the
input parameters in order to make probabilistic calculations is
relatively new [21–23]. It has only been in recent years that
predictions for medical device reliability have begun to incorporate
probabilistic inputs rather than fixed values for loading [24–26].
Areas of study for probabilistic life modeling of medical devices have
been in the area of artificial knees and hips as well as dental implants
[21,25]. Specific to medical devices, structural variability due to
biomechanical factors has been studied in [22,25–27]. In recent
work, quantitative life estimates have been given using Bayesian
analysis methods to place confidence bounds on the predictions
based on the uncertainty in input parameters [26,28–30,65]. This
type of analysis for cardiac leads has not been found in the literature.
Other researchers have presented stress analysis for cardiac leads due
to in-vivo conditions, studied fatigue performance of coils from
cardiac leads, and measured lead bending in-vivo [6,31–36]; however
these elements have not yet been linked together to create reliability
predictions.

The primary aim of this paper is to provide a method for
utilizing data on fatigue strength and use conditions with statis-
tical modeling to project the fracture survival of cardiac leads in
their intended implant population. In order to account for uncer-
tainty in the input parameters, Bayesian methods are used to
generate confidence intervals on the output predictions, as well
as to model sensitivity of lead fracture to various input conditions.
A case study based on Medtronic lead models Sprint Quattro 6947
and Sprint Fidelis 6949 using newly available data is given as an
illustrative example.

The overall methodology is given below. Each step will be
discussed in detail further in this paper. The methodology employs
two nested loops to account for natural variability due to popula-
tion distributions and parameter uncertainty due to sampling
error. Steps 1 and 5 account for parameter uncertainty and steps
2–4 account for natural variability.

1. Estimate population parameters (posterior parameter distribu-
tions) using a Bayesian approach (2.9)

2. Randomly generate use conditions (Sections 2.1–2.3)
3. Randomly generate fatigue strength (Sections 2.4–2.7)
4. Calculate time to fracture, competing risk and survival curve

(Sections 2.8–2.10)
5. Repeat to simulate multiple patients and parameter uncer-

tainty (Section 2.10).

2. Methodology

2.1. Implant geometry and loading

The implanted cardiac lead typically follows a tortuous path
between the generator site and the heart. The x-ray image in Fig. 2
shows a typical tortuous path for a cardiac lead, following from the
typical left-sided generator implant site. Of particular interest for
this paper is the maximum curvature experienced by a lead in a
zone near the shoulder. When coupled with highly mobile anato-
mical structures, cardiac leads can encounter potentially large
amplitudes of bending around the shoulder region, as described
in [35]. The curvature of the lead may vary considerably along the
length [16,35] due to patient anatomy and implanter preference.

Measurement of time varying 3D cardiac lead paths has beenwell
defined in the literature [31,32,39,40]. For the purposes of a coil
fatigue example, the lead centerline curvature is an in-vivo measure-
ment practical and useful to evaluate fracture reliability. Curvature is
the reciprocal of radius and expressed in units of 1/length.

2.2. Effect of arm position

Data that correlates arm position and associated lead curvature
is scarce; however there are simplifying assumptions that enable
the analysis of the lead fatigue problem. Although there are
infinite possible arm positions, we consider the most significant
to be flexion of the humerus, measured in degrees from the plane
of the torso (ϕ) and illustrated in Fig. 3. Unpublished measure-
ments of lead curvature vs. humerus flexion angle have shown
that curvature is frequently largest when ϕ40. Several potential
scenarios are illustrated in Fig. 4 below. Thus, given a random arm
movement with a maximum and minimum arm angle, it is
possible to directly calculate the curvature history associated with
that movement.

Fig. 1. Medtronic Lead Models 4193 (left), 5076 (center), and 6947 (right). From left
to right, the leads are intended for pacing in the left and right ventricles, and for
defibrillation in the right ventricle.

Fig. 2. Typical implant location and path for ICD and lead [38].
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analysis should be used for both fatigue models described above.
In this paper, Markov chain Monte Carlo techniques will be utilized for
parameter estimation for the models above (see Section 3.2 ).

Fig. 5 shows the fatigue fracture percentile lines as a function of
Sa using the RFL model for a set of bench fatigue data. The black
squares are samples that actually fractured and the open red
circles are censored values. There is a large amount of spread
between the 1st percentile and the 99th percentile in terms of
cycles to fracture at a given Sa; which is typical for fatigue data,
particularly in the high cycle regime. Shown in Fig. 5 (bottom) are
the cumulative distribution functions (CDF) for cycles to fracture
as a function of Sa, used to generate random samples of cycles to
fracture in the simulation.

2.6. Cumulative damage modeling

In the case of leads in the shoulder region there is not just one
cyclic strain level constant throughout the implant duration. Depend-
ing on the magnitude of arm movement, the loading may vary. As an
example, a patient may spend much of the day performing small
movements during activities such as eating, but may have several
large movements when putting on a shirt. To properly understand and
predict the reliability of the lead conductor coil all of the strain
exposures should be accounted for. The most common approach is the
Linear Damage Accumulation rule (LDR), also known as the Palmgren–
Miner rule; however, other approaches have also been evaluated
[48–59]. In the LDR approach, each damage level, ψk ¼ ðSak;RkÞ is
considered to have a unique damage limit. In this model for cardiac
leads, the individual arm motion cycle is idealized to start at a
minimum angle, reverse at a maximum angle, and return to the
minimum angle. Curvature is assumed to be a monotonic function
with arm angle. (More complex loading cycles and more complex
counting methods such as rainflow methods are not employed,
primarily due to a lack of use condition data that could guide such
further complexity.) As cycles are accumulated across the range of
damage levels, the sum of the damage limit fractions is calculated.
When the damage limit fraction sum exceeds unity, fracture is
considered to have occurred.

The LDR model is as follows: suppose the ith lead is accumulat-
ing damage at T levels denoted by ψ i1; ψ i2 ; …; ψ ik; …; ψ iT where
ψ ik ¼ ðsaik; rikÞ. Let the fractional damage at level ψ ik be nik=yik
where nik is the number of cycles accumulated at ψ ik, and yik is the
number of cycles required to fracture the sample at ψ ik for lead i.
Using this notation the accumulated damage for a fatigue fracture
of the ith sample would be when:

∑
T

k ¼ 1

nik

yik
¼ 1 ð7Þ

Now suppose all that is known is the proportion of time (p) the
ith sample is at each strain level, then Eq. (7) becomes:

∑
T

k ¼ 1

nipik
yik

¼ 1 ð8 Þ

where ni ¼∑T
k ¼ 1nik is the total number of cycles at all strain

levels. Also, pik ¼ cik=∑T
k ¼ 1cik, the proportion of cycles spent at

strain level sik. Then solve for ni to get the number of cycles
required to fracture the ith lead:

ni ¼
1

∑T
k ¼ 1pik=yik

ð9Þ

2.7. Correlation within sample for fatigue strength

An important consideration for this modeling approach is
whether there is correlation of fatigue strength percentiles across
all strain amplitudes within a given sample. Unfortunately it is
impossible to measure fatigue strength from the same sample
multiple times at different strain levels. This makes estimating the
correlation structure difficult. In this methodology we believe it is
reasonable to assume that fatigue strength within a part is fully
correlated across all strain amplitudes, i.e. that a particular sample
fails at the same percentile for all strain amplitude levels. For
example, if the number of cycles to fracture at strain level 1, yi1, is
at the 5th percentile, we assume that the number of cycles to
fracture at the second strain level, yi2 , should also be near the 5th
percentile. However it is possible this correlation could decrease as
the strain amplitude values get further apart.

2.8. Life calculation and competing risks

Upon determining the number of cycles required to fracture a
lead coil, a time calculation can be performed based on the patient
activity profile. Competing risk data should be comprised of all
types of events that would suspend the use of the lead other than
coil fracture, for example patient death or prophylactic removal.
If there are no other competing risks present, a sample that has
fractured is assumed to result in some detectable loss of intended
pacing or sensing therapy to the patient. Using this type of data we
can construct a PDF for competing risks, f CRðcrjθCRÞ.

2.9. Bayesian estimation

A Bayesian framework was utilized to estimate all of the
parameters θ for the distributions described in this section. Using
a Bayesian method allows us to estimate a distribution of possible
values given the observed data for each parameter. This is different
from standard estimation methods that generate a single value for
the estimate of the parameter (the maximum likelihood estimate).
The distribution of possible values for the parameter is called the
posterior distribution, denoted by f θðθjXÞ where f is a PDF, θ the
parameter of interest, X is the data used to estimate the parameter,
and where X has PDF f XðxjθÞ. The posterior distribution f θðθjXÞ is
derived using Bayes' theorem:

f θðθjXÞ ¼
f XðxjθÞf ðθÞR
f XðxjθÞf ðθÞdθ

ð10 Þ

Fig. 6. Illustration of posterior predictive distribution. In this example, u¼mean, and s¼standard deviation.
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Will we ever replace?
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Replace

Replace Human Body 
Models

19 body 
models

Coil Models

Replace



Back to the future: custom-made
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3 weeks

3 days



The Digital Twin
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• Bench tests: go for refinement
• In silico models can let you explore a broad range of operational 

conditions

• Animal tests: go for replacement
• Short term we need to play nice, but in silico models are most of the 

time way better than animal models

• Clinical trials: go for reduction
• Replacement is not on the horizon yet, refinement most of the time 

provide massive reduction

• Look for replacement opportunities
• In some cases the currently accepted method is predicting poorly 

the performance in the general population
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(Very) coarse summary

© INSIGNEO 2018



Thank You!
@insigneo

www.insigneo.org


