# Supporting Information

Seasonal gene expression and the ecophysiological implications of toxic *Microcystis aeruginosa* blooms in Lake Taihu

Xiangming Tang<sup>1</sup>, Lauren E. Krausfeldt<sup>2</sup>, Keqiang Shao<sup>1</sup>, Gary R. LeCleir<sup>2</sup>, Joshua M. A. Stough<sup>2</sup>, Guang Gao<sup>1</sup>, Gregory L. Boyer<sup>3</sup>, Yunlin Zhang<sup>1</sup>, Hans W. Paerl<sup>4</sup>, Boqiang Qin<sup>1\*</sup>, Steven W. Wilhelm<sup>2\*</sup>

<sup>1</sup>Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

<sup>2</sup>Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States

<sup>3</sup>Department of Chemistry, SUNY College of Environmental Science & Forestry, Syracuse, NY 13210, United States

<sup>4</sup>Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, United States *and* College of Environment, Hohai University, Nanjing 210098, China

\* Corresponding authors:
Boqiang Qin - Email: qinbq@niglas.ac.cn; Tel.: 86-25-86882192.
Steven W. Wilhelm - Email: wilhelm@utk.edu; Tel.: 1-865-974-0665.

Number of pages: 27 Number of tables: 9 Number of figures: 8

#### MATERIALS AND METHODS

## Sample collection and survey of environmental conditions

TN, TDN, TP and TDP were analyzed using a combined peroxodisulfate oxidation followed by spectrophotometric analyses <sup>1</sup>.  $NH_4^+$  and  $PO_4^{3-}$  were measured using a continuous flow analyzer (Skalar SA 1000, Breda, The Netherlands). Chl-*a* concentrations were determined by spectrophotometric methods after extraction in 90% hot ethanol<sup>2</sup>.

For quantification of cellular (particulate) toxin, a 50 – 500 ml volume (depending on sample density) of surface water from each station was filtered onto GF/F (Whatman, Buckinghamshire, UK) filters and then dried using a vacuum freeze dryer (Christ Alpha 1-2 LD, Germany). Intracellular microcystin concentrations were determined without preconcentration using HPLC coupled with single quadrupole mass spectroscopy and photodioarray spectroscopy. Standards (MC-RR, LR and LF) were run at the start and end of each run to ensure that the retention times for the microcystins did not drift, and individual toxin congeners ((RR, dRR, mRR, hYR, YR, LR, mLR, zLR. dLR, meLR, AR, FR, WR, LA, LY, LW, LF, WR) and R-NOD) were identified on the basis of their retention time, their characteristic absorbance spectrum in the photodiode array detector and their characteristic molecular ions. For many of these congeners, validated reference standards do not exist, so the individual congeners were quantitated using their extracted molecular ions and a standard curve based on microcystin LR after tuning the mass spectrometer to give an equivalent detector response for microcystins LR, RR and LF. Total MC concentrations are reported as the sum of all congeners.

## RNA-seq data processing and phylogenetic analysis

After preprocessing of quality control (QC), removing artificial duplicate reads and clustering of proteins at the 90% identity level, protein-coding sequences (mRNA and their genes) were annotated with the M5nr protein database, which is an integration of many sequence databases into a single and searchable database. Taxonomic hits distribution was carried out and taxonomic categories at different levels of resolution was annotated using protein similarities to entries in the REFseq protein database with an e-value of 1e<sup>-5</sup> (see details in MG-RAST Manual for version 3.6, revision 3).

#### REFERENCE

- (1) Ebina, J.; Tsutsui, T.; Shirai, T., Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. *Water Res.* **1983**, *17* (12), 1721-1726.
- (2) Pápista, É.; Ács, É.; Böddi, B., Chlorophyll-a determination with ethanol a critical test. *Hydrobiologia* 2002, 485 (1), 191-198.

#### Table S1 Sampling information as well as concentrations of nutrients, chlorophyll-a and microcystin in Lake Taihu (June - October, 2014).

| Sample <sup>®</sup> | Date      | Time  | Longitude | Latitude | WT<br>(°C) | EC<br>(μ S cm <sup>-1</sup> ) | TDS<br>(g 1 <sup>-1</sup> ) | pH    | NTU   | PC<br>(cells ml <sup>-1</sup> ) | DO<br>(mg l <sup>-1</sup> ) | SD<br>(cm) | Visible bloom<br>level | Filtered for RNA<br>extraction (ml) <sup>20</sup> | Filtered for toxin<br>analysis (ml) <sup>20</sup> | Chl-a<br>(µ g 1 <sup>-1</sup> ) | МС<br>(µ g l <sup>-1</sup> ) <sup>®</sup> | TN<br>(mg l <sup>-1</sup> ) | TDN<br>(mg l <sup>-1</sup> ) | NH4 <sup>+</sup><br>(mg l <sup>-1</sup> ) | TP<br>(mg Γ <sup>-1</sup> ) | TDP<br>(mg l <sup>-1</sup> ) | PO <sub>4</sub> <sup>3.</sup><br>(mg l <sup>-1</sup> ) |
|---------------------|-----------|-------|-----------|----------|------------|-------------------------------|-----------------------------|-------|-------|---------------------------------|-----------------------------|------------|------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------|------------------------------|-------------------------------------------|-----------------------------|------------------------------|--------------------------------------------------------|
| T06_1               | 6/7/2014  | 9:12  | 120.19067 | 31.51317 | 24.8       | 670                           | 0.437                       | 8.19  | 13.3  | 2831                            | 9.43                        | 40         | light                  | 120×2                                             | 250×2                                             | 40                              | 0.28                                      | 2.97                        | 2.50                         | 0.08                                      | 0.092                       | 0.028                        | 0.005                                                  |
| T06_2               | 6/7/2014  | 17:26 | 120.22055 | 31.41747 | 27.9       | 712                           | 0.439                       | 8.77  | 26.4  | 11107                           | 10.08                       | 15         | heavy                  | 60×2                                              | 260×2                                             | 960                             | 69.39                                     | 17.23                       | 1.83                         | 0.08                                      | 1.176                       | 0.029                        | 0.006                                                  |
| T06_3               | 6/7/2014  | 16:47 | 120.22945 | 31.39438 | 26.9       | 689                           | 0.433                       | 9.08  | 10.0  | 5050                            | 11.56                       | 40         | heavy                  | 60×2                                              | 310×2                                             | 370                             | 7.18                                      | 9.39                        | 1.99                         | 0.07                                      | 0.515                       | 0.027                        | 0.005                                                  |
| T06_4               | 6/7/2014  | 8:34  | 120.18796 | 31.43609 | 23.7       | 637                           | 0.424                       | 8.35  | 19.5  | 7456                            | 9.01                        | 45         | light                  | 120×2                                             | 250×2                                             | 54                              | 1.18                                      | 3.55                        | 2.09                         | 0.07                                      | 0.136                       | 0.027                        | 0.009                                                  |
| T06_5               | 6/7/2014  | 9:49  | 120.11638 | 31.44719 | 25.3       | 632                           | 0.408                       | 7.94  | 18.1  | 1374                            | 4.46                        | 30         | heavy                  | 60×2                                              | 250×2                                             | 368                             | 2.64                                      | 10.77                       | 3.89                         | 0.83                                      | 0.728                       | 0.093                        | 0.069                                                  |
| T06_6               | 6/7/2014  | 10:18 | 120.02817 | 31.45001 | 24.6       | 577                           | 0.377                       | 7.90  | 14.9  | 1315                            | 7.37                        | 40         | light                  | 120×2                                             | 250×2                                             | 36                              | < 0.10                                    | 4.46                        | 3.97                         | 1.64                                      | 0.168                       | 0.075                        | 0.044                                                  |
| T06_7               | 6/7/2014  | 12:11 | 120.18017 | 31.33833 | 25.3       | 608                           | 0.392                       | 8.31  | 21.8  | 2125                            | 9.31                        | 30         | light                  | 120×2                                             | 250×2                                             | 27                              | <0.10                                     | 2.38                        | 1.79                         | 0.08                                      | 0.077                       | 0.010                        | 0.012                                                  |
| T06_8               | 6/7/2014  | 10:40 | 120.03182 | 31.39761 | 25.0       | 637                           | 0.414                       | 8.56  | 22.0  | 15662                           | 13.00                       | 40         | medium                 | 120×2                                             | 250×2                                             | 116                             | 1.18                                      | 4.33                        | 2.62                         | 0.07                                      | 0.222                       | 0.069                        | 0.040                                                  |
| 106_9               | 6/7/2014  | 11:07 | 119.94500 | 31.31450 | 26.5       | 699                           | 0.442                       | 8.18  | 23.2  | 2516                            | 7.26                        | 20         | medium                 | 120×2                                             | 250×2                                             | 48                              | 3.63                                      | 4.02                        | 3.18                         | 0.93                                      | 0.215                       | 0.093                        | 0.061                                                  |
| T07_1               | 7/3/2014  | 13:17 | 120.19067 | 21 41747 | 20.0       | 620                           | 0.339                       | 8.75  | 20.8  | 62212                           | 7.70                        | 30         | homm                   | 120×2                                             | 300×2                                             | 19                              | 2.24                                      | 1.78                        | 1.40                         | 0.08                                      | 0.000                       | 0.020                        | 0.000                                                  |
| T07_2               | 7/3/2014  | 16:53 | 120.22035 | 31 39438 | 27.5       | 691                           | 0.415                       | 9.73  | 24.6  | 10098                           | 11.34                       | 30         | medium                 | 120×2                                             | 500×2                                             | 47                              | 5.55                                      | 1.94                        | 1.17                         | 0.05                                      | 0.094                       | 0.019                        | 0.013                                                  |
| T07_5               | 7/3/2014  | 8:42  | 120.22745 | 31 43609 | 24.6       | 647                           | 0.423                       | 9.03  | 39.4  | 9534                            | 8 29                        | 30         | heavy                  | 60×2                                              | 500×2                                             | 320                             | 9.76                                      | 4 94                        | 1.04                         | 0.05                                      | 0.229                       | 0.015                        | 0.004                                                  |
| T07 5               | 7/3/2014  | 13:46 | 120.11638 | 31.44719 | 25.2       | 590                           | 0.382                       | 8.99  | 25.3  | 2304                            | 6.24                        | 30         | light                  | 120×2                                             | 500×2                                             | 38                              | 2.96                                      | 3.30                        | 2.78                         | 0.34                                      | 0.122                       | 0.036                        | 0.021                                                  |
| T07 6               | 7/3/2014  | 14:38 | 120.02817 | 31.45001 | 26.7       | 558                           | 0.351                       | 9.01  | 21.0  | 7035                            | 10.91                       | 40         | medium                 | 120×2                                             | 500×2                                             | 41                              | 0.39                                      | 4.86                        | 4.07                         | 1.31                                      | 0.174                       | 0.074                        | 0.054                                                  |
| T07_7               | 7/3/2014  | 16:10 | 120.18017 | 31.33833 | 27.1       | 608                           | 0.380                       | 9.14  | 12.9  | 2139                            | 10.68                       | 30         | light                  | 120×2                                             | 500×2                                             | 49                              | 0.85                                      | 2.51                        | 1.60                         | 0.03                                      | 0.076                       | 0.013                        | 0.003                                                  |
| T07_8               | 7/3/2014  | 14:54 | 120.03182 | 31.39761 | 27.9       | 570                           | 0.352                       | 9.11  | 18.5  | 6043                            | 8.93                        | 60         | medium                 | 120×2                                             | 500×2                                             | 42                              | 5.78                                      | 5.24                        | 4.62                         | 1.30                                      | 0.174                       | 0.078                        | 0.058                                                  |
| T07_9               | 7/3/2014  | 15:22 | 119.94500 | 31.31450 | 26.1       | 602                           | 0.383                       | 8.93  | 33.4  | 1425                            | 3.84                        | 30         | no bloom               | 120×2                                             | 500×2                                             | 15                              | 0.21                                      | 4.66                        | 4.20                         | 1.67                                      | 0.227                       | 0.128                        | 0.101                                                  |
| T08_1               | 8/14/2014 | 8:00  | 120.19067 | 31.51317 | 26.7       | 543                           | 0.342                       | 9.57  | 57.9  | 22185                           | 6.60                        | 35         | light                  | 120×2                                             | 500×2                                             | 75                              | 2.71                                      | 1.38                        | 0.71                         | 0.09                                      | 0.162                       | 0.080                        | 0.050                                                  |
| T08_2               | 8/14/2014 | 6:50  | 120.22055 | 31.41747 | 26.5       | 557                           | 0.352                       | 8.98  | 51.5  | 18561                           | 2.33                        | 40         | light                  | 120×2                                             | 500×2                                             | 72                              | 2.53                                      | 2.40                        | 1.35                         | 0.65                                      | 0.203                       | 0.037                        | 0.019                                                  |
| T08_3               | 8/14/2014 | 12:55 | 120.22945 | 31.39438 | 26.8       | 564                           | 0.349                       | 9.41  | 32.1  | 1023                            | 6.88                        | 40         | no bloom               | 120×2                                             | 500×2                                             | 25                              | NA                                        | 2.23                        | 1.25                         | 0.46                                      | 0.138                       | 0.034                        | 0.012                                                  |
| T08_4               | 8/14/2014 | 7:30  | 120.18796 | 31.43609 | 26.7       | 557                           | 0.351                       | 9.38  | 37.7  | 21232                           | 7.38                        | 50         | medium                 | 120×2                                             | 500×2                                             | 89                              | 2.76                                      | 1.55                        | 0.53                         | 0.06                                      | 0.152                       | 0.037                        | 0.015                                                  |
| T08_5               | 8/14/2014 | 8:30  | 120.11638 | 31.44719 | 26.7       | 552                           | 0.348                       | 9.38  | 71.3  | 36136                           | 4.64                        | 25         | super heavy            | 50×2                                              | 150×2                                             | 3258                            | 111.57                                    | 21.52                       | 1.29                         | 0.28                                      | 2.132                       | 0.061                        | 0.036                                                  |
| T08_6               | 8/14/2014 | 9:00  | 120.02817 | 31.45001 | 27.0       | 532                           | 0.333                       | 9.38  | 23.8  | 1821                            | 2.16                        | 35         | no bloom               | 120×2                                             | 500×2                                             | 28                              | <0.20                                     | 3.67                        | 3.23                         | 1.16                                      | 0.236                       | 0.130                        | 0.112                                                  |
| T08_/               | 8/14/2014 | 0:20  | 120.18017 | 31.33833 | 26.4       | 598                           | 0.378                       | 9.38  | 28.8  | 4534                            | 6.70                        | 40         | hoore                  | 120×2                                             | 500×2                                             | 21                              | 6.59                                      | 2.72                        | 0.76                         | 0.05                                      | 0.067                       | 0.017                        | 0.001                                                  |
| T08_8               | 8/14/2014 | 9:50  | 120.03182 | 21 21450 | 20.0       | 40/<br>517                    | 0.294                       | 9.32  | 41.5  | 21510                           | 2.05                        | 22         | neavy                  | 120×2                                             | 500×2                                             | 21                              | 0.38                                      | 2.72                        | 2.07                         | 0.01                                      | 0.324                       | 0.188                        | 0.102                                                  |
| T09_1               | 9/9/2014  | 14:15 | 120 19067 | 31 51317 | 20.7       | 542                           | 0.320                       | 10.03 | 28.2  | 10618                           | 9.98                        | 40         | no bloom               | 120×2                                             | 500×2                                             | 57                              | 0.25                                      | 1 33                        | 0.52                         | 0.07                                      | 0.170                       | 0.075                        | 0.060                                                  |
| T09 2               | 9/9/2014  | 13:27 | 120.22055 | 31.41747 | 27.7       | 544                           | 0.336                       | 8.51  | 24.1  | 4022                            | 5.84                        | 30         | light                  | 120×2                                             | 500×2                                             | 62                              | 0.47                                      | 1.26                        | 0.66                         | 0.24                                      | 0.148                       | 0.069                        | 0.057                                                  |
| T09 3               | 9/9/2014  | 17:14 | 120.22945 | 31.39438 | 27.6       | 524                           | 0.324                       | 9.96  | 31.4  | 8714                            | 9.57                        | 30         | medium                 | 120×2                                             | 270×2                                             | 250                             | 2.80                                      | 4.52                        | 0.58                         | 0.11                                      | 0.451                       | 0.067                        | 0.053                                                  |
| T09 4               | 9/9/2014  | 13:52 | 120.18796 | 31.43609 | 27.4       | 532                           | 0.331                       | 9.60  | 33.2  | 9345                            | 9.32                        | 40         | light                  | 120×2                                             | 500×2                                             | 51                              | < 0.30                                    | 1.39                        | 0.53                         | 0.09                                      | 0.204                       | 0.069                        | 0.058                                                  |
| T09_5               | 9/9/2014  | 14:43 | 120.12684 | 31.44614 | 28.3       | 515                           | 0.315                       | 9.76  | 881.9 | 239256                          | 5.27                        | 0          | super heavy            | 20×2                                              | 50×2                                              | 16182                           | 592.69                                    | 48.17                       | 1.31                         | 0.36                                      | 11.686                      | 0.034                        | 0.059                                                  |
| T09_6               | 9/9/2014  | 15:12 | 120.02817 | 31.45001 | 27.4       | 470                           | 0.292                       | 9.88  | 27.3  | 32381                           | 11.03                       | 20         | heavy                  | 120×2                                             | 145×2                                             | 3415                            | 30.89                                     | 17.79                       | 1.22                         | 0.42                                      | 1.708                       | 0.049                        | 0.029                                                  |
| T09_7               | 9/9/2014  | 16:57 | 120.18017 | 31.33833 | 27.1       | 482                           | 0.301                       | 9.94  | 25.0  | 15009                           | 12.63                       | 30         | heavy                  | 90×2                                              | 60×2                                              | 1205                            | 75.04                                     | 39.33                       | 0.67                         | 0.16                                      | 4.245                       | 0.045                        | 0.027                                                  |
| T09_8               | 9/9/2014  | 15:33 | 120.03182 | 31.39761 | 27.6       | 486                           | 0.301                       | 9.98  | 57.6  | 29456                           | 11.94                       | 20         | heavy                  | 120×2                                             | 250×2                                             | 307                             | 2.54                                      | 7.01                        | 1.17                         | 0.12                                      | 0.625                       | 0.080                        | 0.058                                                  |
| T09_9               | 9/9/2014  | 16:04 | 119.94500 | 31.31450 | 27.3       | 424                           | 0.264                       | 9.93  | 27.4  | 4357                            | 5.64                        | 35         | no bloom               | 120×2                                             | 500×2                                             | 28                              | < 0.30                                    | 2.99                        | 2.70                         | 0.86                                      | 0.169                       | 0.089                        | 0.071                                                  |
| T10_1               | 10/8/2014 | 8:15  | 120.19067 | 31.51317 | 21.3       | 492                           | 0.344                       | 9.38  | 34.2  | 4989                            | 6.07                        | 30         | light                  | 120×2                                             | 500×2                                             | 33                              | 0.19                                      | 1.37                        | 0.77                         | 0.10                                      | 0.141                       | 0.064                        | 0.054                                                  |
| T10_2               | 10/8/2014 | 13:30 | 120.22055 | 31.41747 | 21.9       | 473                           | 0.327                       | 10.05 | 48.5  | 4267                            | 2.81                        | 25         | medium                 | 60×2                                              | 150×2                                             | 1038                            | 0.62                                      | 12.66                       | 0.64                         | 0.12                                      | 1.199                       | 0.056                        | 0.044                                                  |
| T10_3               | 10/8/2014 | 13:15 | 120.22945 | 31.39438 | 22.7       | 469                           | 0.319                       | 9.94  | 79.1  | 43149                           | 6.60                        | 20         | heavy                  | 60×2                                              | 100×2                                             | 1622                            | 348.51                                    | 20.86                       | 0.58                         | 0.09                                      | 1.925                       | 0.032                        | 0.021                                                  |
| T10_4               | 10/8/2014 | 7:45  | 120.18796 | 31.43609 | 20.7       | 475                           | 0.337                       | 9.52  | 43.1  | 8814                            | 9.25                        | 30         | light                  | 120×2                                             | 500×2                                             | 30                              | <0.10                                     | 1.24                        | 0.66                         | 0.14                                      | 0.137                       | 0.055                        | 0.044                                                  |
| T10_5               | 10/8/2014 | 8:50  | 120.12684 | 31.44614 | 21.9       | 544                           | 0.376                       | 9.41  | 177.3 | 79328                           | 2.20                        | 0          | super heavy            | 20×2                                              | 50×2                                              | 46872                           | 6378.76                                   | 98.47                       | 1.55                         | 0.65                                      | 42.835                      | 0.062                        | 0.020                                                  |
| T10_0               | 10/8/2014 | 9:50  | 120.02817 | 31.43001 | 21.5       | 312                           | 0.337                       | 9.17  | 47.0  | 12045                           | 0.01                        | 40         | haann                  | 120×2                                             | 300×2                                             | 37                              | 208.08                                    | 2.92                        | 2.30                         | 0.55                                      | 0.182                       | 0.098                        | 0.082                                                  |
| T10_/               | 10/8/2014 | 9:50  | 120.18017 | 31.33833 | 22.2       | 407                           | 0.321                       | 9.77  | 47.0  | 5266                            | 2.85                        | 25         | light                  | 120×2                                             | 150×2<br>500×2                                    | 42                              | 1 14                                      | 20.34                       | 2.25                         | 0.15                                      | 0.146                       | 0.057                        | 0.020                                                  |
| T10_9               | 10/8/2014 | 10:30 | 119 94500 | 31 31450 | 21.9       | 479                           | 0.322                       | 9.21  | 85.9  | 15407                           | 1.93                        | 10         | light                  | 120×2                                             | 300×2                                             | 98                              | 0.24                                      | 3.87                        | 2.10                         | 0.38                                      | 0.140                       | 0.007                        | 0.051                                                  |
|                     |           |       |           |          |            |                               |                             |       |       |                                 |                             |            |                        |                                                   |                                                   |                                 |                                           |                             |                              |                                           |                             |                              |                                                        |

 $^{\odot}$  samples in RED represent those where insufficient RNA was available for metatranscriptomic sequencing.

<sup>20</sup> one sample for analysis, another as a backup.

WT, water temperature; EC, electrical conductivity; TDS, total dissolved solids; NTU, turbidity; PC, phycocyanin; DO, dissolved 02; SD, Secchi depth; Chir, chlorophyll-a; MC, microcystin; TN, total nitrogen; TDN, total dissolved nitrogen; NH<sup>+</sup><sub>4</sub>, ammonium; TP, total phosphorus; TDP, total dissolved phosphorus; PO<sub>4</sub><sup>-+</sup>, orthophosphate.

**Table S2** Summary of sequence information for Lake Taihu metatranscriptomic libraries during June - October 2014. The first letter of each sample name represents Taihu, the following two numbers represent months and the last numbers represent sampling stations (see Figure 1 for details). Length of each raw read was 125 base pairs. QC: quality control.

| Sample | No. of total | No. of reads | % Reads  | Avg.    | No. of reads | % non- | No. of reads    | % <i>M</i> .       | MG-RAST ID   |
|--------|--------------|--------------|----------|---------|--------------|--------|-----------------|--------------------|--------------|
|        | raw reads    | post-QC      | analyzed | length  | after rRNA   | rRNA   | mapped to M.    | aeruginosa NIES    |              |
|        |              |              | post-QC  | post-QC | removal      | clean  | aeruginosa NIES | 843 to total clean |              |
|        |              |              |          |         |              | reads  | 843             | reads              |              |
| T06_1  | 23 765 226   | 20 791 603   | 87.5     | 116     | 16 861 404   | 81.1   | 3 893 979       | 23.1               | mgm4663025.3 |
| T06_2  | 25 916 472   | 22 789 598   | 87.9     | 117     | 20 352 436   | 89.3   | 9 420 403       | 46.3               | mgm4663263.3 |
| T06_3  | 24 642 268   | 21 838 389   | 88.6     | 117     | 19 603 956   | 89.8   | 9 311 823       | 47.5               | mgm4663272.3 |
| T06_4  | 25 361 148   | 22 531 633   | 88.8     | 117     | 19 908 400   | 88.4   | 8 361 256       | 42.0               | mgm4663273.3 |
| T06_5  | 29 455 482   | 25 721 564   | 87.3     | 117     | 22 701 425   | 88.3   | 10 421 164      | 45.9               | mgm4663274.3 |
| T06_7  | 14 132 414   | 12 464 137   | 88.2     | 117     | 11 093 239   | 89.0   | 5 005 853       | 45.1               | mgm4663278.3 |
| T06_9  | 18 754 882   | 16 470 480   | 87.8     | 117     | 14 479 253   | 87.9   | 6 322 948       | 43.7               | mgm4663280.3 |
| T07_1  | 15 217 108   | 11 485 659   | 75.5     | 109     | 8 075 041    | 70.3   | 3 035 310       | 37.6               | mgm4664215.3 |
| T07_2  | 22 913 270   | 20 226 976   | 88.3     | 117     | 18 199 464   | 90.0   | 8 784 341       | 48.3               | mgm4664214.3 |
| T07_3  | 24 230 822   | 20 474 191   | 84.5     | 116     | 17 067 830   | 83.4   | 5 842 581       | 34.2               | mgm4664209.3 |
| T07_4  | 27 860 460   | 23 680 003   | 85.0     | 116     | 19 872 105   | 83.9   | 8 116 792       | 40.9               | mgm4664210.3 |
| T07_5  | 24 019 620   | 21 131 768   | 88.0     | 117     | 18 897 192   | 89.4   | 9 236 448       | 48.9               | mgm4664213.3 |
| T07_6  | 27 331 358   | 22 897 985   | 83.8     | 115     | 18 889 878   | 82.5   | 7 063 168       | 37.4               | mgm4664212.3 |
| T07_8  | 29 839 878   | 25 632 576   | 85.9     | 116     | 22 270 904   | 86.9   | 9 359 519       | 42.0               | mgm4664211.3 |
| T07_9  | 36 080 570   | 28 006 722   | 77.6     | 109     | 18 217 150   | 65.0   | 33 717          | 0.2                | mgm4664208.3 |
| T08_1  | 26 393 394   | 23 440 204   | 88.8     | 117     | 20 818 796   | 88.8   | 7 262 888       | 34.9               | mgm4664613.3 |
| T08_2  | 25 006 404   | 22 145 662   | 88.6     | 117     | 19 725 077   | 89.1   | 7 123 795       | 36.1               | mgm4664610.3 |
| T08_4  | 23 556 748   | 19 789 525   | 84.0     | 115     | 16 117 209   | 81.4   | 4 755 439       | 29.5               | mgm4664609.3 |
| T08_5  | 21 064 130   | 18 691 580   | 88.7     | 117     | 16 800 225   | 89.9   | 6 779 446       | 40.4               | mgm4664612.3 |
| T08_8  | 22 781 612   | 19 215 669   | 84.4     | 116     | 16 074 771   | 83.7   | 5 492 282       | 34.2               | mgm4664608.3 |

| T08_9   | 25 866 280 | 21 494 334 | 83.1 | 113 | 15 938 625 | 74.2 | 142 750    | 0.9  | mgm4664611.3 |
|---------|------------|------------|------|-----|------------|------|------------|------|--------------|
| T09_1   | 26 900 236 | 22 568 143 | 83.9 | 116 | 17 898 383 | 79.3 | 2 292 191  | 12.8 | mgm4664691.3 |
| T09_3I  | 24 182 112 | 19 792 928 | 81.9 | 113 | 15 734 440 | 79.5 | 4 971 514  | 31.6 | mgm4664695.3 |
| T09_3II | 25 790 182 | 21 397 600 | 83.0 | 114 | 17 269 578 | 80.7 | 5 475 828  | 31.7 | mgm4664693.3 |
| T09_4   | 26 357 046 | 22 420 480 | 85.1 | 115 | 18 682 048 | 83.3 | 5 460 332  | 29.2 | mgm4664697.3 |
| T09_5I  | 25 226 958 | 22 200 697 | 88.0 | 117 | 19 798 145 | 89.2 | 7 536 782  | 38.1 | mgm4664692.3 |
| T09_5II | 21 633 042 | 18 738 404 | 86.6 | 117 | 16 272 418 | 86.8 | 5 963 344  | 36.7 | mgm4664689.3 |
| T09_6   | 25 766 550 | 21 976 971 | 85.3 | 116 | 18 790 853 | 85.5 | 6 732 969  | 35.8 | mgm4664696.3 |
| T09_7   | 24 550 814 | 21 136 779 | 86.1 | 116 | 18 437 455 | 87.2 | 6 836 040  | 37.1 | mgm4664694.3 |
| T09_8   | 27 341 606 | 23 486 818 | 85.9 | 116 | 20 258 614 | 86.3 | 7 831 086  | 38.7 | mgm4664690.3 |
| T10_1   | 36 054 800 | 30 118 886 | 83.5 | 114 | 23 439 911 | 77.8 | 5 076 396  | 21.7 | mgm4663615.3 |
| T10_2   | 25 758 458 | 22 661 971 | 88.0 | 117 | 20 154 872 | 88.9 | 8 394 878  | 41.7 | mgm4663618.3 |
| T10_3I  | 24 526 958 | 20 377 028 | 83.1 | 115 | 16 969 775 | 83.3 | 5 069 097  | 29.9 | mgm4663619.3 |
| T10_3II | 29 254 962 | 24 597 017 | 84.1 | 116 | 20 735 044 | 84.3 | 6 197 921  | 29.9 | mgm4663616.3 |
| T10_4   | 32 543 446 | 27 479 632 | 84.4 | 115 | 22 246 608 | 81.0 | 6 796 541  | 30.6 | mgm4663617.3 |
| T10_6   | 27 735 526 | 23 377 013 | 84.3 | 115 | 18 670 411 | 79.9 | 5 606 761  | 30.0 | mgm4663620.3 |
| T10_7I  | 43 244 796 | 36 840 670 | 85.2 | 116 | 30 578 750 | 83.0 | 13 458 081 | 44.0 | mgm4663630.3 |
| T10_7II | 20 617 104 | 17 188 922 | 83.4 | 115 | 14 341 258 | 83.4 | 6 267 463  | 43.7 | mgm4663633.3 |
| T10_9   | 16 735 292 | 13 534 962 | 80.9 | 112 | 10 209 021 | 75.4 | 3 746 777  | 36.7 | mgm4663634.3 |

| successfully constructed from the 45 samples. |       |       |        |           |         |  |  |  |  |
|-----------------------------------------------|-------|-------|--------|-----------|---------|--|--|--|--|
| Station                                       | June  | July  | August | September | October |  |  |  |  |
| 1                                             | 2.08  | 1.10  | 2.65   | 0.96      | 0.99    |  |  |  |  |
| 2                                             | 17.20 | 9.13  | 3.35   | 0.45      | 1.32    |  |  |  |  |
| 3                                             | 8.84  | 1.69  | 0.22   | 1.26      | 43.85   |  |  |  |  |
| 4                                             | 1.00  | 2.21  | 2.65   | 1.03      | 1.19    |  |  |  |  |
| 5                                             | 14.67 | 10.25 | 14.52  | 14.83     | 0.36    |  |  |  |  |
| 6                                             | 0.46  | 2.02  | 0.61   | 16.48     | 1.46    |  |  |  |  |
| 7                                             | 6.96  | 0.63  | 0.48   | 8.36      | 40.23   |  |  |  |  |
| 8                                             | 2.53  | 2.47  | 3.93   | 3.27      | 0.96    |  |  |  |  |
| 9                                             | 3.97  | 0.88  | 0.93   | 5.05      | 1.75    |  |  |  |  |

**Table S3** Amount of RNA ( $\mu$ g) yielded from Lake Taihu samples. A total of 39 metatrascriptomic libraries including 35 samples (grey shaded cells) and 4 technical replicates (bold samples) were successfully constructed from the 45 samples.

**Table S4** Analysis of similarity (ANOSIM) comparisons of gene expression profiles between months (June to October 2014) for *Microcystis* in Lake Taihu. The statistic *R* (ranges between 0 and 1) generated by ANOSIM is indicative of the degree of separation between groups, with a score of 1 indicating complete separation, and 0 indicating no separation.

| Groups        | Statistic R | Significance Level (%) |
|---------------|-------------|------------------------|
| Jun. vs. Jul. | 0.203       | 5.50                   |
| Jun. vs. Aug. | 0.801       | 0.08                   |
| Jun. vs. Sep. | 0.754       | 0.03                   |
| Jun. vs. Oct. | 0.654       | 0.03                   |
| Jul. vs. Aug. | 0.904       | 0.20                   |
| Jul. vs. Sep. | 0.639       | 0.10                   |
| Jul. vs. Oct. | 0.557       | 0.30                   |
| Aug. vs. Sep. | 0.405       | 1.30                   |
| Aug. vs. Oct. | 0.218       | 4.90                   |
| Sep. vs. Oct. | 0.404       | 0.40                   |

**Table S5** Genes putatively encoding transposase and their differential expression in Cluster II (samples from August to October) compared to Cluster I (samples from June and July). Red and blue characters represent those genes significantly (|fold change|  $\geq 1.5 \& P < 0.05$ ) up-regulated and down-regulated, respectively.

| MAE Number | Fold change | FDR p-value correction | Transposase Family |
|------------|-------------|------------------------|--------------------|
| 00740      | 5.08        | 3.1E-10                | IS605              |
| 00790      | 37.45       | 4.8E-05                |                    |
| 01100      | 3.34        | 4.6E-08                |                    |
| 01120      | 2.00        | 4.8E-02                |                    |
| 01400      | 5.48        | 1.7E-12                |                    |
| 01410      | 25.49       | 1.0E-21                |                    |
| 01430      | 11.06       | 1.1E-03                | IS605              |
| 01440      | 1.82        | 3.9E-03                | ISL3               |
| 01620      | 2.35        | 4.1E-05                |                    |
| 01660      | 6.47        | 2.3E-02                |                    |
| 02260      | 3.47        | 5.3E-04                |                    |
| 02300      | 4.78        | 3.3E-07                |                    |
| 02940      | 3.26        | 5.6E-10                |                    |
| 02950      | 4.76        | 2.1E-08                |                    |
| 03050      | 1.95        | 1.9E-02                |                    |
| 03060      | 2.47        | 2.6E-03                |                    |
| 03270      | 2.20        | 2.7E-03                |                    |
| 03690      | 5.67        | 1.7E-05                |                    |
| 04150      | 3.28        | 1.6E-03                |                    |
| 04160      | 5.03        | 1.5E-05                |                    |
| 04420      | 3.97        | 2.0E-05                |                    |
| 04810      | 10.45       | 4.8E-03                |                    |
| 04830      | 5.97        | 2.2E-02                |                    |
| 04950      | 7.25        | 1.8E-02                |                    |
| 04980      | 3.18        | 6.2E-04                |                    |
| 05120      | 1.61        | 2.4E-03                |                    |
| 05300      | 2.41        | 1.8E-08                | IS605              |
| 05720      | 3.63        | 3.6E-05                |                    |
| 05730      | 27.26       | 7.6E-25                |                    |
| 05920      | 6.30        | 3.2E-02                |                    |
| 06030      | 9.78        | 1.2E-11                |                    |
| 07480      | 23.95       | 5.7E-05                |                    |
| 08290      | 6.77        | 1.4E-04                | ISL3               |
| 08710      | 4.57        | 9.7E-04                |                    |
| 10160      | 1.56        | 2.1E-02                |                    |
| 10180      | 2.23        | 7.3E-04                | IS605              |

| 10310 | -2.63 | 2.5E-02 |       |
|-------|-------|---------|-------|
| 10440 | 11.23 | 3.3E-03 |       |
| 10580 | 2.19  | 1.0E-02 | ISL3  |
| 10630 | 17.76 | 3.6E-12 |       |
| 10690 | 8.00  | 3.9E-11 |       |
| 10750 | 17.46 | 6.8E-04 |       |
| 11420 | 3.37  | 2.3E-05 |       |
| 11630 | 3.55  | 8.3E-05 | ISL3  |
| 11670 | 3.80  | 4.2E-06 |       |
| 11680 | 3.83  | 5.4E-07 |       |
| 11690 | 4.69  | 1.5E-16 |       |
| 11740 | 2.67  | 1.8E-06 | IS605 |
| 13740 | 20.25 | 4.0E-12 |       |
| 13800 | 16.60 | 6.0E-04 |       |
| 13810 | 5.55  | 2.2E-02 |       |
| 13890 | 5.49  | 3.7E-02 |       |
| 14820 | 1.70  | 2.1E-02 |       |
| 15290 | 4.48  | 1.9E-16 |       |
| 15350 | 2.75  | 4.0E-11 |       |
| 16010 | 2.58  | 5.7E-04 |       |
| 16460 | 3.41  | 5.2E-04 |       |
| 16510 | 5.28  | 8.9E-11 |       |
| 16530 | 2.55  | 2.2E-05 |       |
| 16540 | 2.35  | 4.0E-06 | IS605 |
| 16830 | 4.79  | 2.5E-07 |       |
| 16840 | 4.35  | 3.2E-06 |       |
| 16950 | 9.52  | 9.4E-04 |       |
| 17140 | 2.26  | 1.9E-04 |       |
| 17710 | 2.25  | 6.2E-08 |       |
| 17930 | 5.77  | 5.8E-05 |       |
| 17940 | 5.60  | 2.2E-04 |       |
| 18000 | 3.04  | 1.2E-04 |       |
| 19340 | 2.34  | 8.0E-06 | IS605 |
| 19800 | 4.90  | 5.0E-02 |       |
| 20330 | 2.75  | 4.1E-05 | IS605 |
| 20910 | 29.93 | 6.7E-05 |       |
| 20940 | 1.86  | 2.0E-03 |       |
| 21890 | 2.55  | 1.7E-03 |       |
| 21970 | -1.84 | 3.6E-04 |       |
| 22180 | 6.76  | 1.1E-22 |       |
| 22200 | 3.53  | 8.2E-05 |       |

| 22240 | 7.35  | 6.9E-03 |                        |
|-------|-------|---------|------------------------|
| 22270 | -3.09 | 1.9E-11 |                        |
| 22350 | 3.75  | 2.5E-05 |                        |
| 22400 | 3.06  | 5.2E-12 | IS605                  |
| 22840 | 1.50  | 4.4E-03 | IS605                  |
| 23110 | 4.42  | 1.3E-15 | IS605                  |
| 23170 | 2.02  | 2.7E-04 | IS605                  |
| 23260 | 5.06  | 3.1E-07 |                        |
| 23420 | 9.54  | 8.1E-04 |                        |
| 24700 | 3.04  | 1.6E-05 |                        |
| 24780 | 6.22  | 1.9E-02 |                        |
| 24800 | 33.33 | 4.4E-18 |                        |
| 24970 | 4.38  | 7.8E-07 |                        |
| 24980 | 2.03  | 1.1E-02 |                        |
| 25530 | 5.44  | 1.2E-06 |                        |
| 26000 | 4.75  | 7.4E-06 |                        |
| 26950 | 1.72  | 6.1E-04 |                        |
| 26970 | 3.51  | 1.0E-05 | ISL3/204/100/1096/1165 |
| 27070 | -2.17 | 8.1E-07 |                        |
| 27330 | 4.43  | 1.7E-05 |                        |
| 27490 | -1.74 | 1.0E-05 |                        |
| 27650 | 2.09  | 3.0E-06 |                        |
| 27710 | 5.68  | 2.6E-07 |                        |
| 28800 | 7.66  | 1.0E-02 |                        |
| 29160 | 6.31  | 2.1E-09 |                        |
| 29210 | 3.61  | 2.5E-05 |                        |
| 29230 | 1.82  | 3.5E-05 | IS605                  |
| 29350 | 23.93 | 3.2E-07 |                        |
| 29570 | 3.12  | 1.2E-04 |                        |
| 29610 | 2.01  | 2.4E-04 | IS605                  |
| 29640 | 2.57  | 3.5E-04 |                        |
| 29650 | 5.04  | 5.4E-08 |                        |
| 29680 | -1.66 | 4.1E-02 |                        |
| 29690 | 4.22  | 2.3E-03 |                        |
| 30310 | 4.89  | 6.2E-10 |                        |
| 30320 | -1.63 | 1.5E-04 |                        |
| 30340 | 1.98  | 1.1E-04 |                        |
| 31200 | 5.09  | 8.5E-06 |                        |
| 32760 | 7.66  | 2.0E-02 |                        |
| 33100 | 3.08  | 9.6E-06 |                        |
| 33340 | 2.95  | 2.8E-05 |                        |

| 33490 | 2.29  | 1.3E-03 |       |
|-------|-------|---------|-------|
| 33580 | 3.30  | 7.3E-04 |       |
| 33620 | 1.55  | 7.3E-03 |       |
| 33840 | 2.35  | 4.9E-05 |       |
| 34130 | -1.79 | 4.2E-05 |       |
| 34140 | 2.39  | 3.0E-05 |       |
| 34180 | 25.81 | 1.3E-06 |       |
| 34310 | 6.59  | 2.1E-05 |       |
| 34390 | 1.53  | 2.0E-02 |       |
| 34400 | 2.66  | 7.3E-07 |       |
| 34640 | 2.62  | 1.3E-02 |       |
| 34730 | -1.77 | 8.9E-04 |       |
| 36260 | 1.67  | 4.6E-02 | IS605 |
| 36440 | 2.19  | 3.8E-02 |       |
| 36520 | 2.61  | 6.7E-05 | IS605 |
| 37900 | 3.57  | 1.2E-09 | IS605 |
| 38010 | 2.50  | 9.5E-07 |       |
| 38070 | 3.13  | 4.5E-08 | IS605 |
| 38460 | 2.32  | 1.3E-05 | IS605 |
| 39350 | 24.11 | 1.1E-11 |       |
| 39570 | 8.70  | 1.2E-04 |       |
| 40360 | 1.79  | 1.4E-04 |       |
| 42010 | 2.01  | 9.7E-08 |       |
| 42410 | 2.57  | 1.3E-06 | IS605 |
| 42420 | 1.98  | 1.6E-04 | IS605 |
| 42450 | 2.38  | 7.1E-07 | IS605 |
| 42460 | 1.79  | 1.7E-03 |       |
| 42700 | 10.32 | 7.0E-03 |       |
| 43110 | 5.20  | 8.7E-10 |       |
| 43160 | 14.17 | 3.7E-15 |       |
| 43380 | 4.18  | 2.3E-04 |       |
| 43620 | 5.13  | 3.2E-08 |       |
| 43630 | 3.93  | 2.8E-06 | IS605 |
| 43830 | 3.12  | 5.2E-06 |       |
| 44190 | 5.33  | 7.3E-06 |       |
| 44200 | 3.14  | 2.3E-02 |       |
| 44500 | 1.97  | 1.8E-02 | IS605 |
| 44590 | 1.53  | 3.3E-02 | IS605 |
| 44600 | 2.00  | 8.5E-06 |       |
| 44880 | 2.80  | 9.3E-12 | IS605 |
| 45270 | 1.95  | 1.2E-04 |       |

| 45350 | 5.10  | 1.8E-07 |       |
|-------|-------|---------|-------|
| 45440 | 5.28  | 5.0E-10 |       |
| 47480 | 5.42  | 3.4E-03 |       |
| 47650 | 3.11  | 8.2E-06 |       |
| 47780 | 28.65 | 4.4E-09 |       |
| 48000 | 2.20  | 2.6E-04 |       |
| 48650 | 1.93  | 8.2E-04 |       |
| 48670 | -2.91 | 3.2E-06 |       |
| 48700 | 9.51  | 1.5E-02 |       |
| 48780 | 3.90  | 2.0E-05 |       |
| 50010 | 1.79  | 3.1E-05 | IS605 |
| 50750 | 1.99  | 8.6E-06 |       |
| 50890 | 2.70  | 3.3E-07 |       |
| 51110 | 2.73  | 7.5E-10 |       |
| 51600 | 27.13 | 1.2E-05 |       |
| 51800 | 3.48  | 7.8E-04 |       |
| 51830 | 1.56  | 5.8E-04 | IS605 |
| 52020 | 15.56 | 2.9E-09 |       |
| 53420 | 2.48  | 8.9E-05 | IS605 |
| 53530 | 1.50  | 1.8E-03 | IS605 |
| 53540 | 2.16  | 8.9E-05 | IS605 |
| 54250 | -1.97 | 1.4E-04 |       |
| 54270 | 2.53  | 1.5E-04 |       |
| 54610 | 2.15  | 3.2E-04 |       |
| 54810 | 1.68  | 2.5E-02 |       |
| 54820 | 1.75  | 2.8E-04 | IS605 |
| 54880 | -2.30 | 2.0E-05 |       |
| 55310 | 2.37  | 1.0E-04 |       |
| 55320 | 2.60  | 4.7E-04 |       |
| 57040 | 2.70  | 1.7E-10 |       |
| 58430 | 3.58  | 7.3E-03 |       |
| 59240 | 3.62  | 1.1E-09 |       |
| 59790 | 2.61  | 1.5E-09 |       |
| 60050 | 2.51  | 2.9E-10 | IS605 |
| 60160 | 3.08  | 8.6E-05 |       |
| 60350 | -1.77 | 7.3E-04 | ISL3  |
| 60850 | 2.58  | 5.0E-06 |       |
| 60950 | 1.57  | 1.2E-02 |       |
| 61550 | 8.77  | 9.7E-03 |       |
| 62860 | 2.89  | 2.2E-03 |       |
| 62930 | 2.09  | 1.6E-03 | IS605 |

| 63080 | 3.10 | 5.7E-08 | IS200 |
|-------|------|---------|-------|
| 63090 | 5.12 | 1.9E-17 | IS605 |

**Table S6** Genes involved in nitrogen metabolism and their differential expression in Cluster II (samples from August to October) compared to Cluster I (samples from June and July). Red and blue characters represent those genes significantly (|fold change|  $\geq 1.5 \& P < 0.05$ ) up-regulated and down-regulated, respectively.

| MAE    | Gene         | Product                                              | Fold   | FDR p-value |
|--------|--------------|------------------------------------------------------|--------|-------------|
| Number | Symbol       |                                                      | change | correction  |
| 12590  | amt          | ammonium transport protein                           | 1.09   | 5.0E-01     |
| 40020  | amt          | ammonium transport protein                           | -1.61  | 7.0E-02     |
| 17690  | amt1         | ammonium/methylammonium permease                     | 2.80   | 1.7E-03     |
| 40010  | amt1         | ammonium/methylammonium permease                     | -1.47  | 1.7E-01     |
| 08260  | gdhA         | glutamate dehydrogenase (NADP+)                      | 1.27   | 3.0E-01     |
| 19270  | glnA         | glutamate-ammonia ligase                             | -1.85  | 2.0E-02     |
| 09050  | glnA         | glutamate-ammonia ligase                             | 1.29   | 3.1E-01     |
| 59130  | glnB         | nitrogen regulatory protein P-II                     | 1.09   | 6.5E-01     |
| 57460  | glnB         | nitrogen regulatory protein P-II                     | 1.01   | 1.0E+00     |
| 29150  | cphB         | cyanophycinase                                       | 5.66   | 6.0E-06     |
| 27450  | cphB         | cyanophycinase                                       | 1.04   | 8.2E-01     |
| 27460  | cphA         | cyanophycin synthetase                               | -1.08  | 6.1E-01     |
| 10370  | cynS         | cyanante hydratase                                   | -1.01  | 1.0E+00     |
| 37080  | fur          | ferric uptake regulation protein                     | -1.20  | 1.7E-01     |
| 57540  | fur          | ferric uptake regulation protein                     | -1.09  | 4.0E-01     |
| 29110  | glsF         | ferredoxin-dependent glutamate synthase              | -1.08  | 6.1E-01     |
| 07560  | glt <b>B</b> | NADH-dependent glutamate synthase large subunit      | -2.13  | 1.6E-02     |
| 14900  | gltD         | NADH-dependent glutamate synthase small subunit      | -2.48  | 1.2E-02     |
| 13630  | gltS         | monocomponent sodium-dependent glutamate permease    | -1.64  | 3.3E-03     |
| 52690  | gltX         | glutamyl-tRNA synthetase                             | -1.50  | 2.5E-04     |
| 36480  | nadB         | L-aspartate oxidase                                  | 1.01   | 1.0E+00     |
| 53960  | narB         | ferredoxin-nitrate reductase                         | -1.13  | 4.5E-01     |
| 00310  | natA         | amino acid transport ATP-binding protein             | 1.02   | 8.7E-01     |
| 01200  | natA         | amino acid transport ATP-binding protein             | 1.01   | 9.9E-01     |
| 00300  | natC         | amino acid transport system permease protein         | -1.00  | 1.0E+00     |
| 02170  | natC         | amino acid transport system permease protein         | 1.02   | 9.3E-01     |
| 18410  | nirA         | ferredoxin-nitrite reductase                         | -1.65  | 4.4E-02     |
| 14800  | nrtA         | ABC transporter nitrate-binding protein              | -2.00  | 2.4E-03     |
| 14790  | nrtB         | nitrate/nitrite transport system permease protein    | -1.56  | 5.9E-02     |
| 14780  | nrtC         | nitrate/nitrite transport system ATP-binding protein | -1.68  | 9.6E-03     |

| 14770 | nrtD | nitrate/nitrite transport system ATP-binding | -1.59 | 4.7E-04 |
|-------|------|----------------------------------------------|-------|---------|
|       |      | protein                                      |       |         |
| 18880 | nrtB | ABC-transporter substrate-binding protein    | -1.02 | 9.9E-01 |
| 18890 | nrtC | ABC-transporter permease protein             | -1.24 | 3.6E-01 |
| 18900 | nrtD | ABC-transporter ATP-binding protein          | -1.19 | 4.0E-01 |
| 01830 | ntcA | global nitrogen regulatory protein Ycf28     | -1.09 | 5.4E-01 |
| 46810 | speA | arginine decarboxylase                       | -1.06 | 7.2E-01 |
| 18840 | speB | agmatinase                                   | -1.04 | 8.7E-01 |
| 45220 | ureA | urease gamma subunit                         | -1.14 | 3.3E-01 |
| 45230 | ureB | urease beta subunit                          | -1.28 | 2.7E-02 |
| 61330 | ureC | urease subunit alpha                         | 1.27  | 7.8E-02 |
| 04510 | ureD | urease accessory protein D                   | -1.21 | 5.3E-02 |
| 41100 | ureE | urease accessory protein E                   | -1.05 | 7.5E-01 |
| 41820 | ureF | urease accessory protein F                   | 1.08  | 4.6E-01 |
| 24230 | ureG | urease accessory protein G                   | -1.34 | 4.6E-03 |
| 06220 | urtA | ABC-type urea transport system substrate-    | -1.57 | 4.2E-02 |
|       |      | binding protein                              |       |         |
| 06210 | urtB | urea transport system permease protein       | -1.11 | 5.5E-01 |
| 06200 | urtC | urea transport system permease protein       | -1.14 | 4.6E-01 |
| 06190 | urtD | urea transport system ATP-binding protein    | 1.06  | 8.2E-01 |
| 06180 | urtE | urea transport system ATP-binding protein    | 1.01  | 1.0E+00 |
| 25850 |      | amino acid ABC-transporter permease protein  | -1.03 | 8.6E-01 |
| 26850 |      | amino-acid ABC-transporter permease protein  | 1.12  | 6.8E-01 |
| 26840 |      | amino-acid ABC-transporter ATP-binding       | 1.47  | 7.9E-02 |
|       |      | protein                                      |       |         |
| 27820 |      | amino acid adenylation                       | 2.86  | 2.6E-02 |
| 32020 |      | amino-acid ABC-transporter permease protein  | -1.02 | 9.4E-01 |
| 55930 | pipX | PII interaction protein X                    | -1.33 | 1.7E-02 |

**Table S7** Genes involved in phosphorus metabolism and their differential expression in Cluster II (samples from August to October) compared to Cluster I (samples from June and July). Red and blue characters represent those genes significantly (|fold change|  $\geq 1.5 \& P < 0.05$ ) up-regulated and down-regulated, respectively.

| MAE    | Gene        | Product                                        | Fold   | FDR p-value |
|--------|-------------|------------------------------------------------|--------|-------------|
| Number | Symbol      |                                                | change | correction  |
| 01300  | ppk         | polyphosphate kinase                           | -1.42  | 1.2E-03     |
| 09250  | pstB        | phosphate ABC transporter ATP-binding protein  | 1.19   | 3.2E-01     |
| 09260  | pstA        | phosphate transport system permease protein    | -1.14  | 3.2E-01     |
| 09270  | pstC        | phosphate transport system permease protein    | -1.19  | 3.1E-01     |
| 09280  | pstS        | ABC-transporter periplasmic phosphate-binding  | -1.14  | 5.3E-01     |
|        |             | protein                                        |        |             |
| 09320  | phnD        | ABC-transporter substrate-binding protein      | 1.45   | 4.0E-02     |
| 16640  |             | alkaline phosphatase                           | 4.19   | 2.8E-04     |
| 18280  | pstA        | phosphate transport system permease protein    | -1.13  | 5.8E-01     |
| 18290  | pstA        | phosphate transport system permease protein    | -1.10  | 7.1E-01     |
| 18300  | pstA        | phosphate transport system permease protein    | -1.26  | 2.2E-01     |
| 18310  | pstS        | phosphate-binding periplasmic protein          | -5.35  | 1.0E-08     |
| 18340  | pstB2       | phosphate transport ATP-binding protein        | -1.90  | 8.3E-07     |
| 18350  | pstB        | phosphate transport ATP-binding protein        | -1.75  | 2.0E-05     |
| 18360  | pstA        | phosphate transport system permease protein    | -2.05  | 1.1E-08     |
| 18370  | <i>pstC</i> | phosphate ABC transporter permease             | -1.87  | 2.8E-06     |
| 18380  | pstS        | phosphate-binding periplasmic protein          | -5.16  | 1.0E-11     |
| 18390  | sphX        | phosphate transport system substrate-binding   | -2.91  | 3.2E-09     |
|        |             | protein                                        |        |             |
| 30190  | phoX        | alkaline phosphatase                           | -2.03  | 1.1E-05     |
| 32260  | proA        | gamma-glutamyl phosphate reductase             | -1.01  | 1.0E+00     |
| 32380  | pstS        | phosphate binding protein PstS homolog         | -1.36  | 2.2E-03     |
| 38290  |             | phosphate ABC-transporter periplasmic          | 5.29   | 9.2E-07     |
|        |             | phosphate-binding protein                      |        |             |
| 43330  | phoH        | <i>phoH</i> -like protein                      | -1.11  | 4.9E-01     |
| 47020  |             | soluble inorganic pyrophosphatase              | -1.30  | 1.1E-01     |
| 50240  |             | alkaline phosphatase-like protein              | 1.23   | 2.1E-01     |
| 52210  | phnZ        | metal dependent phosphohydrolase HD region     | -1.08  | 5.5E-01     |
| 52630  | sphU        | creatininase                                   | -1.14  | 2.5E-01     |
| 52640  | sphR        | response regulator in two-component regulatory | 1.17   | 1.9E-01     |
|        |             | system of Pi uptake                            |        |             |
| 52650  | sphS        | two-component sensor histidine kinase          | 1.04   | 7.7E-01     |
| 52660  | phoU        | phosphate transport system regulatory protein  | -1.02  | 9.6E-01     |
| 53740  | ppx         | exopolyphosphatase                             | -1.15  | 1.7E-01     |

**Table S8** Genes involved in toxin metabolism and their differential expression in Cluster II (samples from August to October) compared to Cluster I (samples from June and July). Red and blue characters represent those genes significant (|fold change|  $\geq 1.5 \& P < 0.05$ ) up-regulated and down-regulated, respectively.

| MAE        | Gene                              | Product                                          | Fold   | FDR p-value |  |
|------------|-----------------------------------|--------------------------------------------------|--------|-------------|--|
| Number     | Symbol                            |                                                  | change | correction  |  |
| Microcysti | Microcystin toxin synthesis genes |                                                  |        |             |  |
| 38550      | mcyC                              | McyC protein                                     | 2.30   | 9.5E-03     |  |
| 38560      | mcyB                              | McyB protein                                     | 2.25   | 1.2E-02     |  |
| 38570      | тсуA                              | McyA protein                                     | 2.24   | 1.4E-02     |  |
| 38600      | mcyD                              | short-chain dehydrogenase                        | 1.94   | 4.3E-02     |  |
| 38610      | mcyE                              | thioester reductase                              | 1.86   | 6.1E-02     |  |
| 38620      | mcyF                              | aspartate racemase                               | 1.94   | 6.7E-02     |  |
| 38630      | mcyG                              | beta-ketoacyl synthase                           | 1.80   | 6.7E-02     |  |
| 38640      | mcyH                              | ABC transporter                                  | 1.83   | 8.2E-02     |  |
| 38650      | mcyI                              | dehydrogenase                                    | 1.61   | 2.1E-01     |  |
| 38660      | mcyJ                              | methyltransferase                                | 1.44   | 3.5E-01     |  |
| Aeruginosi | in synthesis                      | genes                                            |        |             |  |
| 56590      | aerA                              | non-ribosomal peptide synthetase/polyketide      | -2.34  | 1.3E-09     |  |
|            |                                   | synthase hybrid enzyme                           |        |             |  |
| 56580      | aerB                              | peptide synthetase                               | -2.09  | 5.3E-08     |  |
| 56560      | aerD                              | putative aeruginosin synthesis gene              | -1.77  | 7.6E-04     |  |
| 56570      | aerK                              | isopentenyl-dephosphate delta-isomerase          | -2.05  | 1.3E-07     |  |
| 56550      | aerE                              | hypothetical protein                             | -1.99  | 1.1E-06     |  |
| 56540      | aerF                              | 3-oxoacyl-[acyl-carrier-protein] reductase like  | -2.03  | 5.6E-07     |  |
| 56520      | aerG1                             | non-ribosomal peptide synthetase                 | -2.00  | 7.2E-07     |  |
| 56530      | aerL                              | hypothetical protein                             | -1.39  | 8.5E-02     |  |
| 56500      | aerM                              | amino acid adenylation participated protein like | -1.48  | 3.1E-02     |  |
| 56480      | aerN                              | ABC-transporter ATP-binding protein              | -1.97  | 5.2E-08     |  |
| Microvirid | in synthesis                      | genes                                            |        |             |  |
| 59980      | mdnA                              | unknown protein                                  | -2.29  | 1.1E-08     |  |
| 24100      | mdnB                              | hypothetical protein                             | -2.46  | 5.1E-08     |  |
| 24090      | mdnC                              | hypothetical protein                             | -2.22  | 8.1E-07     |  |
| 24080      | mdnD                              | acetyltransferase                                | -1.73  | 7.4E-05     |  |
| 24070      | mdnE                              | ABC-transporter ATP-binding protein              | -1.73  | 1.5E-06     |  |
| Cyanopept  | olin synthes                      | is genes                                         |        |             |  |
| 60030      | mcnA                              | synthesis of cyanopeptolin                       | 1.42   | 1.6E-01     |  |
| 60020      | mcnB                              | McnB protein                                     | 1.32   | 2.5E-01     |  |
| 60010      | mcnC                              | McnC protein                                     | 1.30   | 2.5E-01     |  |
| 60000      | mcnE                              | McnE protein                                     | -1.13  | 5.8E-01     |  |
| 60060      | mcnF                              | ABC transporter ATP-binding protein              | 1.10   | 7.4E-01     |  |
| 60070      | mcnG                              | McnG protein                                     | 1.02   | 1.0E+00     |  |

**Table S9** Significantly expressed genes involved in extracellular polysaccharide (EPS) production and export between Cluster II (samples from August to October) and Cluster I (samples from June and July). Red and blue characters represent those genes significant (|fold change|  $\geq 1.5 \& P < 0.05$ ) upregulated and down-regulated, respectively.

| MAE    | Gene   | Product                                       | Fold   | FDR p-value |
|--------|--------|-----------------------------------------------|--------|-------------|
| Number | Symbol |                                               | change | correction  |
| 02160  |        | glycosyl transferase                          | 1.92   | 2.1E-04     |
| 03140  |        | glycosyl transferase family 1                 | 2.44   | 1.9E-08     |
| 08430  |        | capsular polysaccharide biosynthesis protein  | 2.73   | 3.4E-03     |
| 10910  |        | lipopolysaccharide (LPS) biosynthesis protein | 5.29   | 2.5E-08     |
| 10920  | rfbC   | dTDP-4-dehydrorhamnose 3,5-epimerase          | 3.15   | 3.9E-05     |
| 11050  |        | polysaccharide biosynthesis protein GtrA      | 5.38   | 4.7E-06     |
| 13210  |        | glycosyl transferase                          | -2.49  | 2.5E-11     |
| 13220  |        | glycosyl transferase                          | -1.79  | 1.3E-06     |
| 18140  | rfbB   | dTDP-glucose 4,6 dehydratase                  | 1.67   | 1.4E-03     |
| 21000  |        | glycosyltransferase                           | 1.71   | 1.2E-06     |
| 24180  |        | glycosyl transferase family 1                 | 13.37  | 8.9E-06     |
| 27990  |        | Porin type major outer membrane protein       | -2.29  | 2.9E-05     |
| 29550  |        | glycosyltransferase family 2                  | 3.48   | 5.5E-06     |
| 32710  |        | glycosyl transferase                          | 2.34   | 3.3E-03     |
| 32720  |        | glycosyl transferase family 1                 | 2.80   | 5.4E-04     |
| 32750  |        | glycosyl transferase                          | 1.83   | 7.6E-04     |
| 32850  |        | glycosyl transferase                          | -2.64  | 3.2E-05     |
| 32860  | rfbB   | dTDP-glucose 4,6 dehydratase                  | -2.30  | 4.5E-04     |
| 32920  |        | polysaccharide biosynthesis protein           | 4.98   | 5.0E-07     |
| 32930  |        | Capsular polysaccharide synthesis enzyme CpsE | 6.37   | 2.0E-07     |
| 37750  |        | glycosyl transferase                          | 5.38   | 1.9E-08     |
| 40030  |        | glycosyltransferase                           | 5.56   | 7.2E-09     |
| 41480  | cpsF   | glucosyl transferase                          | 12.18  | 1.9E-04     |
| 41490  |        | glucosyl transferase                          | 9.67   | 1.3E-05     |
| 41510  |        | glycosyl transferase family 1                 | 6.13   | 1.4E-03     |
| 41520  |        | lipopolysaccharide (LPS) biosynthesis protein | 8.00   | 8.0E-05     |
| 41530  |        | glycosyl transferase                          | 6.40   | 3.4E-04     |
| 41540  |        | Polysaccharide biosynthesis protein           | 6.75   | 4.4E-06     |
| 41550  |        | glucosyl transferase                          | 6.60   | 7.8E-05     |
| 41560  |        | O-antigen polymerase                          | 6.12   | 7.2E-04     |
| 41570  |        | glycosyl transferase family 1                 | 6.35   | 7.1E-05     |
| 41580  |        | hexapeptide transferase                       | 7.21   | 1.0E-05     |
| 41930  |        | glycosyltransferase                           | 5.63   | 8.2E-10     |
| 42550  |        | glycosyltransferase                           | 7.64   | 2.6E-04     |
| 45850  |        | glycosyltransferase                           | 3.59   | 1.2E-05     |
| 46400  |        | Glycosyl transferase family 2                 | 1.70   | 2.7E-07     |
| 46420  |        | Glycosyl transferase family 39                | -2.00  | 6.0E-05     |
| 53140  |        | glycosyltransferase family 4 protein          | 1.94   | 5.8E-06     |
| 55650  |        | glycosyl transferase family A                 | -2.16  | 3.6E-08     |
| 55700  |        | glycosyl transferase family 1                 | -1.71  | 1.2E-04     |
| 59490  |        | glycosyl transferase                          | 7.44   | 4.5E-05     |
| 59510  |        | glycosyl transferase                          | 15.14  | 3.7E-05     |



**Figure S1** Boxplot comparing the main environmental parameters between early bloom season (Stage I: June to July) and late bloom season (Stage II: August to October) in Lake Taihu. Non-parametric Kruskal-Wallis rank sum test was used to detect the significance level between the two stages. *P* values were listed at the top of each boxplot. EC, electrical conductivity; WT, water temperature; TN, total nitrogen; TDN, total dissolved nitrogen; NH<sub>4</sub><sup>+</sup>, ammonium; TP, total phosphorus; TDP, total dissolved phosphorus; PO<sub>4</sub><sup>3-</sup>, orthophosphate; Chl-*a*, chlorophyll *a*; MC, microcystin; DO, dissolved oxygen. Horizontal bars and white points in the box plots indicate median and mean values, respectively. Lower and upper edges of the boxes represent the approximate 1<sup>st</sup> and 3<sup>rd</sup> quartiles, respectively. Lower and upper error bar edges indicate the minimum and maximum values, respectively. The points outside the boxes represent outliers. Note: data from samples collected in this study excluding sequencing failed samples.







**Figure S2** Overview of community makeup based on transcript abundance at domain (**a**), bacterial phylum level (**b**), and cyanobacterial genus level (**c**, technical replicates were combined). The first letter of each sample name indicates Taihu, the following two numbers indicate months and the last numbers indicate sampling stations.

С

**RPKM of M.aeruginosa NIES 843 genes** 

Group average



**Figure S3** Cluster analysis of Lake Taihu metatranscriptomics mapped to the genome of *M*. *aeruginosa* NIES 843. RPKM (Reads Per Kilobase of exon model per Million mapped reads) of each gene were used to generate the plot. Technical replicates showed > 97.7% similarities. Samples T07\_9 and T08\_9 had the most heterogeneity with other samples and were excluded from further analysis.



**Figure S4** Volcano plot shows fold changes and corrected *P*-value of false discovery rate (FDR) for statistical comparisons between samples in Cluster I (Jun. & Jul. 2014) and in Cluster II (Aug. to Oct.

statistical comparisons between samples in Cluster I (Jun. & Jul. 2014) and in Cluster II (Aug. to Oct. 2014) for *M. aeruginosa* NIES 843 genes. The standards of significantly expressed differential genes are absolute values of fold change  $\geq 1.5$  and FDR-corrected *P*-value < 0.01. In total, there are 1970 genes significantly differentially expressed in which 1425 genes (red points) up-regulated and 545 genes (blue points) down-regulated.



**Figure S5** Linkage tree analysis (LINKTREE) showing clustering of samples based on gene makeup and the environmental parameters. For the binary separation of A-D and L, environmental factor accounting for the clustering to the left are listed first, followed by the factor for the clustering to the right (in parenthesis). R-values were calculated using the analysis of similarity (ANOSIM). The B% indicates the similarity/dissimilarity between grouping: The higher the B%, the greater the dissimilarity between cluster. Red dashed branches indicate insignificant separations (SIMPOF test: P > 0.05).



**Figure S6** Boxplot for the concentrations of nitrate ( $NO_3^-$ ) along months (June to October 2014) in northwest Lake Taihu (upper panel). Data come from monthly monitoring at 14 stations located in northwest Taihu (see the lower panel) conducted by Taihu Laboratory for Lake Ecosystem Research (TLLER).





**Figure S7** KEGG (Kyoto Encyclopedia of Genes and Genomes) map shows gene express patterns of the nitrogen metabolism pathway (**a**) and ribosome pathway (**b**). Green boxes represent significant down-regulation and grey boxes represent insignificant expression of related genes.



**Figure S8 (a)** Dynamics of electrical conductivity (EC) and rainfall in each month in Lake Taihu. Spearman correlation analysis demonstrated a significant positive relationship between the two parameters ( $\rho = 0.81$ , P = 0.002). (b) Relationship between EC and the dissolved anions (Na<sup>+</sup>, K<sup>+</sup>, Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>). EC and dissolved data (from Jan. 2007 to Jan. 2016) were obtained from Taihu Laboratory for Lake Ecosystem Research (TLLER) and the monthly average rainfall data in surrounding 5 meteorological stations (Wuxi, Yixing, Suzhou, Wujiang and Dongshan) were downloaded from the China Meteorological Data Sharing Service System (http://cdc.nmic.cn).