

Supplementary Figure 6. Effect of changes in \dot{Q}_T on $P_a C O_2$, over a range of $\frac{\dot{Q}_S}{\dot{Q}_T}$

Results for \dot{Q}_{EC} = 3 l/min. The effect of increases in \dot{Q}_T depends on the pulmonary shunt fraction. With $\frac{\dot{Q}_S}{\dot{Q}_T}$ of 1, there is a small increase in P_aCO_2 as cardiac output rises; $\frac{\dot{Q}_S}{\dot{Q}_T}$ of 0.9, there is almost no effect. With $\frac{\dot{Q}_S}{\dot{Q}_T} \leq$ 0.7, there is a fall in P_aCO_2 as cardiac output rises.