Supplementary Figure 5. Effect of $F_{OXY}O_2$ on P_aCO_2 . Lines show the P_aCO_2 at each shunt fraction, for $F_{OXY}O_2$ of 1. Red markers show the P_aCO_2 at the corresponding shunt fraction, for $F_{OXY}O_2$ of 0.2. At each value of Qec and shunt fraction, P_aCO_2 at $F_{OXY}O_2$ of 1 and at $F_{OXY}O_2$ of 0.2 were within 1.3 mm Hg each other. Missing values are for data that is physiologically impossible ($C_{\overline{V}}O_2$ of < 0 would be required), which is more likely when $F_{OXY}O_2$ is low, $\frac{\dot{Q}_S}{\dot{Q}_T}$ is high, and \dot{Q}_{EC} is low.